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Abstract

Pathogenesis of chronically developing alveolar echinococcosis (AE) is characterized by a continuous, granulomatous,
periparasitic infiltration of immune cells surrounding the metacestode of Echinococcus multilocularis (E.multilocularis) in the
affected liver. A detailed cytokine and chemokine profile analysis of the periparasitic infiltrate in the liver has, however, not
yet been carried out in a comprehensive way all along the whole course of infection in E. multilocularis intermediate hosts.
We thus assessed the hepatic gene expression profiles of 18 selected cytokine and chemokine genes using qRT-PCR in the
periparasitic immune reaction and the subsequent adjacent, not directly affected, liver tissue of mice from day 2 to day 360
post intra-hepatic injection of metacestode. DNA microarray analysis was also used to get a more complete picture of the
transcriptional changes occurring in the liver surrounding the parasitic lesions. Profiles of mRNA expression levels in the
hepatic parasitic lesions showed that a mixed Th1/Th2 immune response, characterized by the concomitant presence of IL-
12a, IFN-c and IL-4, was established very early in the development of E. multilocularis. Subsequently, the profile extended to
a combined tolerogenic profile associating IL-5, IL-10 and TGF-b. IL-17 was permanently expressed in the liver, mostly in the
periparasitic infiltrate; this was confirmed by the increased mRNA expression of both IL-17A and IL-17F from a very early
stage, with a subsequent decrease of IL-17A after this first initial rise. All measured chemokines were significantly expressed
at a given stage of infection; their expression paralleled that of the corresponding Th1, Th2 or Th17 cytokines. In addition to
giving a comprehensive insight in the time course of cytokines and chemokines in E. multilocularis lesion, this study
contributes to identify new targets for possible immune therapy to minimize E. multilocularis-related pathology and to
complement the only parasitostatic effect of benzimidazoles in AE.
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Introduction

Alveolar echinococcosis (AE) is a rare, but - if remaining

untreated or treated too late- severe and fatal zoonotic helminthic

disease, predominantly caused not only by the direct hepatic

damage which follows the continuous tumor-like proliferation of

the larval stage (metacestode) of Echinococcus multilocularis (E.multi-

locularis), but also indirectly by the intense local granulomatous

immune response which surrounds the parasitic tissue [1].

Granuloma, extensive fibrosis, and necrosis are actually the

characteristic pathological findings in E. multilocularis infection.

The lesions, composed both of the multiple vesicle-forming

metacestode and of cells homing from lymphoid organs and

permanently settling around the metacestode, behave like a slow-

growing liver cancer, progressively invading the liver, then the

neighboring tissues and also metastazing to other organs [2].

Pathological changes in AE are associated with an intense

infiltration by immune cells, i.e. macrophages of various functional

types, including the so-called ‘‘epithelioid cells’’ and ‘‘giant cells’’,

typical of granulomas [3] and T lymphocytes. CD4+ T lympho-

cytes are present from the early stage of parasite growth and CD8+

T lymphocytes are known to home to the periparasitic infiltrate

secondarily and to be associated with parasite tolerance and

severity of the disease [1,2,3,4]. Non-immune cells such as

fibroblasts and myofibroblasts which are crucial for the develop-

ment of fibrosis are also attracted by the host’s immune response

around the parasite.
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It has been shown that E. multilocularis infection induced

numerous pathways of the immune response; the involvement of

individual cytokines has been rather extensively studied within the

past 2 decades both in humans and in experimental rodents [1]. In

the immune-competent but susceptible host, E. multilocularis

induces skewed Th2-responses [5]. In chronic AE, Th2-dominated

immunity is associated with increased susceptibility to disease,

while Th1 cell activation induces a rather protective immunity

which involves IFN-a [6] and IL-12 [7] as initiating cytokines, and

IFN-c [8] and TNF-a [9,10] as effector cytokines. During the

course of E. multilocularis infection, as studied in mice, an initial

acute stage Th1 response gradually switches to an increasingly

dominating Th2 response; the thus mostly mixed Th1/Th2 profile

of the chronic stage is associated with the expression of pro-

inflammatory cytokines in the granuloma [11,12]. Th2 cytokines

down-modulate the Th1 response which nevertheless decreasingly

persists all along the infection until the late pre-mortem immune-

suppressed stage of AE [11]. The metacestode actively achieves a

tolerance status through the induction of regulatory cytokines,

such as IL-10 and TGF-b [11]. However, this bulk of information

has mostly been obtained from studies on peripheral blood

mononuclear cells (in humans), and on spleen and lymph node

cells in the experimental model [5,13,14]. In addition, nothing was

known until very recently about role of IL-17 and Th17 cells

[13,14] during E. multilocularis infection. Only two studies have

given some insight into chemokine [15,16] and IL-17 [17]

involvement in E. multilocularis infection, respectively; and this

was done only in AE patients, and never in the infected liver tissue;

the actual involvement of IL-17 and chemokines in the lesions is

thus unknown. The time course of IL-17 expression is also

unknown since human AE is usually discovered late, i.e. years after

E. multilocularis infection of the patients, and findings in humans

reflect only the late chronic stage of infection. Studies in the

experimental mouse model are therefore necessary to dissect the

various stages of E. multilocularis infection regarding the host’s

immune response.

In the present report, our objectives were to 1) give a

comprehensive appraisal of the various components, especially

cytokines and chemokines, involved in immune cell homing

around the E. multilocularis metacestode, at the various successive

stages of disease, i.e. early, middle and late stages as defined

previously [18,19], and 2) to study the parasite and the host

immune response in their usual context, the liver, in the

experimental mouse model of hepatic secondary infection.

Eighteen key-cytokines and -chemokines were measured both in

the lesion, including the periparasitic infiltrate, and in the

surrounding liver, close to the lesions, using qRT-PCR. To get a

more complete picture of the influence of the parasite-induced

host’s immune response on the host’s liver, a microarray technique

was also used to study the surrounding liver tissue.

Results

Hepatic histopathology during E. multilocularis-infection
From day 2 to day 360 post-infection (p.i.) with E. multilocularis,

the hepatic parasitic lesions showed the various morphological

patterns specific to the different stages of murine AE, as described

in a previous study using the same experimental mice (data not

shown) [18,19]. According to previous reports on the course of E.

multilocularis secondary infection in experimental susceptible mice

[18,19], the 3 main stages were defined as follows: early stage,

from infection to day 60; middle stage from day 60 to day 180; and

late stage from day 180 to day 360.

