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Abstract

The C. elegans pharyngeal neuron M4 is a multi-functional cell that acts as a

cholinergic motor neuron to stimulate peristaltic pharyngeal muscle contraction and

as a neuroendocrine cell secreting neuropeptides and growth factors to affect other

cells both inside and outside the pharynx. The conserved transcription factors ZAG-

1 and CEH-28 are co-expressed in M4 through most of development, and here we

examine how these factors contribute to M4 differentiation. We find ZAG-1 functions

upstream of CEH-28 in a branched pathway to activate expression of different sets

of M4 differentiation markers. CEH-28 activates expression of the growth factor

genes dbl-1 and egl-17, and the neuropeptide genes flp-5 and flp-2, while ZAG-1

activates expression of the serotonin receptor ser-7, as well as expression of ceh-

28 and its downstream targets. Other markers of M4 differentiation are expressed

normally in both zag-1 and ceh-28 mutants, including the neuropeptide gene flp-21

and the acetylcholine biosynthetic gene unc-17. Unlike ceh-28 mutants, zag-1

mutants completely lack peristaltic muscle contractions resulting from broader

defects in M4 differentiation. Despite these defects, neither ZAG-1 nor CEH-28 are

terminal selectors of the M4 phenotype, and we suggest they function in a hierarchy

to regulate different aspects of M4 differentiation.

Introduction

Determining the mechanisms controlling motor neuron differentiation is essential

to understanding nervous system development and to ultimately design cell-based

therapies for human motor neuron diseases [reviewed in [1]]. However, the
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complexity of most nervous systems make it difficult to characterize these

mechanisms for individual cell types.

The C. elegans pharynx is emerging as an exceptionally simple model to

examine neuronal differentiation and function [2]. The pharynx is a rhythmically

contracting neuromuscular pump located at the anterior of the digestive system,

and it transports food through a central lumen into the intestine. The pharynx

contains 20 neurons of 14 different types that make up a small nervous system

separate from the somatic nervous system, and 20 muscle cells that contract

during feeding [3]. These muscles exhibit two distinct types of contractions, called

pumps and peristalses [4]. Pumping is a simultaneous contraction of the muscles

in the anterior and very posterior regions of the pharynx, and these contractions

concentrate food in the anterior pharyngeal lumen. In contrast, peristalsis is a

wave-like contraction of a single muscle cell type that makes up a narrow region in

the center of the pharynx called the isthmus, and this peristalsis carries a bolus of

food through the isthmus lumen toward the intestine. Pumping occurs frequently,

approximately 100–200 times per minute, while peristalses are relatively

infrequent, occurring after every 4th to 40th pump. Our current challenge is

understanding the mechanisms that produce the diverse neuron types that control

pharyngeal contractions.

The pharyngeal M4 neuron is a multi-functional cell that both controls muscle

contraction and secretes signaling molecules. M4 is a cholinergic motor neuron

that stimulates isthmus muscle peristalsis, and in its absence the pharyngeal lumen

becomes stuffed with food and the animals starve [5, 6]. Recently M4 has also

been shown to have neurosecretory functions. M4 secretes the FMRFamide-like

peptide neurotransmitter FLP-21 and the insulin-like growth factor INS-10, which

function under hypoxic conditions to systemically modulate gustatory behavior

and anterior touch neuron sensitivity, respectively [7, 8]. M4 also secretes the

TGF-ß-family growth factor DBL-1 to affect the morphology of the nearby

pharyngeal gland cells [9]. A number of additional neuropeptide and growth

factor genes are also expressed in M4 [10, 11], and M4 can be considered part of a

primitive neuroendocrine system [7, 9]. We are interested in how M4

differentiation is controlled to produce this complex, multifunctional phenotype.

The NK-2 family homeodomain transcription factor CEH-28 plays a key role in

regulating synapse formation and gene expression in M4. ceh-28 mutants exhibit

abnormal and mispositioned synapses in M4 and a highly penetrant stuffed

pharynx phenotype [12]. In contrast to animals that lack M4 and do not

peristalse, ceh-28 mutants can hyperstimulate isthmus muscle peristalses, and we

believe this defect leads to inefficient feeding [5, 12]. ceh-28 mutants fail to express

the dbl-1 gene in M4, and this loss of TGF-ß signaling leads to defects in

morphology of the nearby g1 gland cells [9]. However other differentiation

markers such as the serotonin receptor gene ser-7b and the vesicular ACh

transporter gene unc-17 are expressed normally in the M4 cell of ceh-28 mutants

[12]. Thus, other factors also contribute to M4 differentiation.

