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Abstract: Due to the increasing demand for glass fibre-reinforced epoxy resin composites (GFRC),
huge amounts of GFRC waste are produced annually in different sizes and shapes, which may affect
its thermal and chemical decomposition using pyrolysis technology. In this context, this research aims
to study the effect of mechanical pre-treatment on the pyrolysis behaviour of GFRC and its pyrolysis
kinetic. The experiments were started with the fabrication of GFRC panels using the vacuum-
assisted resin transfer method followed by crushing the prepared panels using ball milling, thus
preparing the milled GFRC with uniform shape and size. The elemental, proximate, and morphology
properties of the panels and milled GFRC were studied. The thermal and chemical decomposition
of the milled GFRC was studied using thermogravimetric coupled with Fourier-transform infrared
spectroscopy (TG-FTIR) at different heating rates. Meanwhile, the volatile products were examined
using TG coupled with gas chromatography–mass spectrometry (GC-MS). The TG-FTIR and TG-
GC-MS experiments were performed separately. Linear (Kissinger–Akahira–Sunose (KAS), Flynn–
Wall–Ozawa (FWO), and Friedman) and nonlinear (Vyazovkin and Cai) isoconversional methods
were used to determine the pyrolysis kinetic of the milled GFRC based on thermogravimetry and
differential thermal gravimetry (TG/DTG). In addition, the TG/DTG data of the milled GFRC
were fitting using the distributed activation energy model and the independent parallel reactions
kinetic model. The TG results showed that GFRC can decompose in three stages, and the main
decomposition is located in the range 256–500 ◦C. On the other hand, aromatic benzene and a
C-H bond were the major functional groups in the released volatile components in FTIR spectra,
while phenol (27%), phenol,4-(1-methylethyl) (40%), and p-isopropenylphenol (34%) were the major
compounds in GC-MS analysis. Whereas, the kinetic results showed that both isoconversional
methods can be used to determine activation energies, which were estimated 165 KJ/mol (KAS),
193 KJ/mol (FWO), 180 KJ/mol (Friedman), 177 KJ/mol (Vyazovkin), and 174 KJ/mol (Cai).

Keywords: glass fibre-reinforced epoxy resin composites; pyrolysis; TG-FTIR-GC–MS analysis;
pyrolysis kinetic; mechanical pre-treatment

1. Introduction

Glass fibre-reinforced epoxy resin composites (GFRC) is a well-established and essen-
tial material in the manufacture of aircraft, vehicle, and infrastructure structures [1,2]. It
has wide applications in defense, electronics, renewable energy, etc. due to its outstanding
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physical properties including light weight and high chemical, mechanical, and thermal
durability [3–5]. According to recent studies, the market for fibre-reinforced composites in
the USA has reached $12 billion in 2020 with an expected annual growth rate of 6.6% due
to its adaptation in many modern applications such as wind energy [6–8]. This heavy use
has lead to producing a huge quantitiy of GFRC waste on a regular and increasing basis
in the world [9]. The aircraft, wind energy, and electronic (waste printed circuit board)
sector is the largest contributor to this share of production [9–12]. Usually, GFRC waste is
composed of several layers of glass fibre collected together using resin. In addition, this
type of waste can be classified based on the type of resins into thermosets (epoxy resin) and
thermoplastic (acrylic poly-methyl methacrylate (PMMA)) [6,13]. In some applications, this
composition is presented as a mixture with copper and other mineral layers for electrical
conductivity [14,15], which are classified as heavy metals and polluting elements for soil
and groundwater, as well as resins that are classified as toxic materials [16].

Therefore, it must be disposed of safely and no longer disposed by traditional methods,
bad burial, burning, or throwing of waste, which are the most popular disposal methods
adopted by composite industries [17] to avoid the accumulation of waste and the resulting
obstacles. In addition, it can also help keep up with this strong demand for virgin glass
fibres [18]. Despite all these defects, GFRC waste has a high economic value for these
compounds if these materials (glass fibre and epoxy resin) are recovered in a cost-effective
way without causing negative environmental effects [19]. All these factors have led to an
increase in awareness about ways to dispose of such waste, where the mechanical, chemical,
and thermal processes were adapted to extract the fibre and epoxy in the form of fillers
or petroleum products [20,21]. Usually, mechanical treatment is used for size reduction,
and converted GFRC waste into fine particles (fibres mixed with resin) in micro-size can be
used as filler material in concrete, asphalt, wood, plastic, etc. [22–24]. In order to remove
resin from the milled fibre particles, chemical treatment using organic solvents was used
to dissolve epoxy resin [25], while epoxy resin fraction can be recovered from the organic
solutions using a rotary evaporator. Although both processes succeeded in achieving the
specific goal, some limitations have been appearing such as the need for a lot of chemicals,
power consumption, etc., which makes it hard to apply for industrial scale [9].