Innate immunity and pro-inflammatory cytokines
In E. multilocularis ‘parasitic lesions’ (i.e. including adjacent

infiltrates, as defined in the Materials and Methods section), qRT-

PCR showed that IL-12a mRNA expression was 6.3-fold higher at

as early as day 2 p.i. than in control mice (Figure 1A). There was a

significant difference between E. multilocularis-infected mice and

control mice, at the early stage of infection, at time points of 2-, 8-

and 30-day p.i. (P,0.05). In the ‘periparasitic liver tissue’ (i.e. liver

parenchyma close to the lesions, as defined in the Materials and

Methods section), IL-12a mRNA expression was also higher than

in control livers from day 8 to day 30 p.i.. There was a significant

difference at 30-days p.i. (P,0.05). Changes in IL-12a mRNA

expression with time are shown in Figure 1A.

In E. multilocularis lesions, qRT-PCR showed that TNF-a
mRNA expression was increased at the early stage of infection,

especially at days 2 and 8 p.i.; it remained high at 30 days p.i. but

decreased subsequently (Figure 1B). There was a significant

difference between E. multilocularis infected mice and control mice,

at the time points of 2-, 8- and 30-day p.i. (P,0.05). In the

periparasitic liver tissue, TNF-a mRNA expression did not change

from day 2 to day 360 (Figure 1B). In the lesions, there was an

increase in IL-1b mRNA expression all over the infection course,

from day 2 to day 360 p.i., with a peak at 60 days p.i.. IL-1b
mRNA expression was 2.5-fold higher at day 2 and 7.6-fold higher

at day 60 (Figure 1C), when compared to control mice. There was

a significant difference between E. multilocularis infected mice and

control mice, at the time points of 30-, 60-, 90-, 270- and 360-days

p.i. (P,0.05). In the liver tissue, IL-1b mRNA expression

increased later, from 2.9-fold at day 30 to 4.7-fold at day 90

(Figure 1C), and was at its maximum at the middle stage of

infection. There was a significant difference at the time points of

30-, 60- and 90-days p.i. (P,0.05). In the lesions, IL-6 mRNA

expression was markedly increased as early as 2 days; then it

relatively decreased at day 30 p.i., then re-increased very

significantly from day 90 p.i. (4.8-fold) (Figure 1D). There was a

significant difference between E. multilocularis infected mice and

control groups, at the time points of 2-, 60-, 90-, 180- and 360-

days p.i. (P,0.05). In the liver, IL-6 mRNA expression increased

at the very early stage of infection, 1.8-fold at day 2 and1.9-fold at

day 8 (Figure 1D); it returned back to normal at day 30, and re-

increased from day 60 to day 90, then a high level was maintained

until day 360.

Th1 cytokines and related chemokines
Th1 cytokines. In the lesions, an increase in IFN-c mRNA

expression was observed from day 2 to day 360 p.i., with a peak at

30 days p.i.. Except for an apparent decrease at day 8, IFN-c
mRNA-expression was especially increased at the early stage of

infection, from 3.6-fold at day 2 to 4.8-fold at day 30 (Figure 2A).

There was a significant difference between E. multilocularis infected

mice and control mice, at the time points of 2-, 30-, and 60-day

p.i., but also at the latest stage, 360- day p.i. (P,0.05). In the liver,

IFN-c mRNA expression was increased from 2.4-fold at day 2 to

3.1-fold at day 30 (Figure 2A), but became abrogated at the late

stage of infection, from 0.5- fold at day 90 to 0.4 at day 360,

compared to control mice. There was a significant difference at the

time point of 30-day p.i. (P,0.05).

Th1-related chemokines. Expression of CXCL9 mRNA

was observed from day 2 to day 360 p.i.. In the lesions, CXCL9

mRNA expression was increased from day 90 to day 360, with a

peak of 9.75-fold at day 180 (Figure 2B), compared to control

mice. There was a significant difference between E. multilocularis-

infected mice and control mice, at the time points of 2-, 8-, 90-,

180- and 270-days p.i., i.e. at the late stage of infection (P,0.05).

Cytokine/Chemokine Transcriptional Profiles in AE
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In the liver, CXCL9 mRNA expression was increased by 1.72-fold

at day 2 and 2.78-fold at day 8 (Figure 2B); it was decreased by

0.30- fold at day 30 and by 0.21-fold at day 60, then expression re-

increased by 3.5- fold at day 90 compared to control mice. There

was a significant difference at the time points of 8- and 90-day p.i.

(P,0.05). In the lesions of E. multilocularis-infected mice, CXCL10

mRNA expression was increased by 1.6-fold at day 2; then levels

progressively increased to a peak (7.8-fold the levels in control

mice) at day 90 p.i. (Figure 2C). There was a significant difference

between E. multilocularis infected mice and control mice, at the time

points of 30-, 60- and 90-days p.i. (P,0.05), i.e. at the middle stage

of infection. In the liver, CXCL10 mRNA expression was

increased at day 60 (2.1-fold) and at day 90 (2.2-fold)

(Figure 2C), and was lower both at the early stage and the late

stage of infection when compared to control mice. Expression of

the mRNA of CXCL12, a chemotactic factor for lymphocytes, was

observed from day 2 to day 360 p.i.. In the lesions, CXCL12

mRNA expression was markedly increased as early as day 2 post-

infection, when it reached a peak (11.6-fold); it remained elevated

until day 60(Figure 2D). There was a significant difference

between E. multilocularis infected mice and control groups, at the

time points of 2-, 8- and 60-days p.i. (P,0.05). In the liver,

CXCL12 mRNA expression was increased early, from 1.1-fold at

day 2 to 2.1-fold at day 8 (Figure 2D), and was lower than that

observed in control mice at the late stage, from day 90 to day 360.

There was a significant difference at the time points of 8- and 270-

days p.i. (P,0.05).

Th2 cytokines and related chemokines
Th2 cytokines. In E. multilocularis lesions, IL-4 mRNA

expression followed a biphasic curve: it was increased early (3.8-

fold at day 2), and was significantly different from that observed in

control mice at 2 and 8 days; but it relatively decreased at 30 p.i.; it

then re-increased and was still elevated at the late stage [4.2-fold at

day 360; significantly different from control mice (P,0.05).

(Figure 3A)]. In the liver, IL-4 mRNA expression was increased

compared to control mice [4.8-fold at day 8 and 3.2-fold at day 60,

significantly different from control mice (P,0.05) (Figure 3A)]. In

E. multilocularis lesions, IL-5 mRNA expression was present from

the early stage (2.3-fold at day 2); however (Figure 3B), there was a

peak of 13.6-fold at day 90, and a significant difference between E.

multilocularis infected mice and control mice, all over the middle

and late stages of infection, at the time points of 60-, 90-, 180- and

360-days p.i. (P,0.05). In the liver, IL-5 mRNA expression was

also markedly increased at the middle stage of infection: 3.5-fold at

day 60 and 6.54-fold at day 90 (Figure 3B). There was a significant

difference at the time points of 60- and 90-days p.i. (P,0.05).