We are also interested in the role the conserved zinc-finger/homeodomain

transcription factor ZAG-1 plays in M4. ZAG-1 is the sole C. elegans member of
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the ZEB-family of transcription factors, which in humans are mutated in Mowat-

Wilson Syndrome and overexpressed in some metastatic cancers [reviewed in

[13]]. C. elegans zag-1 is widely expressed in the nervous system, including in M4,

as well as in embryonic pharyngeal muscles [14, 15]. zag-1 null mutants exhibit

larval lethality and an inability to feed, and this feeding defect could result from

defects in M4 or pharyngeal muscle development [15].

Here we explore the role of CEH-28 and ZAG-1 in regulating gene expression

in M4, and we find that these factors function in a hierarchical pathway to

progressively regulate distinct aspects of M4 differentiation. In addition to

activating dbl-1, CEH-28 activates expression of the FGF gene egl-17 and the

FMRFamide peptide genes flp-5 and flp-2. In contrast, ZAG-1 functions upstream

and activates expression of ceh-28 and its downstream targets, but it also is

necessary for expression of ser-7b, which is expressed independently of CEH-28

[12]. Other genes are expressed normally in M4 in both ceh-28 and zag-1 mutants,

indicating neither of these factors is a terminal selector of M4 fate [16]. This

understanding of how these conserved factors function in M4 may guide work

developing therapies by manipulating mammalian ZAG-1 and CEH-28 orthologs

to produce specific neuronal differentiation patterns.

Results

CEH-28 activates egl-17, flp-5, and flp-2 expression in M4

CEH-28 is an NK-2 family homeodomain transcription factor that is expressed

exclusively in the M4 pharyngeal neuron from mid-embryogenesis through

adulthood, and it regulates M4 synapse assembly and signaling [9, 12]. The only

previously known transcriptional target of CEH-28 is dbl-1, which encodes a TGF-

ß family growth factor secreted from M4 to affect the nearby g1 pharyngeal gland

cells [9]. We sought to identify additional targets by comparing expression of gfp

reporters regulated by the egl-17, flp-5, flp-2 and flp-21 promoters in wild-type

animals and ceh-28 mutants (Figure 1A). These reporters are expressed in M4

[10, 11], and some contain potential CEH-28 binding sites, suggesting they may

be direct targets of CEH-28 regulation.

egl-17 encodes a fibroblast growth factor (FGF) expressed in M4 and the vulva

[10], and we found that CEH-28 activates egl-17 expression specifically in M4. egl-

17::gfp expression was completely lost in M4 in ceh-28 mutants, while expression

in the vulva was unaffected (Figure 2A–C; Table 1). In the dbl-1 promoter,

separable sequences mediate expression in M4 and other neurons, and CEH-28

directly targets an M4-specific enhancer in this promoter [9]. Previous studies

suggest the egl-17 promoter has a similar organization [17]. This work identified a

region from 22589 to 21756 bp upstream of the translational start site necessary

for egl-17::gfp expression in M4, but it had no role in vulval cell expression. We

asked if this fragment was sufficient to enhance expression of the basal pes-10

promoter fused to gfp (Dpes-10::gfp), which is sensitive to linked enhancers [18].

We found transgenic animals bearing this reporter expressed GFP exclusively in
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M4 (Figure 1A; Figure 2D). While this enhancer does not contain any

recognizable CEH-28 binding sites, its activity was lost in ceh-28 mutants,

indicating that it functions downstream of CEH-28 (Figure 2E; Table 1). We

suggest either that enhancer is directly activated by CEH-28 through non-

consensus binding sites, or it is activated indirectly by another CEH-28 dependent

factor.

flp-2, flp-5 and flp-21 encode FMRFamide-like neuropeptides expressed in M4

and other neurons, and we found that CEH-28 activates flp-5 and flp-2 expression

in M4, but flp-21 is expressed independently of CEH-28. Expression of flp-5::gfp

was eliminated in ceh-28 mutant M4 cells, while the frequency of flp-2::gfp

expression was modestly but significantly reduced (Figure 2F–I, Table 1). In both

cases expression was unaffected in other neurons. In contrast, flp-21::gfp

expression was unaffected in M4 and other neurons in ceh-28 mutants (Table 1).

These results expand our understanding of gene regulation in M4, and together

with our previous work, identify dbl-1, egl-17, and flp-5 as downstream targets of

CEH-28 [9, 12]. CEH-28 contributes to flp-2 expression, but other factors must

also activate flp-2 in M4. In contrast ser-7b, unc-17, and flp-21 are expressed in M4

independently of CEH-28 [12].