Therefore, a pyrolysis process was used to decompose GFRC into energy products
(e.g., gas, oil, and char mixed with short glass fibres) with a high calorific value in a wire-
mesh reactor [26]. In addition, the thermal and chemical decomposition of GFRC was
studied using thermogravimetric coupled with Fourier transform infrared spectroscopy
(TG-FTIR) [27,28]. In addition, the kinetic parameters of GFRC pyrolysis were determined
using different methods, including linear isoconversional methods (Kissinger–Akahira–
Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Friedman) and nonlinear isoconversional
method (e.g., Vyazovkin). It is worth mentioning that the experiments in these studies
were performed on GFRC waste in the form of a by-product collected from acid solution
storage tank manufacturing factory without specific composition [27]. In another study
the experiments were performed on 67% E-type glass fibre and 6509 epoxy resin without
giving any attached to the composition of formulating products using GC analysis [28].
As shown, these studies did not take into account the size of waste and pre-treatment
using mechanical processes, even though these practices are a necessary part of such
treatments [29,30].

In this context, this research aims to study the effect of pre-treatments on the pyrolysis
of GFRC. As shown, the pyrolysis experiments were performed on feedstock that has
a different structure and is not similar to the commercial products. In order to put the
layer of pyrolysis of GFRC and understand better its thermal and chemical decomposition
and its pyrolysis kinetic parameters, this work aims to study the pyrolysis behavior of
GFRC using TG-FTIR and TG-GC-MS measurements (separately). In addition, the kinetic
pyrolysis of GFRC was studied using linear and nonlinear isoconversional methods. Finally,
the TG curves were plotting using the distributed activation energy model (DAEM) and
Independent Parallel Reactions Kinetic Model (IPR) [31,32].
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2. Experimental
2.1. Materials and Design of the Research Experiments

Glass fabric PandaTM (Weave: Twill 2/2 type and weight: 163 g/m2) was purchased
from R&G Faserverbundwerkstoffe GmbH, Germany. Epoxy resin and its hardener
(EPIKOTE Resin MGS® RIMR 135 and EPIKURE Curing Agent MGS® RIMH 1366) were
supplied by Momentive. Other chemicals used in this research were purchased from
Sigma-Aldrich, and the gases used in pyrolysis experiments were supplied by Lithuanian
Energy Institute. Figure 1 shows the flowchart of the experiments and analysis in the
present research. As shown, the research was designed in five stepes: (a) preparation of
fibreglass/epoxy laminate panels using vacuum-assisted resin transfer method, (b) charac-
terisation of GFRC, using elemental, proximate, and composition analysis, (c) study of the
thermal decomption of GFRC using thermogravimetric analysis, (d,e) study of the chemical
compounds of the obtained volatile compounds using FTIR and GC/MS meareaments, (f,g)
study of pyrolysis kinetic parameters of GFRC using linear and nonlinear isoconversional
methods, and (h,i) fitting the TG-DTG exponential data of GFRC waste using DAEM and
IPR models, respectively. All these phases and their optimum conditions are illustrated in
details in the following sections.

Figure 1. The layout of the present research.

2.2. Preparation of GFRC Panel

In order to prepare the fibreglass/epoxy laminate panel (with a surface area of 100 cm2

and thickness 1 mm), four Glass fabric PandaTM sheets (with nominal size of 10 × 10 cm)
were cut from the supplied fabric roller; then, they were adhesively stuck together with
epoxy/hardener solution using the vacuum-assisted resin transfer method. After that,
the fabricated panels were post-cured using an infrared lamp at 75 ◦C for 8 h, exposed to
the main curing treatment in oven at 85 ◦C for 6 h for achieving of the cross-linking of
polymer structure and the homogeneity, thus preparing the final GFRC panel [1,2]. Finally,
the cured panel was cut into small pieces (100 mm2) and then crushed into fine particles to
minimise mass and heat-transfer resistances during the thermal decomposition using TGA
analysis [33]. The milling process was performed using ball milling (mill model Fritsch
P-5) at the frequency of 20 Hz for 30 min grinding, thus preparing a powder having a high
degree of fineness from the crushed GFRC [25].
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2.3. Characterisation of the Milled GFRP

The morphology of the obtained GFRC panel and the crushed GFRP samples were
observed using Scanning Electron Microscopy (SEM) and Metallurgical Microscope, recep-
tivity. The carbon (C), nitrogen (N), hydrogen (H), and sulphur (S) content in the milled
GFRP sample was measured with an Elemental Analyser (Perkin Elmer 2400 CHN), while
the proximate analysis was used to determine the amount of moisture, volatile matter, and
ash in the milled GFRP sample according to ASTM standard methods (E1756-01, E872-82,
and E1755-01) [34]. It is worth mentioning that the oxygen (O) and fixed carbon content in
elemental and proximate analysis was calculated by difference. In order to improve the
overall accuracy of the final results, all measurements were repeated three times, calculating
the average values.