Th2-related chemokines. In the lesions, mRNA expression

of CCL8, chemotactic for and activator of various immune cell

types, including mast cells, eosinophils and basophils, monocytes,

T cells, and NK cells [22], was increased from day 2 to day 360

Figure 1. Course of IL-12a and pro-inflammatory cytokine gene expression in the liver of mice during E. multilocularis infection
(measured by qRT-PCR). (A) IL12a, (B) TNF-a, (C) IL-1B, (D) IL-6. a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic liver tissue’ versus ‘Control’. *P,
0.05; **P,0.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and surrounding immune infiltrate; ‘Periparasitic liver
tissue: liver parenchyma close to the E. multilocularis lesion, but excluding macroscopically visible liver tissue alterations. AU: arbitrary units.
doi:10.1371/journal.pone.0091638.g001
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p.i., with a peak at day 90 (Figure 3C). There was a significant

difference between E. multilocularis infected mice and control mice,

at the very early and at the middle stage of infection, at the time

points of 8- and 90-days p.i. (P,0.05). In the liver, there was no

difference in CCL8 mRNA expression from day 2 to day 360

(Figure 3C) between infected and control mice. In the lesions,

mRNA expression of CCL12, another Th2-related chemokine,

which attracts eosinophils, monocytes and lymphocytes [25],

increased early, from 2.0-fold at day 2 to 6.6-fold at day 8 p.i.

when it became significantly different from control mice

(Figure 3D); levels were also elevated at day 90 p.i. (3.5-fold; also

significantly different from control mice). In the liver, CCL12

mRNA expression did not change from day 2 to day 360

(Figure 3D), compared to control mice. mRNA expression of

CCL17, which induces T-cell chemotaxis and elicits its effects by

interacting with the chemokine receptor CCR4, was observed in

the lesions (1.7- fold increase at day 2 and 2.0-fold at day 180 p.i.),

(Figure 3E). There was a significant difference between E.

multilocularis infected mice and control groups, at the time points

of 8-, 60- and 90-days p.i., when its expression peaked at 3.7 fold

(P,0.05). A slight decrease in CCL17 mRNA expression was

observed at day 30 p.i., concomitant to the slight decrease also

observed for the Th2-related cytokines IL-4 and IL-5. In the liver,

CCL17 mRNA expression was higher than in control mice from

day 2 to day 180 (Figure 3E). There was a significant difference at

90-days p.i. between infected and control mice (P,0.05).

Th17 cytokines
IL-17 and its isotypes. In the periparasitic infiltrate area, IL-

17, disclosed by immunostaining (Figure 4A), was observed in

most lymphocytes and macrophages in the periparasitic infiltrate,

as well as in fibroblasts, and endothelial cells in hepatic sinusoids,

especially around the granulomas, and in infiltrating immune cells

of portal spaces, from day 8 to day 360 p.i.. IL-17 positive scores

ranged from 0.13 to 4.80 and reached the peak point at day 90p.i.

(Figure 4B). In the liver close to the parasite lesions, moderate IL-

17 expression was observed; there was a significant difference

between AE-infected and sham-injected mice at day-8, -30, -90,

270 and 360p.i..

In E. multilocularis lesions, IL-17A mRNA expression was

increased at the very early stage of infection, by 6.9-fold at day

2 and by 9.6-fold at day 8 p.i. (Figure 4C), and decreased at the

late stage, from day 180 to day 360 p.i.. There was a significant

difference between E. multilocularis infected mice and control

groups, at the time points of 2-, 8- and 90-days p.i. (P,0.05). In

the liver, IL-17A mRNA expression was also increased at the very

early stage: 6.7-fold at day 8; at this time point, the difference was

significant (Figure 4C) (P,0.05). In the lesion, IL-17F mRNA

expression was present all over the infection course, from day 2 to

day 360 p.i. (Figure 4D), with a peak of 5.63-fold at day 8

compared to control mice. There was a significant difference

between E. multilocularis infected and control mice, at the time

points of 8- and 60-days p.i. (P,0.05). At the late stage, despite an

Figure 2.Course of Th1-cytokine and related chemokine gene expression in the liver of mice during E. multilocularis infection
(measured by qRT-PCR). (A) IFN-c, (B) CXCL9, (C) CXCL10, (D) CXCL12. a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic liver tissue’ versus
‘Control’. *P,0.05; **P,0.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and surrounding immune infiltrate;
‘Periparasitic liver tissue: liver parenchyma close to the E. multilocularis lesion, but excluding macroscopically visible liver tissue alterations. AU:
arbitrary units.
doi:10.1371/journal.pone.0091638.g002
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apparent increase, compared to control mice, the difference was

not significant. In the liver, IL-17F mRNA expression did not

change significantly from day 2 to day 360 (Figure 4D).

Treg-related nuclear transcriptional factor and cytokines
Treg related nuclear transcriptional factor (Foxp3). In

E. multilocularis lesions, Foxp3 mRNA expression was increased by

2.4-fold at day 2 and by 3.0-fold at day 8 p.i. (Figure 5A); it then

decreased from day 30 to day 60 p.i., and re-increased, from 1.9-

fold at day 90 to 2.3-fold at day 360 p.i., with a peak of 3.1-fold at

day 180, at the late stage of infection (Figure 5A), thus following a

biphasic curve in the course of infection. There was a significant

difference between E. multilocularis infected mice and control mice,

at the time points of 2-, 8-, 180- and 360-days p.i. (P,0.05). In the

liver, there was no significant change in Foxp3 mRNA expression

(Figure 5A).

Treg-related cytokines. In E. multilocularis lesions, TGF-b1

mRNA expression also followed a biphasic curve, with a decrease

at days 30 and 60 p.i.; it was increased by 3.6-fold at day 2 and

3.2-fold at day 270 p.i. (Figure 5B) with a peak of 5.7- fold at day

180 (Figure 5B). There was a significant difference between E.

multilocularis infected mice and control mice, at the early and late

stages of infection, at time points of 2-, 8-, 90-, 180-, 270- and 360-

day p.i. (P,0.05). In the liver, TGF-b1 mRNA expression was also

increased from day 8 to day 360 p.i., with a peak at day 180 p.i..

Conversely to the expression of TGF-b1 mRNA in the lesions, in

the liver, TGF-b1 mRNA was significantly elevated at the middle

and late stages, at the time points of 90-, 180- and 270-days p.i.

(P,0.05). In E. multilocularis lesions, IL-10 mRNA expression was

also biphasic, with a significant increase at the early and late stages

of infection, but not at its middle stage (Figure 5C). There was a

significant difference between E. multilocularis infected mice and

control mice, at the time point of 8-day, then at 180-, 270- and

360-days p.i. (P,0.05). In the liver, IL-10 mRNA expression did

not change from day 2 to day 360 (Figure 5C) compared to control

mice.

