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ABSTRACT

T he completion of the International HapMap Project
marks the start of a new phase in human genetics.
The aim of the project was to provide a resource that

facilitates the design of efficient genome-wide association
studies, through characterising patterns of genetic variation
and linkage disequilibrium in a sample of 270 individuals
across four geographical populations. In total, over one
million SNPs have been typed across these genomes,
providing an unprecedented view of human genetic diversity.
In this review we focus on what the HapMap project has
taught us about the structure of human genetic variation and
the fundamental molecular and evolutionary processes that
shape it.

Introduction

In human genetics, association studies aim to identify loci
that contribute to disease susceptibility by comparing
patterns of genetic variation between people with a disease
(cases) and those without (controls) [1]. Without any prior
knowledge about which genes are likely to be important, the
researcher faces the expensive possibility of trying to look at
all the 10 million or so polymorphic sites in the genome
where the less common allele has a frequency of at least 1%,
not to mention polymorphic inversions, duplications,
microsatellites, and other forms of heritable variation.
However, in recent years a number of empirical studies have
revealed a structure to human genetic variation that could
dramatically reduce the cost of association studies [2–9]. In
particular, alleles at nearby loci often show strong statistical
association (known as linkage disequilibrium [LD]). Coupled
with observations that human recombination is concentrated
into short (1–2 kb) hotspots that occur every 100–200 kb [10–
12], and that these recombination hotspots are often
coincident with a breakdown of allelic association [10],
efficient genome-wide association studies became a
possibility [13] because a few markers within each domain of
strong association can be used to tag nearby variation. Here
we use the term ‘‘tag’’ to imply that statistical tests for
association carried out by using selected marker loci are as
powerful (or nearly so) as if all single nucleotide
polymorphisms (SNPs) were included.

However, in order to define efficient markers for
subsequent studies, local knowledge of the structure of
genetic variation across the genome is required. Choosing
SNPs at set intervals across the genome, as one might in
linkage studies, will fail to capture local patterns of allelic
association and will consequently fail to tag efficiently. For
this reason, the International HapMap Project was founded
in 2002, with the goal of mapping the structure of allelic
association across the human genome [14]. With the

participation of funding agencies, academic research centres,
and industrial partners in many countries, the initial aim was
to genotype one SNP every 5 kb in the human genome across
270 individuals from four geographical populations. These
individuals are 30 mother–father–offspring trios from the
Yoruba people of Ibidan Peninsula in Nigeria (referred to as
YRI), 30 such trios from the CEPH project in Utah (CEU), 45
unrelated individuals from the Han Chinese population of
Beijing (CHB), and 45 unrelated individuals of Japanese
ancestry from the Tokyo area (JPT) (for many analyses the
CHB and JPT samples are combined within a single ‘‘analysis
panel’’). This project, referred to as the Phase 1 HapMap, is
now complete, and the data, with associated summaries and
query-based tools, are available online at http://www.hapmap.
org, with an accompanying manuscript published in Nature
[15]. Further phases of the project, involving the typing of
nearly 4 million SNPs across the same samples, and SNPs in a
limited set of regions across multiple other population
samples, are also under way.
What have we learnt from the project? For the medical

geneticist the good news is that whole-genome association
studies are still looking feasible. Technologies that provide
high-throughput whole-genome genotyping of a few hundred
thousand well-chosen SNPs should provide adequate power
in most populations to detect single-locus associations for
SNPs of moderate frequency and relative risk (we are being
deliberately vague because the exact details depend on
sample size and disease parameters [13]). Of course, not all
complex diseases will have such an obvious genetic aetiology,
and efforts to look for rare SNP effects [16], genetic
interactions [17], or genotype-by-environment interactions
[18] in candidate regions will no doubt also be fruitful.
Furthermore, the design and analysis of association studies is
still very much an area of active research that will only really
be understood when large-scale association studies start
becoming a reality.
However, while the use of the HapMap data for future

association studies is the primary goal of the project, it also
provides an unprecedented view of human genetic diversity
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that has provided novel insight into many other areas of
biological interest. These include the distribution of
recombination hotspots and coldspots, the effects of natural
selection, and how these forces and others interact to shape
human genetic variation. Our personal understanding of LD
and how it relates to the underlying evolutionary and
molecular forces has changed enormously through staring
hard at more than a quarter of a billion genotypes. Therefore,
what we are setting out to present in this review is a highly
subjective set of observations made from the HapMap data
that reflect what we have learned about the structure of
human genetic variation.