2.4. Thermogravimetric Measurements

Thermogravimetric analysis (TGA; model: STA449 F3; NETZSCH, Selb, Germany)
was used to evaluate the thermal decomposition of the milled samples in nitrogen ambient.
The thermal decomposition experiments using TGA were performed on 7–10 mg from each
sample until 900 ◦C with nitrogen flow rate: 60 mL min−1. In order to study the effect of
heating rate on the thermal decomposition and chemical decomposition of GFRC (in the
next section), the TGA experiments were carried out at different heating rates: 5, 10, 15, 20,
25, and 30 ◦C min−1, because several studies showed that the heating rate has a significant
effect on the yield of the formulated volatile products. In addition, the intensity of these
volatile compounds increased with the increase of the heating rate
mboxciteB34-polymers-1219519,B35-polymers-1219519. Meanwhile, the kinetic analysis
using linear and nonlinear isolation methods was performed on three different heating
rates lower than 20 ◦C min−1, particularly 5, 10, and 15 ◦C min−1 [35]. Finally, the weight
loss obtained at each heating rate was recorded versus pyrolysis temperatures using Pyrys
software. Then, fitting TGA curves was followed by estimating DTG curves through
numerical derivation of the obtained TGA data and then fitting the DTG curves and
determining the maximum thermal decomposition peaks and their intensity and position.
Finally, the pyrolysis parameters of the decomposed GFRP at heating rates (5–30 ◦C min−1)
and their effect on the devolatilisation index (Di) of volatile matters released during the
pyrolysis experiments using TGA were determined using Equation (1), where ∆T is defined
as the changing in temperature in the range equal Rd/Rmax = 0.5 and Rd is defined as a
decomposition rate, and all parameters can be extracted from TGA-DTG curves [36]. In
addition, the heat-resistance index (THRI) was determined (using Equation (2)) to measure
of the ability of GFRC to resist a heat flow and confirm the thermal stability trend observed
using TGA-DTG measurements [37]. It is worth mentioning that T5 and T30 are defined as
the temperatures at 5% and 30% of weight losses, respectively and can be extracted from
TGA data.

Di =
weight loss rate (Rmax)

Initial decomposition temperature (Ti)× Maximum decomposition temperature (Tm)× (∆T)
(1)

THRI = 0.49 × [T5 + 0.6 × (T30− T5)] (2)

2.5. Chemical Analysis of the Formulated Chemical Compounds

The functional groups of the formulated chemical compounds at the maximum de-
composition temperatures for each heating rate were examined using TG-FTIR. In order
to identify and quantified the chemical compounds of these formulated volatile products
correctly, the thermogravimetry–gas chromatography–mass spectrometry (TG–GC–MS,
Thermo Scientific ISQ™ single quadrupole GC–MS) was used. The GC–MS measurements
were carried out using a laboratory test rig composed of a micro Automation Autoinjector™
unit connected with TGA analyser to collect the formulated gases at the specified tem-
peratures, then analysing their chemical compounds using GC-MS (Shimadzu GC-2010)
according to the following conditions: scanning range 30–600 m/s, pumping time (20 s),
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column setting (Argon ambition with purity ≥99.999%, 20 psi, 90 ◦C, and 130 s), inject time
and temperature (30 ms and 90 ◦C), and TCD temperature (75 ◦C at 50 Hz) [38,39].

2.6. Pyrolysis Kinetics of the Milled GFRC

The pyrolysis kinetics of the milled GFRP in terms of activation energy (Ea) at each
conversion rate was determined using linear isoconversional methods (KAS, FWO, and
Friedman) (Equations (3)–(5)) and nonlinear isoconversional methods (Vyazovkin, and Cai)
(Equations (7)–(11)), as shown in Table 1. In case of the Vyazovkin method, the activation
energy for each conversion rate was calculated through numerical integration of Equation
(6) and constrained by minimising Equation (7). In order to solve this integral and h(x)
term, Equations (8) and (9) were used. Regarding the Cai model, the activation energies
were determined using Equation (10) and all codes were built using MATLAB software. In
contrast, DAEM and IPR models were used to fit the TGA-DTG experimental data using
Equations (11) and (12) and to estimate the activation energy and pre-exponential factor.
Finally, the deviation (Dev.%) between the calculated and experimental TGA-DTG data
were estimated using Equation (13).