Immune response and inflammation gene expression in
the liver of E. multilocularis infected mice

To further give a comprehensive picture of the immune

response-related changes in the adjacent liver during E. multi-

locularis infection, and especially detect hyper-expression of the

Figure 3. Course of Th2-cytokine and related chemokine gene expression in the liver of mice during E. multilocularis infection
(measured by q RT-PCR). (A) IL-4, (B) IL-5, (C) CCL8, (D) CCL12, (E) CCL17. a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic Liver tissue’ versus
‘Control’. *P,0.05; **P,0.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and surrounding immune infiltrate;
‘Periparasitic liver tissue: liver parenchyma close to the E. multilocularis lesion, but excluding macroscopically visible liver tissue alterations. AU:
arbitrary units.
doi:10.1371/journal.pone.0091638.g003
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genes of cytokine/chemokine receptors, cDNA microarray tech-

nology was used. The individual genes associated with the gene

ontology biological process ‘‘immune response’’, and ‘‘pathogen

response’’ assessed at different time periods of infection, i.e. 30, 60,

90, 180 days p.i., are presented in Table 1. We used Gene

Ontology (GO; www.geneontology.org) analysis which clusters the

genes associated with immune response/defense (n = 59) into

functional subgroups including macrophages, APCs, chemokines

and chemokine receptors, lymphocytes, B-cells and eosinophils.

More precisely, at 30 days p.i., several biological processes

relating to an active infection, as defined by GO cluster

classification, were involved, including genes mostly associated

with the response to external stimuli, response to wounding,

immune response, response to stress, chemokine activity, defense

response, MHC-related functions and inflammatory response.

While several chemokine genes were found activated in the liver of

AE mice by qRT-PCR, microarray analysis did not show any up-

regulation of cytokine genes. Among genes of cytokine receptors,

only those for IL-1 (IL-R1 like) and IL-7 (2.92 and 2.25 fold

respectively) were up-regulated at day 30 (Table 1). Among genes

encoding for chemokines, CCL5 (RANTES), a Th17-related

chemokine that up-regulates IL-12 and IFN-c, and is involved in

Th1 cell-migration [16], was up-regulated 2.35-fold at day 30.

Th2-related CCL8, CCL12 and CCL17 were up-regulated 29.58-

fold, 5.64-fold and 3.36-fold at day 30, respectively. Among genes

related to macrophage function, MGL1 and MGL2 (C-type

macrophage galactose-type lectins) were up-regulated 2.56- and

4.64-fold respectively, compared to control mice.

At 60 days p.i., genes involved in the response to stress, response

to external stimulus and response to biotic stimuli were added.

There were few changes in the immune response gene expression,

except for MPA2L (macrophage activation 2-like), which was

down-regulated 2.33-fold and C4b (Complement component 4B),

which was up-regulated 3.09-fold, respectively.

At 90 days p.i., among genes encoding for cytokine receptors,

IL-13 Ra1 was up-regulated 2.39-fold (Table 1). Among the

interferon-activated genes, Ifi202b, Ifi203 and Ifi204 were up-

regulated 2.88-, 2.13-, and 2.47-fold, respectively. Among genes

encoding for macrophage functions, MSR1 (macrophage type-I

class-A scavenger receptors) and MPA2L (macrophage activation

Figure 4.Th17-cytokine expression in the liver of mice during E. multilocularis infection. (A). Expression of IL-17 at day 90. IL-17 was present
in most of the infiltrating lymphocytes of areas with inflammatory granulomas, in the cytoplasm of hepatocytes, endothelial cells of the hepatic
sinusoids and fibroblasts (arrow indicates the area also shown at high magnification). (B). Expression scores of IL-17, calculated from quantitative
analysis of the histo-immunostaining using both staining intensity and the percentage of cells stained at a specific range of intensities (see Materials
and Methods section). (C). Course of IL-17A, and (D) of IL-17F gene expression in the liver of mice during E. multilocularis infection (measured by q RT-
PCR). a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic liver tissue’versus ‘Control’. *P,0.05; **P,0.01. ‘Control’, non-infected mice; ‘Parasitic lesion’:
E. multilocularis metacestode and surrounding immune infiltrate; ‘Periparasitic liver tissue: liver parenchyma close to the E. multilocularis lesion, but
excluding macroscopically visible liver tissue alterations. AU: arbitrary units.
doi:10.1371/journal.pone.0091638.g004
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2-like) were up-regulated 2.11- and 3.99-fold, respectively, when

compared to control mice.

At 180 days p.i., hyper-expression of genes of the inflammatory

response, response to stress, and response to external stimuli was

maintained, and genes of antigen processing and presentation,

complement activity and antigen processing via MHC class II

were also hyper-expressed. Among genes of cytokine receptors, IL-

17R was up-regulated 2.90-fold (Table 1). Among genes encoding

for chemokines, CXCL9 was up-regulated 3.81-fold at day 180,

and CXCL12 was down-regulated 2.11-fold at day 180.

Correlations between mRNA levels of the various
cytokines over the course of infection

Spearman correlation coefficients indicated a significant positive

correlation between TGF-b1 mRNA expression in E. multilocularis

‘parasitic lesion’, and that of Foxp3 (r = 0.719, P = 0.045), IL-10

(r = 0.761, P = 0.028) and CXCL9 (r = 0.946, P,0.01), but a

significant negative correlation with IFN-c (r = 20.743, P = 0.035)

(Table 2); it also showed a significant positive correlation between

Foxp3 expression in E. multilocularis ‘parasitic lesion’, as measured

by qRT-PCR, and IL-10 (r = 0.761, P = 0.028) and TNF-a
(r = 0.742, P = 0.035), but a significant negative correlation with

IL-1b (r = -0.754, P = 0.033) (Table 3). There was a significant

positive correlation between IL-17A expression in E. multilocularis

‘parasitic lesion’, as measured by qRT-PCR, and CCL12

(r = 0.833, P = 0.011), CCL17 (r = 0.733, P = 0.039), IL-4

(r = 0.710, P = 0.049) and TNF-a (r = 0.804, P = 0.016) (Table 4);

there was also a significant positive correlation between IL-17F

mRNA expression in E. multilocularis ‘parasitic lesion’ and CCL12

(r = 0.708, P = 0.049) and CCL17 (r = 0.749, P = 0.032)(Table 4).

TNF-a mRNA expression in E. multilocularis ‘parasitic lesion’ was

also significantly correlated to IL-12a (r = 0.888, P = 0.033)

(Table 5).