Figure 1. Promoters of potential CEH-28 target genes. Schematic diagrams of promoter fragments in gfp
fusions used in this study with potential CEH-28 binding sites indicated (blue dots). The translational start site
(ATG) is numbered as bp 1. (A) egl-17 contains an M4 specific enhancer (bar). Potential CEH-28 binding sites
are located in egl-17 at 21212, 2906, 2334, 2179, 259, and 224; in flp-5 at 23387, 22914, 22546, 22225,
21793, and 2892; in flp-21 at 21536, 21238, 21212, 21123, and 2480. (B) Schematic diagram of the zag-1
promoter sufficient for zag-1 expression in M4 and other neurons [15]. Our studies used fosmid
WRM063aA08 containing a gfp translational fusion [45], which is expressed in similar pattern. zag-1 contains
potential CEH-28 binding sites at 24552, 23830, 23581, 23474, 23214, 22468, 21664, 21162, 2619,
2604, and 2536.

doi:10.1371/journal.pone.0113893.g001
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Figure 2. Expression of M4 differentiation markers in ceh-28(cu11) mutants. Fluorescence (left) and DIC
(right) micrographs of L4 to adult animals of the indicated genotypes bearing egl-17::gfp ayIs4 (A–C), the egl-
17 M4 enhancer::Dpes-10::gfp cuEx793 (D,E), the flp-5::gfp ynIs49 (F,G), or the flp-2::gfp ynIs57 (H,I).
(A,B,D–I) Expression in the pharynx with M4 (arrowhead) or I4 (asterisk, F and G) indicated. (C) egl-17::gfp
expression in the vulva, which is unaffected in ceh-28 mutants.

doi:10.1371/journal.pone.0113893.g002

Table 1. Frequency of animals expressing GFP in M4 in wild-type and ceh-28 mutants.

Reporter
Percent animals expressing GFP in
M4 in wild type (n)a

Percent animals expressing GFP
in M4 in ceh-28(cu11) (n)a,b

ayIs4[egl-17::gfp] 100 (35) 0 (40)**

egl-17 M4 enhancer::gfp 80 (30) 0 (30)**

ynIs49[flp-5::gfp] 100 (30) 0 (37)**

ynIs57[flp-2::gfp] 100 (30) 80 (45)*

ynIs80[flp-21::gfp] 100 (32) 100 (35)

wgIs83[zag-1::gfp] 100 (40) 66 (45)**

aTransgenic adults were scored for GFP expression in M4.
bStatistically significant difference between ceh-28(cu11) and wild type. (*p,0.01; **p,0.0001). Calculated using the two-tailed, Fisher’s exact test.

doi:10.1371/journal.pone.0113893.t001
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ZAG-1 is essential for isthmus peristalsis

ZAG-1 is a ZEB-family C2H2 zinc-finger/homeodomain factor that regulates

neuron pathfinding and differentiation in C. elegans [14, 15]. It is believed to be

expressed in M4 and many other neurons, and in some pharyngeal muscles during

embryogenesis. zag-1(hd16) null mutants arrest after hatching and exhibit a

stuffed pharynx phenotype [15]. Because this phenotype can result from M4

defects, we characterized pharyngeal muscle contractions and M4 function in zag-

1(hd16) mutants.

We found zag-1(hd16) mutants completely lack isthmus peristalses. These

mutants pump, although at a slower rate than wild-type L1s (Table 2; Movie S1

and S2). However, while wild-type L1s peristalse approximately after every 9th

pump, zag-1(hd16) mutants never exhibited a peristalsis (Table 2). Both of these

phenotypes are observed in animals lacking M4 [5, 19], suggesting motor neuron

function of M4 is defective in zag-1 mutants.

To determine if the lack of peristalses in zag-1(hd16) mutants results from

defects in M4 or the pharyngeal muscles, we examined pharyngeal muscle

contractions in animals treated with compounds that stimulate either of these cell

types. Serotonin stimulates the MC and M4 neurons, and this leads to increased

pumping and peristalsis, respectively [20]. Wild-type L1s treated with serotonin

exhibited a moderate increase in the pump rate and frequency of peristalsis

compared to untreated animals (Table 2; Movie S3). In comparison, zag-1(hd16)

mutants treated with serotonin exhibited a strong increase in the pump rate

compared to untreated animals, but they still failed to peristalse (Table 2; Movie

S4). Arecoline directly stimulates acetylcholine receptors in the isthmus muscles

[12, 19], and we found that arecoline treatment stimulated very frequent

peristalses in both wild-type L1s and zag-1(hd16) mutants (Table 2; Movies S5

and S6). Together these results demonstrate that the isthmus muscle of zag-

1(hd16) mutants can produce a peristaltic contraction, but the M4 cell in these

animals cannot stimulate this contraction. While arecoline treated zag-1 mutants

did peristalse, these contractions were shorter than those in wild-type animals,

suggesting the functional M4 in wild-type animals still affects peristalsis under

these conditions (Table 2).