Table 1. Linear and nonlinear isoconversional methods used to determine kinetic parameters for the pyrolysis
of GFRC [40–45].

Equation No. Method Expressions Plots Slope Value

(3) Kissinger–Akahira–
Sunose ln

(
β

T2

)
= ln

(
AR

Eag(y)

)
−−Ea

RT ln(β/T2) versus 1/T −Ea/R

(4) Flynn–Wall–Ozawa lnβ =
(

lnAEa
Rgy

)
−5.335− 1.0516Ea

RT lnβ versus 1/T −1.0516Ea/R

(5) Friedman ln
(
βdy
dT

)
= ln(Af(y))

(
−Ea
RT

)
ln(dy/dt) versus 1/T −Ea/R

(6)

Vyazovkin

(α) =
∫ α

0
dy

f(y) = A
∫ t

0 exp( ,−E/RT)dt −Ea/R

(7) Φ
(
Ey
)
=

n
∑

i=1

n
∑
j 6=i

I(Ey , Ty,i)jβ

I(Ey ,Ty,j)iβ

(8)
{

I(E, T) =
∫ T

0 e−E/RTdT = RT2

E e−E/RT h(x) }

(9) h(x) = x4+18x3+86x2+96x
x4+20x3+120x2+240x+120

(10) Cai
ln

 βi

T2
y,i

[
h(xy,i)−

x2
y,ie

xy,i

x2
y−∆y,ie

xy−∆y,i h(xy−∆y,i)

]
 =

ln
{

Ay−∆y/2R
Ey−∆y/2 g(y,y−∆y)

}
− Ey−∆y/2

RTy,i

−Ea/R

(11) DAEM ln
(

β

T2

)
= ln

(
AR
Ea

)
+ 0.6075 − Ea

RT

(12) IPR dm
dt

calc
= −(m0 −m)

3
∑

i=1
.Ci

dXi
dt

(13) Dev.(%) =
100
√

F.O.DTG(Z−N)
max(|dm/dt|)

3. Results and Discussion
3.1. Microstructure of the Fabricated GFRC

Figure 2 shows the microstructure cross-section and morphology SEM images of the
fabricated panel (after and before crushing). It is clear that the cured panel was composed of
many laminates containing destroyed weft (horizontal direction) and warp yarns (vertical
direction) resulting from the shear stress produced during cutting the samples. These yarns
are joined together using epoxy resin. Figure 2A shows the shape of the warp yarns (vertical
direction) that have round shapes with similar size and good distribution and covered
with epoxy debris in the form of flakes and bulk particles, which indicate that failure
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was occurring in the form of ductile fracture [46]. In contrast, the surface morphologies
of panel surface are very smooth with little debris produced during the cutting process
without any cracks or notched, as shown in Figure 2B, which means that the preparation
and curing processes were occurring according to the standard methods [47]. Figure 2C
shows the metallurgical image of the milled GFRC powder. As shown, the powder has
a high degree of fineness in microscale and is composed of two components: fibreglass
threads or particles and epoxy resin separated in the form of fibreglass–epoxy composite
agglomerations.

Figure 2. (A) SEM micrograph of the fracture cross-section, (B) SEM image of the surface of the
fabricated GFRC laminates, and (C) Metallographic image of the milled GFRC sample.

3.2. Basic Properties of GFRC

Table 2 shows the ultimate and proximate analyses of GFRC powder. As shown
in the table, the ultimate measurements showed that carbon (C) and oxygen (O) are the
main elements in the tested GFRP powder with an average amount of 32.67 wt% and
61.24 wt%, respectively. In addition, a small amount of hydrogen (H) was observed
with concentration estimated at 3.94 wt%. The strong presence of these elements (C, O,
and H) indicates that GFRP can be considered as a promising source of energy products
and carbon precursor. In addition, a small percentage of nitrogen (N) was also noticed
during the measurements (2.16 wt%) with a completely absence of sulphur (S), which helps
to decrease toxic emissions (e.g., SO2 and NOx) during the pyrolysis process and their
potential application at large scale [48]. In contrast, the proximate measurements showed
that the GFRP powder is rich with a volatile matter content (42.28 wt%) that contributes
to increase the heating value of the formulated fuel during the conversion process. In
addition, a high amount of ash content (55.1 wt%) was observed that can act as a catalyst
during the thermal decomposition, which leads to change reactivity of the feedstock (GFRC
powder) to be more activated and increased yield and quality of the obtained oil [49].

Table 2. Ultimate and proximate analysis of the milled GFRP.