Discussion

Despite the alleged causative involvement of the granulomatous

response in the clinical development of AE and its role in

functional imaging of the disease, since it is responsible for the

Fluorodeoxyglucose (FDG) uptake in Positron Emission Tomog-

raphy (PET) [20], a comprehensive picture of the cytokine/

chemokine response that occurs in situ, i.e. in the periparasitic

granuloma, had never been given. Chemokines and IL-17, which

are crucial for immune cell homing, have so far received little

attention in E. multilocularis infection. In the present longitudinal

study of experimental E. multilocularis intra-hepatic infection model,

we showed for the first time that 1) the mixed Th1/Th2/Treg

response and the tri-phasic course of cytokines, suggested by

previous studies on spleen cells from E. multilocularis-infected mice,

was also documented in the periparasitic infiltrate, but neverthe-

less differed in some aspects, especially the marked and parallel

expression of IL-12a and TNF-a but also IL-4 at a very early stage

of the parasite/host interactions; 2) IL-17 was involved locally at

the beginning of the immune response and remained so all along

the course of infection, with a successive expression of different

Figure 5.Course of Treg transcription factor and Treg-cytokine gene expression in the liver of mice during E. multilocularis infection
(measured by q RT-PCR). (A) Foxp3, (B) TGF-b1, (C) IL-10. a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic liver tissue’ versus ‘Control’. *P,0.05;
**P,0.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and surrounding immune infiltrate; ‘Periparasitic liver tissue:
liver parenchyma close to the E. multilocularis lesion, but excluding macroscopically visible liver tissue alterations. AU: arbitrary units.
doi:10.1371/journal.pone.0091638.g005
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Table 1. Gene ontology category: immune response and inflammatory response.

GeneBank accession
number Gene Symbol Name 30 days 60 days 90 days 180 days

76074 5830443L24Rik RIKEN CDNA 5830443L24 gene * * 2.84 *

11699 Ambp Alpha 1 microglobulin/bikunin (Ambp) 22.35 * * *

56298 Arl6ip2 ADP-ribosylation factor-like 6 interacting
protein 2

* * 2.05 *

236573 BC057170 cDNA sequence BC057170 * * 3.41 *

12260 C1qb Complement component 1, q subcomponent,
beta polypeptide

* * * 2.12

12262 C1qc Complement component 1, q subcomponent,
C chain

* * * 3.58

12279 C1qg Complement C1q subcomponent, C
chainprecursor

* * * 2.18

625018 C4b Complement component 4B (Childo
blood group)

* 3.09 * *

230558 C8a Complement component 8, alpha
polypeptide

* * * 3.98

20304 Cc15 Chemokine (C-C motif) ligand 5 2.35 * * *

20307 Ccl8 chemokine (C-C motif) ligand 8 29.58 * * *

20293 Ccl12 chemokine (C-C motif) ligand 12 5.64 * * *

20295 Ccl17 chemokine (C-C motif) ligand 17 3.36 * * *

93671 Cd163 CD163 antigen * * * 2.56

12500 Cd3d CD3 antigen, delta polypeptide
(Cd3d)

2.14 * * *

23833 Cd52 CD52 antigen * * * 2.48

12516 Cd7 CD7 antigen (Cd7) 2.19 * * *

12525 Cd8a CD8 antigen, alpha chain (Cd8a) 4.41 * * *

12526 Cd8b1 CD8 antigen, beta chain 1 3.13 * * *

12628 Cfhr1 Complement factor H-related 1 * * 2.66 *

18636 Cfp Complement factor properdin * * * 2.19

17474 Clec4d C-type lectin domain family 4, member d
(Clec4d)

3.97 * * *

56619 Clec4e C-type lectin domain family 4, member e
(Clec4e)

5.08 * * *

17329 Cxcl9 Chemokine (C-X-C motif) ligand 9 * * * 2.81

20315 Cxcl12 chemokine (C-X-C motif) ligand 12 * * * 22.21

14131 Fcgr3 Fc receptor, IgG, low affinity III * * * 2.73

55932 Gbp3 Guanylate nucleotide binding protein 3 * * 2.15 *

15139 Hc Hemolytic complement * * * 2.03

15439 Hp Haptoglobin * * * 2.75

17082 I11r1 Interleukin 1 receptor-like 1 (Il1rl1),
transcript variant 2

2.92 * * *

16197 I17r Interleukin 7 receptor (Il7r) 2.25 * * *

16164 Il13ra1 interleukin 13 receptor, alpha 1 * * 2.39 *

16172 Il17r interleukin 17 receptor D * * * 2.9

26388 Ifi202b Interferon activated gene 202 * * 2.88 *

15950 Ifi203 Interferon activated gene 203 * * 2.13 *

15951 Ifi204 Interferon activated gene 204 * * 2.47 *

16010 Igfbp4 Insulin-like growth factor bindingprotein 4 * 2.13 * *

16797 Lat Linker for activation of T cells (Lat) 2.12 * * *

17395 Mmp9 Matrix metallopeptidase 9 (Mmp9) 2.74 * * *

17312 Mgl1 macrophage galactose N-acetyl-galactosamine
specific lectin 1

2.56 * * *

216864 Mgl2 macrophage galactose N-acetyl-galactosamine
specific lectin 2

4.64 * * *
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isotypes with possibly different roles; 3) a parallel course of

cytokines and their related chemokines was highly in favor of their

permanent role to maintain the homing of immune cells at close

proximity of the parasitic vesicles; and 4) at least some of the

components of the immune response were present in the

surrounding liver and were thus involved in a process which was

long considered to be a localized ‘‘tumor-like’’ event (Figure 6 and

7).

In the present study, we found that IL-12a and TNF-a were

developing in parallel during the different stages of E. multilocularis

infection. After an initial increase, IL-12a and TNF-a expression

decreased dramatically after the 30th day of infection of mice. This

fits well to previous findings, which had indicated a protective role

against E. multilocularis by in vivo treatment with recombinant IL-12

in C57BL/6J mice [7], while mice KO for TNF-a [10], as well as

patients with AE treated with a TNF-a inhibitor [20], had a faster

and more severe course of disease. IL-1b and IL-6 were then

showing up, presumably to sustain the inflammatory response,

with a ‘mirror’ image of their respective increase all along

infection. The initial peak of IL-6 as early as 2 days post-infection

may be related to the early activation of the acute phase protein

genes in the hepatocytes, disclosed by previous microarray studies

[21,22]. Conversely, the absence of a significant increase of IL-6 at

day 270 probably explains why, despite increased levels of

haptoglobin, a-1 acid glycoprotein, C3 and C4, and ceruloplasmin

in patients with AE, no increase of C-reactive protein (CRP) levels,

typically associated with IL-6 stimulation, is usually observed,

except in cases complicated by bacterial infection. Secretion of the

pro-inflammatory cytokines IL-1b and IL-18 by PBMC of AE

patients had been shown to be reduced in response to E.

multilocularis metacestode vesicles, compared to controls [12]. In

our study in mice, although IL-1b was highly expressed at the

Table 1. Cont.