ZAG-1 regulates ceh-28 and other markers of M4 differentiation

zag-1 mutants exhibit differentiation defects in several neurons outside of the

pharynx [14, 15], and we were interested in asking if M4 differentiation is

similarly affected in these mutants. To examine gfp reporter gene expression, zag-

1(hd16)/+ hermaphrodites that were heterozygous for these chromosomally

integrated reporters were generated, and we compared reporter expression in

progeny zag-1(hd16) homozygotes and their viable wild-type or heterozygous zag-

1(hd16)/+ siblings at the L1 stage.

We first examined expression of ceh-28::gfp and reporters for the CEH-28

targets dbl-1, egl-17, flp-5 and flp-2. Both the frequency and intensity of ceh-28::gfp

expression was reduced in zag-1(hd16) homozygotes (Figure 3A; Table 3).
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Likewise, we also observed loss or reduced expression of the CEH-28 targets,

strongly suggesting that expression of endogenous ceh-28 is reduced in zag-

1(hd16) homozygotes (Figure 3B–E; Table 3). The only CEH-28 target that

Table 2. Summary of feeding behavior in wild-type and zag-1 mutants.

Genotype
Pump Rate (pumps/
min)

Duration of Procorpus
contractions (ms)

Duration of Posterior Bulb
Contractions (ms)

Duration of Isthmus
peristalsis (ms)

% Pumps followed by
Isthmus Peristalsis

N2a 116¡2 159¡1 173¡2 n.d. 11%

zag-1(hd16)b 58¡21 118¡3 96¡6 n.d. 0%

N2+ serotoninc 177¡39 n.d. n.d. n.d. 30%

zag-1(hd16)+ ser-
otonind

158¡41 n.d. n.d. n.d. 0%

N2+ arecolinee 50¡16 n.d. n.d. 216¡22 100%

zag-1(hd16) +
arecolinef

34¡4 n.d. n.d. 128¡22 100%

a4 N2 L1s were recorded for 35–40 s and a total of 213 pumps were analyzed.
b4 zag-1(hd16) L1s were recorded for 35–60 s and a total of 203 pumps were analyzed.
c4 N2 L1s were treated with 20 mM serotonin and recorded for 15–20 s each and a total of 193 pumps were analyzed.
d5 zag-1(hd16) L1s were treated 20 mM serotonin and recorded for 12–25 s each and a total of 222 pumps were analyzed.
e4 N2 L1s were treated with 5 mM arecoline and recorded for 28–50 s each and a total of 115 pumps were analyzed.
f6 zag-1(hd16) L1s were treated with 5 mM arecoline and recorded for 45–60 s each and a total of 166 pumps were analyzed.

doi:10.1371/journal.pone.0113893.t002

Figure 3. Expression of M4 differentiation markers in zag-1(hd16) mutants. Fluorescence (left) and DIC
(right) micrographs of transgenic L1-L2 animals bearing ceh-28::gfp (A), dbl-1::gfp (B), egl-17::gfp (C), flp-
2::gfp (D), flp-5::gfp (E), ser-7b::gfp (F), flp-21::gfp (G), unc-17::gfp (H) in a zag-1(+) or zag-1(hd16) mutants.
The position of M4 is marked (arrowheads). Asterisk indicates flp-2::gfp expression in the MC neuron (D).

doi:10.1371/journal.pone.0113893.g003
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retained some expression in zag-1(hd16) mutants was flp-2::gfp, which was also

only partially affected in ceh-28 mutants (Table 1).

We next examined reporters for the ser-7b, flp-21, and unc-17 genes that are

expressed in M4 independently of CEH-28 (Table 1) [12]. While flp-21::gfp and

unc-17::gfp were expressed normally in zag-1(hd16) mutants, expression of ser-

7b::gfp was completely lost (Figure 3F–H; Table 3). This loss is consistent with our

observation that zag-1(hd16) mutants do not peristalse when treated with

serotonin, and it suggests that ZAG-1 is essential for endogenous ser-7b expression

in M4.

CEH-28 activates zag-1 expression in a positive feedback loop

While ZAG-1 functions upstream to activate expression of ceh-28, we observed

that the zag-1 promoter also contains several potential CEH-28 binding sites (

Figure 1B). To test if CEH-28 also regulates zag-1 expression, we examined

expression of a zag-1::gfp reporter and found that it is indeed expressed in M4 as

previously suggested (Figure 4A) [15]. The frequency of zag-1::gfp expression was

moderately but significantly reduced in ceh-28(cu11) mutants compared to wild

type (Figure 4B; Table 1), indicating CEH-28 functions in a positive feedback loop

to activate zag-1 expression, perhaps to maintain stable expression of both zag-1

and ceh-28 after initial activation.