Elemental Analysis (wt%) Proximate Analysis (wt%)

N C H S O Moisture Volatile Matter Fixed Carbon Ash

2.16 ± 0.09 32.67± 0.23 3.94± 0.06 <0.01± 0.00 61.24 ± 0.26 0.08 ± 0.00 42.28 ± 0.13 2.54 ± 0.07 55.1 ± 0.18

3.3. TG-DTG Data Analysis

Figure 3 shows the TGA-DTG curves of the milled GFRC for all tested heating rates.
It seems that the milled samples are decomposed in successive three stages as shown in the
TGA analysis curves (Figure 3A) with almost similar features even with changing heating
rates, but with different weight loss and position of decomposition zones. As shown, the
first weight loss is located in the range of 50–200 ◦C (Y1) due to evaporation moisture with
a very small weight loss <1 wt%. After that, another weak decomposition zone (Y2) was
observed due to decomposing some organic components in epoxy and hardener [50], while
the main degradation stage (Y3) was located in the range of 317–467 ◦C with a weight
loss of 38 wt%. This degradation zone is related to the full degradation of epoxy and
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its compounds, especially the bromine element [51]. In the last decomposition stage, a
significant decomposition was observed (42–46%) due to the formulated char mixed with
the fibreglass particles, which needs a very high temperature for decomposition them,
and that is why it remained a solid residue [52]. Actually, these results agree with the
preparation matrix conditions and concentrations, which showed the amount of epoxy
estimated at 38%, which means that all the epoxy fraction was decomposed and fibreglass
remained mixed with char.

Figure 3. (A) TGA and (B) DTG curves of FGE and GFRC at different heating rates.

Finally, DTG curves showed that all the feedstock components are decomposed
together in a major single peak reaction (since the weight loss of other stages was very
small). It seems that all samples had similar weight loss, which indicate that the heating
rates did not have an effect on the weight loss and the main changes were happening
in the chemical structure of the formulated components as shown in the next sections.
In addition, it was observed that the maximum decomposition temperature increased
gradually from 400 to 430 ◦C by increasing the heating rates as a result of increasing the
applied temperature on the surface are of the milled samples, which led to increasing
the generated heat fluxes, facilitating their transmission inside the internal molecular
and accelerating the decomposition reaction in less time until decomposing the feedstock
completely [34]. All the pyrolysis characteristic parameters are shown in Table 3.

Table 3. The pyrolysis characteristic parameters for GFRC at different heating rates.

Pyrolysis Parameters Heating Rate (◦C/min)

5 10 15 20 25 30

Onset temperature Ti (◦C) 256 260 278 308 286 279

Tm (◦C) 346 361 367 357 364 355

Tf (◦C) 477 478 500 462 454 466

Rmax (%/min) 2.9 5.8 7.8 14.6 18.7 21.9

Di (% min−1 ◦C−3) 5.2 ×10−7 8.7 ×10−7 9.8 ×10−7 2.2 ×10−6 2.9 ×10−6 3.9 ×10−6

∆T 63 71 78 60 62 57

Mf (%) 58.2 58.03 56.69 60.59 58.25 57.87

T5 301.4 310.8 314.9 319.2 317 316.6

T30 364.5 377.1 384.6 380 394.9 393.5

THRI 166.24 171.78 174.79 174.28 178.23 177.74
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3.4. Chemical Analysis of the Synthesised Chemical Compounds

FTIR coupled with TG was used to examine the obtained chemical compounds at
the maximum decomposition temperatures (based on the DTG results) of GFRC for all
the specified heating rate ranges. The FTIR measurements were performed in the ranges
from 346 ◦C to 364 ◦C, and all results are shown in Figure 4. As shown in the 2D FTIR
spectra, the tested GFRC samples under the specified heating rates give almost the same
features in terms of the generated functional groups, particularly sharp peaks in the range
1200–1250 cm−1 assigned to aromatic benzene compound, 1300 and 1500 cm−1 related to
the N-O group, 1700 cm−1 being the typical place for carbonyl (C=O), 2300 cm−1 being the
typical place of CO2, and 3600 cm−1 due to an aromatic and aliphatic C-H group. It seems
that the decomposed samples are rich with aromatic compounds and the absorbances of
these compounds increased significantly as the heating rate increased as a result of the
abundance in the produced heat flux, which led to decomposition of the whole complex of
organic molecules into aromatic compounds [53]. Meanwhile, the 3D FTIR spectra showed
that the disturbance peaks disappeared as the heating rates increased, which was proof
that all the organic components in epoxy resin were decomposed to energy and chemical
compounds. GC-MS measurement was used in the next section to determine the main
composition and yield of these formulated compounds.