GeneBank accession
number Gene Symbol Name 30 days 60 days 90 days 180 days

100702 Mpa2l macrophage activation 2 like * 22.33 3.99 *

20288 Msr1 macrophage scavenger receptor 1 * 2.25 * *

80891 Msr2 macrophage scavenger receptor 2 * * 2.11 *

18405 Orm1 Orosomucoid 1 * * * 2.61

18406 Orm2 Orosomucoid 2 * 2.67 * 8.94

18514 Pbx1 Pre B-cell leukemia transcription factor 1 * * 2.19 *

233489 Picalm Phosphatidylinositol binding clathrin assembly
protein

* * 2.01 *

27226 Pla2g7 Phospholipase A2, group VII (platelet-activating
factor acetylhydrolase, plasma)

* * * 2.57

18761 Prkcq Protein kinase C, theta * * 23.22 *

20208 Saa1 Serum amyloid A 1 * * * 11.63

20210 Saa3 Serum amyloid A 3 * * * 9.69

20211 Saa4 Serum amyloid A 4 * * * 2.32

20714 Serpina3k Serine (or cysteine) peptidase inhibitor,
clade A, member 3K (Serpina3k)

23.38 * * *

20716 Serpina3n Serine (or cysteine) peptidase inhibitor,
clade A, member 3N

* * * 3.12

20750 Spp1 Secreted phosphoprotein 1 * * 3.54 *

192187 Stab1 Stabilin 1 * * * 2.04

21822 Tgtp T-cell specific GTPase * * * 2.79

107568 Wwp1 WW domain containing E3 ubiquitin protein ligase 1* * 2.37 *

Genes with up- or down-regulated transcriptions in the liver of Echinococcus multilocularis (E.multilocularis)-infected BALB/c mice are shown in comparison with non-
infected sham-injected control animals (fold increase/decrease).
doi:10.1371/journal.pone.0091638.t001

Table 2. Correlations between mRNA of TGF-b1 and Foxp3, IL-10, IFN-c and CXCL9.

Foxp3 IL-10 IFN-c CXCL9

TGF-b1 Spearman’s rho 0.719* 0.761** 20.743* 0.946**

Sig. 0.045 0.028 0.035 0.000

N 8 8 8 8

Note:
* P,0.05,
** P,0.01.
doi:10.1371/journal.pone.0091638.t002
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early and middle stage, it subsequently decreased at the late stage

and was not significantly different from control mice at day 180

post-infection and later, a time point which may approximately

represent the disease stage of most patients at diagnosis of AE.

Such selective dynamics of pro-inflammatory cytokine release may

both install and maintain the periparasitic immune infiltrate from

the very early stage of infection on, and also limit its activation and

thus participate in the tolerance process.

In most previous studies, secretion and expression of cytokines,

chemokines, and related factors that govern immune cell-homing

to E. multilocularis infection site were studied in the peripheral blood

of human AE patients [23], and in lymph node or spleen cells of

experimentally infected mice [13,24,25]; in situ investigations

focussing on the periparasitic infiltrate and the adjacent liver tissue

are virtually lacking. Early expression of IFN-c, as previously

shown in studies on peripheral lymphocytes, was also confirmed in

our longitudinal study of the periparasitic infiltrate; we hypothesize

that it was very likely induced by the early expression of IL-12.

The apparent decrease in IFN-c at day 8 may be due either to a

technical artefact or, more probably, to a temporary inhibition by

IL-4, also markedly expressed at days 2 and 8 p.i.. Sustained IFN-

c expression together with the permanent expression of Th1

chemokines, and its negative correlation with TGF-b1 in the

parasitic lesions all along the course of infection, although Th2 and

T-reg cytokines are also permanently expressed, suggests that IFN-

c is very important for the persistence of the periparasitic infiltrate

by permanent homing of immune cells and/or inhibition of their

emigration. The decrease of IL-12 after the early stage of disease

could be, at least partly, responsible for the lack of activation of

CD8 T-cell or NK cell cytotoxicity despite the presence of IFN-c
[11,14,26].

Several concordant observations showed that the PBMCs of AE

patients as well as spleen or lymph node cells of experimentally

infected mice exhibit a markedly and steadily increasingTh2-

oriented response characterized by high levels of IL-4, IL-5 andIL-

10 expression [27]. The results from many studies have clearly

identified IL-4/IL-5/IL-10 as important regulatory cytokines in

parasitic infections, such as infection by Schistosoma mansoni in mice

[28,29] and humans [30], Schistosoma haematobium [31], Trichuris

muris [32], and Trichinella spiralis [33]. In E. granulosus infection, IL-

4/IL-5/IL-10 had been found to be predominant in serum

samples of infected individuals [34]; furthermore, in the peritoneal

cells of experimental mice, i.e. at the site of E. granulosus

establishment, IFN-c was secreted first, at day 3, but as early as

day 5, a Th2-type response, including IL-4 and IL-13 was

stimulated [35]. These results in CE suggest that a Th2-type

response does not impair the establishment of E. granulosus

metacestode, and does not prevent the development of the

pericyst, a characteristic of CE pathology, which, conversely to

AE, limits the progression of the metacestode [15]. In the parasitic

lesions of E. multilocularis-infected mice, we observed a biphasic

curve of IL-4 mRNA expression, with also a very early peak at 2–8

days. This early peak differed from what is usually reported in E.

multilocularis infection upon investigation of peripheral lymphocytes

stimulated by E. multilocularis antigens [5]. The early local

expression of IL-4 mRNA might be crucial to prime naive

CD4+ T cells into differentiated Th2 type cells [35], and to prevent

anti-parasite resistance, such as that occurring in most interme-

diate hosts, including humans. We hypothesize that early IL-4

mRNA expression is likely induced through the activation of

innate immunity by specific metabolic components of the

metacestode. Such an activation of IL-4 production has actually

been described in vitro under the influence of Echinococcus

components, both from E. multilocularis [23] and from E. granulosus

[36]. In the present study, we also found a delayed increase of IL-5

and IL-10 in the middle/late stage of E. multilocularis infection.

This delayed increase of IL-5 and IL-10 is matching previous

observations made by others at the ‘late stage’ of infection, in

Table 3. Correlations between mRNA of Foxp3 and TGF-b1, IL-10, IL-1b and TNF-a.

TGF-b1 IL-10 IL-1b TNF-a

Foxp3 Spearman’s rho 0.719* 0.761** 20.754* 0.742*

Sig. 0.045 0.028 0.033 0.035

N 8 8 8 8

Note:
* P,0.05,
** P,0.01.
doi:10.1371/journal.pone.0091638.t003

Table 4. Correlations between mRNA of IL-17 and CCL12, CCL17, IL-4, and TNF-a.

CCL12 CCL17 IL-4 TNF-a

IL-17A Spearman’s rho 0.833* 0.733* 0.710* 0.804*

Sig. 0.011 0.039 0.049 0.016

N 8 8 8 8

IL-17F Spearman’s rho 0.708* 0.749* 0.695 0.497

Sig. 0.049 0.032 0.056 0.210

N 8 8 8 8

Note:
* P,0.05,
** P,0.01.
doi:10.1371/journal.pone.0091638.t004
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human AE [37,38,39] and are in agreement with the data usually

reported from the study of lymphocytes from experimentally

infected mice [40]; this combined cytokine profile has been

strongly linked to parasite evasion from the host immune response

[27,41].