Discussion

Here we show that the transcription factors CEH-28 and ZAG-1 function in a

hierarchy to regulate multiple aspects of M4 differentiation (Figure 5). We

previously showed that ceh-28 mutants fail to express the TGF-ß family gene dbl-1

in M4 [9], and we now find these mutants lack or exhibit reduced expression of a

Table 3. Expression of M4 differentiation markers in zag-1(+) and zag-1(hd16) mutants.

Transgene % animals expressing GFP in M4 in zag-1(+) (n)a % animals expressing GFP in M4 in zag-1(hd16) (n)b,c

nIs177[ceh-28::gfp]d 69 (54) 22 (58)**

ctIs43[dbl-1::gfp]d 74 (43) 0 (32)**

ayIs4[egl-17::gfp]d 74 (34) 0 (36)**

ynIs49[flp-5::gfp]d 63 (40) 0 (40)**

ynIs57[flp-2::gfp]d 67 (30) 38 (45)*

cuEx469[ser-7b::gfp]e 63 (30) 0 (30)**

ynIs80[flp-21::gfp]d 74 (34) 68 (25)

mdIs18[unc-17::gfp]d 65 (40) 73 (30)

aGFP expression in the phenotypically wild-type +/+ or zag-1(hd16)/+ progeny of zag-1(hd16)/+ hermaphrodites, which we refer to as zag-1(+).
bGFP expression in the zag-1(hd16) homozygous progeny of zag-1(hd16)/+ hermaphrodites.
cStatistically significant difference between zag-1(hd16) and zag-1(+). (*p,0.02; **p,0.0001). Calculated using the two-tailed, Fisher’s exact test.
dChromosomally integrated transgene is expected to be present in 75% of the progeny of transgenic hermaphrodites.
ecuEx469 is an extrachromosomal transgene that is unlinked to any of the chromosomes.

doi:10.1371/journal.pone.0113893.t003
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subset of additional M4 differentiation markers, including egl-17::gfp, flp-5::gfp

and flp-2::gfp. We also find that ZAG-1 functions upstream of CEH-28 and plays a

broader role in M4 differentiation. zag-1 mutants exhibit strongly reduced

frequency and intensity of expression of a ceh-28::gfp marker, and reduced or

eliminated expression of markers regulated by CEH-28. We hypothesize that

Figure 4. Expression of zag-1::gfp in wild-type and ceh-28 mutants. Fluorescence (left) and DIC (right)
micrographs of zag-1::gfp wgIs83 in wild-type (A) and. ceh-28(cu11) mutant (B) adults. M4 is indicated
(arrowhead) in (A). The anterior pharyngeal lumen is stuffed with bacteria in (B), and this results in non-
specific autofluorescence.

doi:10.1371/journal.pone.0113893.g004

Figure 5. zag-1 and ceh-28 function in a hierarchy in the M4 neuron. Model indicating gene regulatory
interactions in M4 discussed in the text. CEH-28 is necessary to activate expression of dbl-1, egl-17, and flp-5.
CEH-28 also activates zag-1 gene expression in a positive feedback loop. Either CEH-28, ZAG-1 or both
activate flp-2 expression (dashed arrows). ZAG-1 functions upstream to activate ceh-28 and ser-7b
expression, while another factor(s) activate zag-1, unc-17, and flp-21 (indicated as X).

doi:10.1371/journal.pone.0113893.g005
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ZAG-1 is required for strong expression of the endogenous ceh-28 gene in M4,

and the reduced ceh-28 expression in zag-1 mutants leads to loss of expression of

the CEH-28 downstream targets dbl-1, egl-17 and flp-5. Notably, zag-1 mutants

also lack expression of a ser-7b::gfp, which is expressed normally in ceh-28

mutants, demonstrating ZAG-1 functions upstream of CEH-28 and regulates the

ser-7 promoter independently of CEH-28 [12]. zag-1::gfp expression is also

reduced in ceh-28 mutants, indicating CEH-28 contributes to zag-1 expression

through a positive feedback loop. While flp-2::gfp expression is reduced in both

zag-1 and ceh-28 mutants, it is difficult to know if flp-2 is directly downstream of

either of these genes, or whether both function in parallel to activate flp-2 (

Figure 5). Because of positive feedback between ceh-28 and zag-1, mutations

affecting in either of these alter expression of the other gene, which in turn could

flp-2 expression. Finally, the M4 differentiation markers unc-17::gfp and flp-21::gfp

are expressed normally in both zag-1 and ceh-28 mutants, indicating other factors

promote aspects of M4 neuronal differentiation independently of ZAG-1 and

CEH-28. We suggest an additional factor(s) (‘X’ in Figure 5) activates expression

of these genes, as well as zag-1 in M4.