Figure 4. Two-dimensional (2D)-3D FTIR analysis of the decomposed milled GFRP at different heating rates.

3.5. Chemical Analysis of the Synthesised Chemical Compounds Using GC–MS

Figure 5 shows the GC–MS results of the generated chemical compounds at maxi-
mum decomposition zones of GFRP samples under the different heating rates, and the
obtained chemical compounds with their respective peak areas are shown in Table 4.
According to GC-MS analysis, the synthesised volatile products are composed of many
chemical compounds. Phenol (4.25–26.99%), phenol, 4-(1-methylethyl) (10.31–40.08%),
and p-Isopropenylphenol (23.64–34.21%) were represented as the major compounds in
GC-MS analysis, and these compounds can be separated using membranes or other tech-
nologies [54,55]. As shown, the yield of these compounds changed with increase of the
heating rate due to the significant increase in the produced heat flux during the process.
The strong presence of phenol and p-isopropenylphenol compounds confirms that the
formulated products from the pyrolysis of GFRC were typical energy products [56,57].
In addition, these pyrolysis compounds (phenol, p-isopropenylphenol, etc.) can be used
in many fields such as chemicals, fuel, pharmaceuticals, etc. Based on these results, the
pyrolysis process is recommended to convert GFRC into high added energy products and
the recovery of short glass fibres, especially at high heating rates.
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Figure 5. GC-MS analysis of the decomposed GFRC at different heating rates.

3.6. Kinetic Analysis of FEC Pyrolysis
3.6.1. Estimation of Activation Energies Using Isoconversional Methods

Figure 6 shows KAS, FWO, and Friedman fitting curves for conversion rate from
10% to 90% at heating rates: 5, 10, and 15 ◦C min−1. The activation energies can be
calculated from the slope of these plotting curves, which are represented by −Ea/R (KAS
and Friedman) and −1.0516Ea/R (FWO). As shown from the fitting curves, KAS and
FWO plots are composed of parallel straight lines in the main conversion range (20–80%).
Meanwhile, the Friedman plot is composed of straight lines distributed randomly with a
big variation between the fitting points, which means that FWO and KAS models are valid
techniques to model the reaction mechanism of GFRC pyrolysis in the major conversion
phase, and the values of the calculated Ea at all conversion rates are summarised in Figure 7
and Table 5. In addition, the coefficient of determination (R2) was calculated to evaluate the
accuracy of the fitted curves as shown in Table 5. As shown, the average Ea is estimated at
164.5886 kJ mol−1 (KAS), 192.6161 kJ mol−1 (FWO), and 180.3665 kJ mol−1 (Friedman). It is
clear that all models gave much less error with R2 in the ranges 0.9804-0.9918. As mentioned
in the Introduction section, several studies have been developed to determine the Ea of
pyrolysis of GFRC and were estimated at 28.17 kJ/mol (GFRP waste was a by-product from
the acid solution storage tank manufacturing factory) and 41.4–78.4 kJ/mol (for by-product
from reuse plastic fuel) [26,27], which means that the GFRC (fibreglass and epoxy) produced
an Ea higher than other types of GFRC by 78% and 52%, respectively. This is due to the
fact that the GFRC used in the current research was composed of two mainly components,
including glass fibre and epoxy, and each component has a different Ea. However, the glass
fibre did not decompose alongisde epoxy in a single reaction (based on the DTG results),
and the obtained Ea represents the summation of Ea of all the decomposition of the epoxy
component only. This is why the pyrolysis of GFRC gave a higher Ea value compared to
other feedstocks, and it is supposed to compare with pure epoxy, which was estimated
at 130 to 230, 78–262, and 76.2–327 kJ/mol [58]. This difference in results is due to the
different chemical composition, size, crystallinity, and testing ambient, which led to the
digestibility of GFRC and conversion into energy products [59,60]. In order to improve the
accuracy of these results, nonlinear isoconversional methods were used in the next section.
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Table 4. GC-MS compounds generated at 5–30 ◦C/min.
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Table 4. Cont.

5 ◦C/min 10 ◦C/min 15 ◦C/min 20 ◦C/min 25 ◦C/min 30 ◦C/min

Ti
m

e
(m

in
.)

GC
Compounds

A
re

a
(%

)

Ti
m

e
(m

in
.)

GC
Compounds

A
re

a
(%

)

Ti
m

e
(m

in
.)

GC
Compounds

Area
(%)

Ti
m

e
(m

in
.)

GC
Compounds

A
re

a
(%

)

Ti
m

e
(m

in
.)

GC
Compounds

A
re

a
(%

)

Ti
m

e
(m

in
.)