The discovery of the IL-17 cytokine family has added a new

dimension to the balance of inflammation and tolerance during

parasite infections. The presence of IL-17-secreting CD4+ T

(Th17) lymphocytes correlates with severe hepatic pathology in

murine schistosomiasis [42]. In our study, IL-17, as detected by a

monoclonal antibody directed against the common epitopes of the

protein, was present in cells of the periparasitic infiltrate all along

the course of infection; however, as far as the expression of mRNA

isotypes of the cytokines is concerned, both IL-17A and IL-17F

were increased at the early stage of E. multilocularis infection, and

then decreased at the late stage; they were both positively

correlated with CCL12 and CCL17; however, IL-17A exhibited

a positive correlation with TNF-a, and appeared lower than even

in controls, at the late stage of infection, while IL-17F was also

expressed at low levels, but still higher than controls. This may

indicate that IL-17A was rather protective but quickly inhibited,

while IL-17F was less suppressed with time and may contribute to

both protection and pathogenesis, as reported in human AE

patients [17].

Chemokines are involved in the homing and persistence of

immune cells in inflammatory reactions, especially to infectious

agents [43,44]; they also participate in innate recognition stages of

immunity and may help direct Th1 and Th2 cytokine-producing

cells during the generation of adaptive immunity [18]. There is

also considerable in vitro evidence that cytokines further capitalize

on these molecules by regulating their expression and secretion

and by using them to activate effector cells such as macrophages

and fibroblasts [18]. Conversely, specific suppression of certain

chemokine production and/or function by E. multilocularis meta-

cestode in AE patients may constitute an additional immune

escape mechanism [15]. We only measured the mRNA expression

of ‘key’ chemokines, directly related to the main cytokine profiles,

among the multiple components with chemokine activity. But all

Table 5. Correlations between mRNA of TNF-a and IL-12a, as well as IL-17A.

IL-12a IL-17A

TNF-a Spearman’s rho 0.888** 0.804*

Sig. 0.003 0.016

N 8 8

Note:
* P,0.05,
** P,0.01.
doi:10.1371/journal.pone.0091638.t005

Figure 6. Course of the changes in the morphology of the hepatic lesions (a), gene expression of innate immunity and
proinflammtory cytokins (b), Th1 related cytokines and chemokines (c), Th1 related cytokines and chemokines (d), Th17 related
cytokines (e), Foxp3 and Treg related cytokines (f) during the process of E. multilocularis-infection in mice.
doi:10.1371/journal.pone.0091638.g006
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measured chemokines were significantly expressed at a given stage

of infection. These results confirmed the importance of these

compounds to maintain the granulomatous infiltrate at the

proximity of the metacestode. The courseof Th1-related chemo-

kines appeared ‘‘complementary’’; CXCL 9 was more expressed

when CXCL10 was less expressed, and vice versa, with a ‘mirror’

image, as previously described for IL-1 and IL-6. This may

indicate some balance to ensure lymphocyte homing and

persistence in the lesions. Th2-related chemokines were also

permanently expressed: expression of CCL12 and CCL17

followed the course of IL-4, and CCL 8 followed the course of

IL-5. Such changes in chemokine release may prevent pathogenic

inflammation at the late stage. In addition, the microarray

technique revealed a hyper-expression of RANTES (CCL5),

chemotactic for Th1 cells, eosinophils, and basophils [11]. This

finding suggests that this chemokine is also secreted by cells of the

granuloma at the early stage (8–30 days) when IL-12, IFN-c and

IL-17 secretions are at their maximum. This should consequently

also be explored more in detail in future studies.

The involvement of the adjacent, not directly affected liver

tissue in the immune process of E. multilocularis/host interaction

has received little attention. Recent studies have provided evidence

that the adjacent liver was fully involved in the relationship

between the parasite and its host; these studies have mostly focused

on the proliferation/apoptosis balance [18] and the involvement of

the TGF-b/Smad system [19]. Our study confirms that other

mediators of the immune reaction and their receptors appear

principally expressed in the liver tissue, thus also in areas not

directly affected by the parasite and the periparasitic granuloma.

In the adjacent periparasitic liver tissue, the expression of the

various cytokines/chemokines was selective: not all cytokines/

chemokines were expressed in the surrounding liver; some seemed

to be specific for the immune cells of the periparasitic infiltrate,

e.g. TNF-a, IL-17F and CCL8, which were not expressed at all in

the liver. The contribution of the surrounding liver tissue,

however, was quite significant for other ones, e.g. IL-12, IFN-c,

IL-4 and IL-17A, at the early stage of infection; CXCL9, IL-4, IL-

5, CCL17, at the middle stage; and IL-10 and TGF-b at the late

stage of infection. From our study, which was performed on liver

samples without cell identification, it is difficult to know if such

expression was restricted to cells of the immune response present

in the sinusoids/portal spaces after their homing to the liver, or

was also present in autochthonous liver cells such as Kupffer cells,

stellate cells, or hepatocytes. Precise identification and respective

location will require appropriate studies. Among cytokine recep-

tors, only those for IL-1 (IL-R1 like), IL-7, IL-13 (IL-13 Ra1), and

IL-17 (IL-17 R) were up-regulated. This indirectly suggests that

the liver was affected by at least one pro-inflammatory cytokine

(IL-1) and one growth factor (IL-7), and by two types of Th-

cytokines (Th2 and Th17). However, absence of up-regulation of

IL-6 and TGF-b receptors in hepatic cells is puzzling and has to be

further confirmed using other techniques in the same model.

Materials and Methods

Ethics Statement
The animal study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals. The protocol was approved by the Animal

Care and Use Committee and the Ethical Committee of First

Affiliated Hospital of Xinjiang Medical University (20081205-2).

All surgery was performed under sodium pentobarbital anesthesia,

and every effort was made to minimize suffering.

Mice and experimental design
Pathogen-free female BALB/c mice (8–10-week old) purchased

from the Animal Center of Xinjiang Medical University (accred-

ited by the ALLLAC) were housed in cages with a 12-h light/dark

cycle and provided with conventional rodent chow and water ad

libitum. All animals received human care in compliance with the

Figure 7. Schematic diagram summarizing the pathways of immune response involved in the host-parasite relationship in E.
multilocularis infection.
doi:10.1371/journal.pone.0091638.g007
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Medical Research Center’s guidelines, and animal procedures

were approved by the Animal Care and Use Committee and the

Ethical Committee of First Affiliated Hospital of Xinjiang Medical

University. Echinococcus multilocularis (E. multilocularis) metacestodes

were obtained from intraperitoneal lesions maintained in Meriones

unguiculatus, and 0.1 mL of pooled lesion suspension was injected

into the anterior liver lobe of mice to be experimentally infected.