We further show that defects in M4 differentiation in zag-1 mutants result in an

absence of peristaltic contractions in the pharyngeal isthmus muscles. This

phenotype results from defects in the M4 neuron rather than in the muscle,

because stimulating the isthmus muscles with arecoline stimulates isthmus

peristalsis in zag-1 mutants, whereas stimulating M4 with serotonin has no effect

in these animals. This severe peristalsis defect likely contributes to the L1 arrest

phenotype of zag-1(hd16) as previously suggested [15].

CEH-28 regulates M4 signaling by activating growth factors and

neuropeptides

CEH-28 is not generally required for M4 neuronal differentiation. However, ceh-

28 mutants are defective in expressing dbl-1, egl-17, flp-5, and flp-2 [9, 12],

indicating that CEH-28 regulates multiple neurosecretory functions of M4. Like

dbl-1, the egl-17, flp-5 and flp-2 genes are also expressed in cells other than M4,

and this expression is unaffected in ceh-28 mutants. Both dbl-1 and egl-17 contain

M4 specific enhancers that are separable from sequences controlling expression in

other cells [9, 17], and this modular organization may be a common feature of

promoters active in M4. Activity of the dbl-1 enhancer depends on CEH-28

binding sites [9], but, while the egl-17 promoter region contains potential CEH-28

sites, none of these are located in the M4 enhancer (Figure 1). We speculate that

this enhancer is activated by CEH-28 through non-consensus sites or through

other CEH-28-dependent factors. Additional studies are necessary to determine

the functional significance of potential binding sites in other promoters regulated

by CEH-28.

DBL-1 secreted from M4 affects the morphology of the nearby pharyngeal g1

gland cells [9], but the functions of the newly identified CEH-28 targets in M4 are

unknown. EGL-17 has no known role in the pharynx, while exogenous FLP-5 and

ZAG-1 and CEH-28 Regulate M4 Differentiation
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FLP-2 neuropeptides can excite pumping in pharyngeal explants [21]. None of the

mutants egl-17(n1377), flp-5(gk3123) or flp-2(gk1039) exhibit a stuffed pharynx

phenotype similar to that of ceh-28 mutants, suggesting these secreted proteins are

not necessary for normal feeding (data not shown), and we believe other CEH-28

targets are important for M4 synapse assembly and motor neuron function.

Alternatively, the functions of these genes are redundant with each other or with

other signaling pathways, as has been observed for cholinergic and neuropeptide

control of egg laying [22].

ZAG-1 plays a crucial role in regulating M4 differentiation

ZAG-1 is an ortholog of the vertebrate ZEB family transcription factors and

Drosophila Zfh1 [14, 15]. In vertebrates these proteins regulate epithelial to

mesenchymal transitions during development and in cancer metastasis, and

control differentiation of particular neuronal types [13, 23]. Mutations affecting

human ZEB proteins have been implicated in Mowat Wilson syndrome and

corneal dystrophies [24–27]. In C. elegans and Drosophila, ZEB family proteins

function in axonal path finding, neuronal differentiation, and neuronal cell fate

[14, 15, 28, 29].

Our results indicate ZAG-1 is a major regulator of M4 differentiation. M4 is

present and partially differentiated in zag-1 mutants, but these mutants lack

expression of several markers of M4 differentiation. Moreover zag-1 mutants

exhibit a complete loss of peristaltic contraction of the isthmus muscles. This

contractile defect results from defects in M4 rather than the pharyngeal muscles

themselves, because stimulation of the muscles with exogenous arecoline restores

peristalses, while stimulation of M4 with serotonin has no effect. In wild-type

animals the ability of serotonin to stimulate pharyngeal pumping and peristalses is

mediated by the SER-7 receptor in the MC and M4 motor neurons, respectively

[20], and the failure of exogenous serotonin to simulate peristalsis in zag-1

mutants is consistent with the loss of expression of the endogenous ser-7 gene in

M4 in these animals.

ZEB family proteins most often function as transcriptional repressors, but they

can also activate transcription [reviewed in [30]]. Mammalian ZEB1 activates

transcription of the ovalbumin gene in response to estrogen signaling [31], as well

as the MMP-1 and CDK-4 genes [32, 33]. Likewise, Drosophila Zfh1 can repress

expression of mef2 during muscle development [34], while it activates expression

of FMRFa gene in neurons [35]. This ability of ZEB family factors to function

either as activators and repressors may result from cell type specific cofactors or

post-translational modifications [36–38] or different DNA binding activities

mediated through the multiple binding domains in these proteins [39].