GC
Compounds

A
re

a
(%

)

23
.8

92

1,1′-Biphenyl, 4-phenoxy- 2.
22

26
.1

30 Cyclohexane,
1-ethyl-2-propyl- 3.56

26
.1

36 Cyclooctane,
1-methyl-3-propyl- 3.

74

23
.9

18

1,1′-Biphenyl, 4-phenoxy- 2.
69

24
.3

58 Silane,
1,4-phenylenebis[trimethyl 2.

95

26.136
Cyclotrisiloxane,

hexamethyl- 3.
69



Polymers 2021, 13, 1543 12 of 18

Figure 6. Plots of isoconversional methods at different values of conversion.

Figure 7. The relationship between apparent activation energy and conversion rates.

Table 5. The estimated activation energy at different conversion rates.

y KAS
(KJ/mol) R2 FWO

(KJ/mol) R2 Friedman
(KJ/mol) R2 Vyazovkin

(KJ/mol) R2 Cai
(KJ/mol) R2

0.1 175 0.9355 203 0.9381 221 0.9916 186 0.9368 184 0.9325

0.2 205 0.9871 235 0.9891 240 0.9992 217 0.9902 215 0.9882

0.3 203 0.9835 233 0.9861 222 0.999 215 0.9857 213 0.985

0.4 165 0.9945 193 0.9955 154 0.9992 177 0.995 174 0.9951

0.5 169 0.9946 198 0.9956 165 0.9999 181 0.9951 179 0.9951

0.6 139 0.9822 165 0.9861 142 0.9895 152 0.986 148 0.9844

0.7 140 0.9822 167 0.986 151 0.987 153 0.9856 149 0.9844

0.8 140 0.9821 168 0.986 165 0.9996 154 0.9854 150 0.9843

0.9 141 0.9821 168 0.986 159 0.9613 156 0.9853 151 0.9843

Avg. 164 0.9804 192 0.9831 180 0.9918 177 0.9827 174 0.9814

3.6.2. Estimation of Activation Energies Using Nonlinear Isoconversional Methods

The activation energy at each conversion rate was determined numerically using
nonlinear isoconversional methods (Vyazovkin and Cai approaches) after several iterations
at 5, 10, and 15 ◦C min−1. The solution started with Ea = 200 kJ/mol (as an initial condition)
until the values of Ea became constant; then, it took these values as optimal values of Ea and
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all iterations, as shown in Tables 6 and 7. As shown in the tables, Ea values became constant
in both cases at the third iteration. These values were used to plot Vyazovkin and Cai curves
at all conversion rates as shown in Figure 8, where the Y-axis in the case of Vyazovkin
is represented by Equation (14), while Equation (15) represents the Y-axis in case of Cai
methods [44,45]. It is clear that the determined Ea values using nonlinear isoconversional
methods were fully matched with those calculated by linear isoconversional methods
with R2 >98, which means that linear and nonlinear isoconversional methods are valid for
simulating the pyrolysis kinetics of GFRC.

ln


βi

T2
y,i

[
h
(
xy,i
)
−

x2
y,ie

xα,i

x2
y,i−0.1exy,i−0.1 h

(
xy,i−0.1

)]
 (14)

ln


βi

T2
α,i

[
h(xα,i)−

x2
α,ie

xα,i

x2
α−∆α,ie

xα−∆α,i h(xα−∆α,i)

]
 (15)

Table 6. The determined activation energy using the Vyazovkin method at different number of iterations.

Conversion (y) The Activation Energy (kJ/mol)

Intial Value First Iteration Second Iteration Third Iteration Fourth Iteration

0.1 200 185.7325984 186.3112627 186.665928 186.665928

0.2 200 216.6053071 217.2801578 217.693776 217.693776

0.3 200 213.9912192 214.6579256 215.066552 215.066552

0.4 200 176.9886399 177.5400617 177.87803 177.87803

0.5 200 180.934589 181.4983048 181.843808 181.843808

0.6 200 151.9479942 152.4214001 152.711552 152.711552

0.7 200 152.4360676 152.9109941 153.202078 153.202078

0.8 200 153.867198 154.3465832 154.6404 154.6404

0.9 200 155.3727803 155.8568563 156.153548 156.153548

Average 200 176.4307104 176.980394 177.3172969 177.3172969

Table 7. The calculated activation energy using the Cai method at different number of iterations.