For each autopsy time-point, eight experimentally infected mice

were used in the E. multilocularis group (n = 8) and compared with

five control mice (n = 5), which received an intra-hepatic injection

of 0.1 mL sterile saline solution into the anterior liver lobe using

the same surgical procedure. Mice were killed at 2 and 8 days p.i.,

and subsequently at 1, 2, 3, 6, 9 and 12 months p.i., respectively.

Tissue sampling of the parasitic lesion and surrounding
granuloma, and of adjacent non-affected (periparasitic)
liver tissue; and histological examination

In E. multilocularis infected mice, liver samples were taken both

from (1) the parasitic lesion (including liver tissue directly adjacent

by 1 mm to the macroscopically visible parasitic lesion, subse-

quently designated as ‘‘parasitic lesion tissue’’) for qRT-PCR,

histopathology and immunohistochemistry [17]; and from (2) the

liver tissue relatively close to the lesion (subsequently designated as

‘‘periparasitic liver tissue’’), i.e. starting 2 mm from the macro-

scopic changes due to the metacestode/granuloma lesion, thus

avoiding gross contamination of liver tissue by parasitic E.multi-

locularis tissue/cells and correspondingly involved infiltrating host

immune cells, for both qRT-PCR and microarray analyses. Tissue

fragments were directly deep-frozen in liquid nitrogen. Control

samples were taken from the same (anterior) liver lobe from non-

infected control mice.

RNA extraction and cDNA synthesis
‘Lesion’ and ‘periparasitic liver’ tissue samples of each mouse

were processed and analyzed separately. Approximately 50 mm3 –

sized tissue samples from E. multilocularis infected mice or same size

liver tissue samples from control mice were used to extract total

RNA using TRIzol reagent (Invitrogen, Gaithersburg, MD, USA).

The quality of RNA was confirmed by formaldehyde agarose gel

electrophoresis, and the concentration of RNA was determined by

reading the absorbance at 260/280 nm.

cDNA was synthesized from 1 mg of RNA in the presence of

ribonuclease inhibitor (Promega, Shanghai, China), dNTPs,

Oligo(dT) 18 primers, and RevertAidTM M-Mulv reverse

transcriptase in a total of 25 ı̀L reaction mix.

Quantitative real-time RT-PCR
qRT-PCR was run in a thermocycler (iQ5 Bio-Rad, Hercules,

CA, USA) with the SYBR Green PCR premix (Qiagen, Hilden,

Germany) following the manufacturer’s instructions. Thermocy-

cling was performed in a final volume of 20 mL containing 2 mL

cDNA and 10 pM of each primer (Table 6). To normalize for

gene expression, mRNA expression of the housekeeping gene b-

actin was measured in parallel. For every sample, both the

housekeeping and the target genes were amplified in triplicate

using the following cycle scheme: after initial denaturation of the

samples at 95uC for 1 min, 40 cycles of 95uC for 5 s and 60uC (or

other) for 30 s were performed. Fluorescence was measured in

every cycle, and a melting curve was analyzed after the PCR by

increasing the temperature from 55 to 95uC (0.5uC increments). A

defined single peak was obtained for all amplicons, confirming the

specificity of the amplification.

Microarray data analyses and annotation of gene
function

RNA extracts from 3 infected and 3 control mice were selected

for array hybridization, corresponding to 30 days, 60 days, 90 days

and 180 days after infection. Total RNA was purified with

NucleospinH RNA Clean-up Kit (Macherey-Nagel, Germany)

and each purified RNA sample isolated from an individual sample

was run on a single microarray. All microarray procedures were

done according to a previously described procedure [27].

The original microarray data have been uploaded to Gene

Expression Omnibus (GEO) website: http://www.ncbi.nlm.nih.

gov/geo/index.cgi (accession number: GSE24376). All data is

MIAME compliant.

Immunohistochemical analyses
Immunohistochemistry was performed on formalin-fixed, par-

affin-embedded tissue: 4 mm tissue sections were de-paraffinized in

xylene and rehydrated in gradual dilutions of ethanol. Endogenous

peroxidase was blocked with 3% hydrogen peroxide. To increase

staining, sections were pre-treated by microwave heating for

15 min in antigen unmasking solution (pH 6.8, 0.1 M citrate

buffer, Zhongshan Jinqiao Biology Corporation, Beijing). To block

non-specific background, the sections were incubated with non-

immune goat serum for 30 min. Sections were then incubated

overnight at 4uC with the primary antibody diluted in pH 7.3

phosphate-buffered saline (PBS) (IL-17 1:100 (Santa Cruz

Corporation, CA, USA). After 3 washes in PBS, the sections were

subsequently incubated with horseradish peroxidase conjugated

host-specific secondary antibodies and 3,39-diaminobenzidine was

used as chromogen. Sections were counterstained with hematox-

ylin for 5 min, dehydrated, and covered with slips. For all samples,

negative controls consisted of substitution of the isotype-matched

primary antibody with PBS.

Expression of the data and statistical analysis
Immunostaining for IL-17 was semi-quantified by calculating

‘‘expression scores’’ that consider both staining intensity and the

percentage of cells stained at a specific range of intensities. A score

of zero indicated the percentage of positive cells ,5%, 1+ = 5–

25%, 2+ = 25–50%, 3+ = 50–75%, 4+.75%. The staining inten-

sity of each specimen was judged relative to the intensity of a

control slide including an adjacent section stained with an

irrelevant negative control antibody that was matched by species

and isotype to the specimen. Staining of the section labelled with

the negative reagent control was considered as background. A

score of zero indicated no staining relative to background, 1+
= weak staining, 2+ = moderate staining, and 3+ = strong staining.

According to standard pathology practices, staining intensity was

reported at the highest level of intensity observed in all tissue

elements, except the distinctive tissue element for which an

expanded scoring scheme was reported. The ‘‘expression scores’’

were calculated by multiplying the percentage of positive cells (0–

4) and the staining intensity scores (0–3). For example: for a

specimen with 30% of positive cells(3+), and a moderate staining

intensity (2+), the ‘‘expression score’’ was362 = 6. Three pathol-

ogists read the sections and established the scores, and they were

blinded to each other’s results. Cells with a positive immunostain-

ing were counted in five random visual fields of 0.95 square mm

each, at initial magnification: 620, for each sample.

All the data were analysed by SPSS 17.0. mRNA expression of

the various cytokines, chemokines, and other components of the

immune response of E. multilocularis infected mice were compared

to the results obtained on the liver samples taken from control
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mice in the sham-infected liver lobe at the same time point. The

results were presented as means 6 SD. One-way ANOVA and

Student’s t-test were used to compare the differences between

groups, and Spearman’s rho was used to analyse the correlation

coefficients. P,0.05 was considered to indicate statistical signifi-

cance.
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