Like its vertebrate and Drosophila orthologs, C. elegans ZAG-1 also functions as

both a repressor and an activator. ZAG-1 negatively regulates its own expression

and expression of unc-25, which is required for GABA synthesis [14, 15]. Our

results now suggest ZAG-1 can also function as a transcriptional activator of the

ser-7b and ceh-28 promoters (Figure 5). Current whole animal ChIP-seq analyses
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performed by the modENCODE consortium have not revealed significant ZAG-1

binding within these promoters [40], so we do not know if this regulation is

direct, but binding might be undetectable if it only occurs in M4 or a small

number of other cells.

Recently, ZEB2 was found to repress Nkx-2.1 expression in the developing

mouse cerebral cortex, and loss of this regulation may contribute to Mowat

Wilson syndrome [23, 41, 42]. While this regulation is opposite to what we have

observed between ZAG-1 and ceh-28, it suggests ZEB-family factors may be

common regulators of NK-2 family homeobox genes.

A hierarchy of transcription factors control M4 differentiation

In both invertebrates and vertebrates, ‘terminal selector’ transcription factors have

been shown to be key activators of batteries of genes involved in terminal

differentiation of specific neuronal types [reviewed in [16]]. Such terminal

selector genes are expressed in these specific neurons throughout development,

and, after initial activation, they maintain their own expression through positive

autoregulation. While mutants defective for terminal selector genes express

markers of pan-neural differentiation, they fail to express markers of neuron type-

specific differentiation.

While both ceh-28 and zag-1 are expressed in M4 throughout development,

neither appears to have other characteristics of a terminal selector for the M4

phenotype. CEH-28 does not maintain its own expression in M4, and ceh-28

mutants strongly express a ceh-28::gfp reporter in M4 throughout their life-cycle

[12]. In comparison, ZAG-1 does partially activate its own expression indirectly in

M4 via CEH-28 in a positive feedback loop (Figure 5), but it represses its own

promoter in many neurons [14, 15]. More importantly, neither of these factors

appears necessary for expression of batteries of genes for a specific aspect of M4

differentiation. For example, the flp-5, flp-2, and flp-21 genes encoding

FMRFamide-family neuropeptides all are regulated differently in M4. Instead, our

observations indicate ZAG-1 and CEH-28 function in a branched, hierarchical

network to regulate M4 gene expression (Figure 5). Other genes are regulated

independently of both CEH-28 and ZAG-1, and additional transcription factors

must function upstream in this hierarchy. zag-1 and ceh-28 could themselves be

activated by a terminal selector of M4 differentiation. Alternatively, different

aspects of M4 differentiation might be independently regulated without a terminal

selector transcription factor, perhaps resulting from the multifunctional nature of

M4. More comprehensive analyses of M4 gene expression and the promoters of

M4 expressed genes will distinguish between these possibilities.
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Materials and Methods

Nematode handling, transformation and strains

C. elegans strains were grown under standard conditions [43]. Germline

transformations were performed using pRF4 (100 ng/ml) and indicated gfp

reporters (15 ng/ml) [44].

The following strains were used in this study: NH2466 ayIs4[egl-17::gfp dpy-

20(+)]; dpy-20(e1282ts) [10], OK0978 ayIs4; ceh-28(cu11), OK0975 cuEx793 [egl-

17 M4 enhancer], OK0976 ceh-28(cu11); cuEx793, NY2049 ynIs49[flp-5::gfp] [11],

OK0979 ynIs49; ceh-28(cu11), NY2057 nyIs47; him-5(e1490) [11], OK0980 ynIs57;

ceh-28(cu11), NY2080 ynIs80[flp-21::gfp] [11], OK1013 ynIs80; ceh-28(cu11),

OP83 unc-119(ed3); wgIs83[zag-1::TY1::gfp::3xFLAG + unc-119(+)] [45], OK0974

unc-119(ed3); ceh-28(cu11); wgIs83, VH514 zag-1(hd16)/unc-17(ed113) dpy-

14(e184) [15] MT15672 nIs177[ceh-28::4xNLS::gfp] [46], BW1946 ctIs43[Pdbl-

1::gfp]; unc-42(e270) [47], OK516 cuEx469[ser-7b::gfp] [12], RM2258 pha-

1(e2132ts); mdIs18[unc-17::gfp] [48].