Conversion (y) The Activation Energy (kJ/mol)

Initial Value First Iteration Second Iteration Third Iteration Fourth Iteration

0.1 200 184.720452 184.712138 184.712138 184.712138

0.2 200 215.557078 214.675794 215.62359 215.62359

0.3 200 213.154332 212.289676 213.220844 213.220844

0.4 200 174.751966 173.945508 174.80185 174.80185

0.5 200 179.4768122 178.751 179.49926 179.49926

0.6 200 148.90374 148.28019 148.895426 148.895426

0.7 200 149.851536 149.252928 149.843222 149.843222

0.8 200 150.64968 150.059386 150.641366 150.641366

0.9 200 151.506022 150.94067 151.497708 151.497708

Average 200 174.2857354 173.6563656 174.3039338 174.3039338
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Figure 8. Plots of nonlinear isoconversional methods at different values of conversion.

3.6.3. Fitting of TGA-DTG Data Using DAEM and IPR

Figures 9 and 10 shows the TGA-DTG experimental data (red dotted lines) and
fitting (blue dotted lines) curves of TGA-DTG at 5–30 ◦C/min for GFRC sample using
Equations (11) and (12). It seems that the plotting TGA-DTG data fully matched with
the experimental curves with a deviation less than <1 for all heating rates in both cases
DAEM (TGA curves) and IPR (DTG curves), indicating that the DAEM and IPR models
succeeded in the fitting of thermal decomposition curves of GFRC pyrolysis. Based on the
DAEM and IPR models, activation energy and pre-exponential factors were determined,
and all values are summarised in Table 8. According to the TG-FTIR-GC-MS analysis of
GFRC, the pyrolysis process can be considered as a promising approach to dispose of
GFRC and convert them into energy components and fibre powder. In addition, nonlinear
isoconversional methods were successful to determine kinetic parameters and to plot
TGA-DTG curves of GFRC.

Figure 9. TGA experimental and calculated data at 5–30 ◦C/min.
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Figure 10. DTG experimental and calculated data at 5–30 ◦C/min.

Table 8. The calculated DAEM and IPR parameters.

DAEM IPR

E1 200.382 10.857

A1 3.33 × 1020 5.55 × 1014

E2 248.47 234.67

A2 3.66 × 1020 1.40 × 1017

4. Conclusions

In this research, the basic fundamentals of pyrolysis treatment fibreglass/epoxy com-
posites (GFRC) using the TG-FTIR-GC-MS measurements were studied. The pyrolysis
kinetics of GFRC were also investigated using linear and nonlinear isoconversional meth-
ods, including KAS, FWO, Friedman, Vyazovkin, and Cai models. The research started
with a production of the GFRC panel; then, it analysed the element and ultimate properties,
which was followed by studying the thermal and chemical decomposition properties of
GFRC and determining the chemical compounds using the TG-FTIR-GC-MS system. Based
on the obtained TGA-DTG curves, the activation energies for all the processes and for
each conversion rate was calculated using linear and nonlinear isoconversional meth-
ods, followed by modeling TGA and DTG curves using DAEM and IPR models. The
measurements and results of pyrolysis GFRC revealed the following:

(A) The TGA-DTG results showed that GFRC decomposed thermally in three phases with
a total mass loss of 43% and the major decomposition region was located in the range
of 256–500 ◦C.

(B) TG-FTIR spectra showed that the aromatic benzene and C-H bond were the main
volatile compounds in the decomposed samples, and its abundance increased with
the increase of heating rate.

(C) GC-MS results showed that phenol (4.25–26.99%), phenol, 4-(1-methylethyl)- (10.31–40.08),
and p-isopropenylphenol (23.64–34.21%) were the main volatile and flammable com-
pounds, and their yield was affected sigifcantly by the heating rate.
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(D) The kinetic models using linear and nonlinear isoconversional methods revealed that
the average activation energies can be estimated at 165 KJ/mol (KAS), 193 KJ/mol
(FWO), 180 KJ/mol (Friedman), 177 KJ/mol (Vyazovkin), and 174 KJ/mol (Cai) with
R2 >98.

(E) DAEM and IPR models showed a high performance for plotting of the TGA-DTG
experimental data of GFRC samples for all heating rates with deviation lower than <1
for TGA and DTG curves.

Based on the advertised results, the pyrolysis treatment can be employed as a cleaner
and sustainable technology for converting epoxy to energy products. In addition, the linear
and nonlinear isoconversional methods can be used to model the pyrolysis kinetics of
GFRC under applying any heating rate in the main conversion zone (20–80%). The DAEM
and IPR models are also highly recommended for plotting the TGA-DTG curves of GFRC
with high predictability. In addition, GFRC can be used as a promising new source of
renewable energy.
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38. Yousef, S.; Eimontas, J.; Striūgas, N.; Abdelnaby, M.A. Pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of coronavirus
face masks. J. Anal. Appl. Pyrolysis 2021, 156. [CrossRef]
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