To visualize the expression of gfp reporters in zag-1(hd16) homozygotes,

transheterozygous zag-1(hd16)/+; gfp/+ were generated by crossing gfp/+ males

with zag-1(hd16)/unc-17(ed113) dpy-14(e184) hermaphrodites and picking GFP

expressing F1 cross progeny to individual plates. F1 animals were allowed to

produce progeny for 2 days (25 C̊), and zag-1(hd16)/+; gfp/+ plates segregating

zag-1(hd16) homozygotes in the F2 were identified. GFP expression was examined

in F2 zag-1(hd16) homozygous progeny, recognized by their Unc, Coiler

phenotype, and their +/+ or zag-1(hd16)/+ siblings.

General methods for nucleic acid manipulations and plasmid

construction

Standard methods were used to manipulate all DNAs [49], and plasmids

sequences are available from the authors. The egl-17 M4 enhancer containing bp

18,928–19,857 of cosmid F38G1 (accession # FO080171) was amplified from N2

genomic DNA and inserted into HindIII-SalI digested Dpes-10::gfp to generate

pOK293.01.

Identification of candidate CEH-28 binding sites potential targets

Candidate CEH-28 binding sites were identified as described previously [9] by

scanning the promoter sequences using the WormBase function Annotate

Sequence Motif using the GBrowse plugin MotifFinder (www.wormbase.org;

gmod.org/wiki/MotifFinder.pm) with the JASPAR position-frequency-matrix

MA0264.1 (jaspar.cgb.ki.se) for the closely related homeodomain factor CEH-22

at a threshold of 0.82 [50].
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Analysis of feeding behavior and drug studies

To analyze pharyngeal muscle contractions, wild-type or zag-1(hd16) embryos

were hatched in the absence of food on unseeded NGM plates. L1 larvae from

each genotype were suspended in 5 ml of M9 buffer containing OP50 and imaged

on a 2% agarose pad under a coverslip. To stimulate M4 with serotonin, L1

animals obtained from a mixed stage population were placed on an unseeded

NGM plate for 20 min and subsequently soaked 20 min in 20 mM serotonin on a

2% agarose pad before imaging. Pharyngeal muscles were stimulated with 5 mM

arecoline as previously described [12].

Individual N2 or zag-1(hd16) animals that pumped were recorded at 25 frames/

sec for 2 min using a Zeiss AxioImager microscope with an MRm camera and

ZEN Software. For each genotype or drug treatment the feeding behavior was

analyzed in at least 4 animals. Video frames and QuickTime movies of feeding

behavior were exported and processed using ImageJ (developed at the US NIH

and available at http://rsb.info.nih.gov/nih-image/) and quantifications were

performed using Microsoft Excel.

Supporting Information

Movie S1. Pumping and peristalsis in a wild-type L1 larva. Five pumps of a

wild-type L1 animal played at 1/5th speed (5 frames/sec). A pump occurs when the

muscles in the anterior and posterior pharynx synchronously contract to open the

pharyngeal lumen. A wave-like, peristaltic contraction is observed in the isthmus

only after the third pump.

doi:10.1371/journal.pone.0113893.s001 (MOV)

Movie S2. zag-1 mutants completely lack isthmus peristalsis. Seven pumps of a

zag-1(hd16) mutant animal played at 1/5th speed (5 frames/sec). Note that the

animal pumps somewhat more slowly than a wild-type animal, and that peristaltic

contraction in the isthmus was never observed.

doi:10.1371/journal.pone.0113893.s002 (MOV)

Movie S3. Pumping and peristalsis in serotonin treated wild-type L1 larva.

Three pumps of a wild-type L1 treated with 20 mM serotonin played at 1/5th

speed (5 frames/sec). A peristaltic contraction was observed only after the second

pump.

doi:10.1371/journal.pone.0113893.s003 (MOV)

Movie S4. Feeding behavior of serotonin treated zag-1(hd16) mutants. Seven

pumps of a zag-1(hd16) mutant L1 larva treated with 20 mM serotonin played at

1/5th speed (5 frames/sec). Note that the animal pumps normally, however a

peristaltic contraction in the isthmus.

doi:10.1371/journal.pone.0113893.s004 (MOV)

Movie S5. Wild-type L1 larva treated with acetylcholine receptor agonist

arecoline. Four pumps of the wild-type L1 treated with 5 mM arecoline played at

1/5th speed (5 frames/sec). Note that every pump is followed by a prolonged
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peristaltic contraction in which a larger region of the isthmus lumen is open at

any given time.

doi:10.1371/journal.pone.0113893.s005 (MOV)

Movie S6. zag-1(hd16) mutant L1 larva treated with acetylcholine receptor

agonist arecoline. Two pumps of a zag-1(hd16) mutant L1 treated with 5 mM

arecoline played at 1/5th speed (5 frames/sec). Both the pumps are followed by a

strong peristaltic contraction.

doi:10.1371/journal.pone.0113893.s006 (MOV)
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