Understanding the Structure of Human Genetic
Variation

Every chromosome carries a unique combination of alleles
that is known as a haplotype. However, within regions of
about 500 kb and less it is possible to find combinations of
SNPs that are found in multiple unrelated individuals. Such
‘‘blocks’’ point to regions that have not been broken up by
recombination and are often separated from each other by
short regions where there is evidence for considerable
recombination (recombination hotspots). These observations
led to the idea of the human genome as a colourful mosaic of
haplotype blocks delimited by recombination hotspots [19].
While this model is helpful in conveying the broad nature of
human genetic variation, it fails to capture the true
complexity. In this section we discuss four observations
arising from analysis of the HapMap data that help to provide
a more complete picture of the nature and causes of LD and
genetic variation.

In non-recombining regions, the genealogical tree
determines the strength of LD. Recombination acts to break
down associations between alleles that arise because new
mutations appear on a single genetic background. As we
might expect, associations between alleles at loci separated by
considerable genetic distances show consistently low levels of
LD as measured by any statistic. However, and perhaps
surprisingly, the converse is not true. Certain statistics of LD,
and in particular the degree of statistical association between
alleles as measured by the square of the correlation
coefficient, r2 [20], can take low values even in regions of low
or no recombination (r2 is the most relevant measure of LD
for association studies because of the one-to-one relationship
between r2 and the relative power of statistical tests at a
marker locus compared to the causative locus [21]).

Why can LD be low even in non-recombining regions?When
there is no recombination, all parts of the sequence share the
same genealogical tree. So in terms of determining the
strength of associations, what is important is where mutations
appear in this tree (Figure 1). Two mutations that occur on the
same branch of the genealogy will be present on the same
chromosomes and, hence, will be in complete association. In
contrast, two mutations that occur in completely different
parts of the tree will occur in different chromosomes, and may
only be weakly associated. This is really just another way of
saying that the r2 measure of LD is dependent on allele
frequencies [22], but it has important consequences for
association studies because the genealogical history of
chromosomes taken from different parts of the world (or even
repeat samples from the same places) are likely to be different.

We can see this effect in the example shown in Figure 1, a
40-kb region of chromosome 1. Here, we find 17 SNPs that
show no evidence for recombination and result in 13 unique
haplotypes that can be related to each other through a
perfect phylogeny (i.e., there is no need to invoke repeat or
back mutation). As one might expect, we observe differences
in haplotype frequencies between panels, with the majority of
haplotypes being found in only one panel (seven haplotypes
are present in one panel only, compared to three being found
in all). The difference in haplotype distribution leads to
differences in allelic association; for example, SNPs
rs12085824 and rs11205476 are in complete association in
CEU (r2 ¼ 1), in strong association in CHB þ JPT (r2 ¼ 0.88),
and only moderately associated in YRI (r2¼ 0.58). More
importantly, there is a clade of the genealogy (represented by
the dotted line) that is not represented in the CEU sample
(though it might be found with deeper sampling). Without
this clade, the two SNPs effectively occur on the same branch
and are therefore in complete association. The practical
implication of this observation is that tagging choices may
well be population specific, even in regions of low or no
recombination. However, another more exciting possibility is
that such differences between populations in genealogical
trees constructed from non-recombining regions across the
whole genome will provide novel insights into the
demographic history of modern humans.

DOI: 10.1371/journal.pgen.0010054.g001

Figure 1. The Relationship between Genealogical History and Allelic

Association

The upper part of the figure represents the genealogy for the 13
haplotypes observed in a 40-kb region of Chromosome 1 (between SNPs
rs12085605 and rs932087) where there is no evidence for recombination
(for no pair of SNPs are all four possible combinations of alleles
observed), with the location of polymorphic mutations indicated by
circles. The lower part of the figure indicates the relative frequency of
each haplotype in the sample from each of the three panels (in greyscale,
with white indicating 0% and black indicating 100%). The dotted line in
the genealogy indicates a branch of the tree that is not present in the
CEU sample and whose removal results in perfect association between
SNPs rs12085824 and rs11205476.
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High-frequency haplotypes can cross recombination
hotspots. As stated above, within a population, associations
between alleles separated by large genetic (recombination)
distances are consistently low. But how large a distance is
large? For example, is a single recombination hotspot
sufficient to break down all associations? Put another way, if
we are interested in tagging variation, should we break the
genome into regions separated by recombination hotspots, or
can tagging across hotspots ever be effective?

The answer is fairly straightforward. Recombination
hotspots are rarely strong enough to remove all allelic
association across them. Often, and particularly in the CEU,
CHB, or JPT population samples, we find common haplotypes
(at frequency of 10% and higher) that span recombination
hotspots. Figure 2 demonstrates the relationship between
common haplotypes and recombination rates in the
ENCODE region on Chromosome 7q31.33 (data from [15]). As
might be expected, haplotypes are considerably longer in
CEU and CHB þ JPT than in the YRI sample, reflecting the
effect historical bottlenecks can have in reducing haplotype
diversity and creating large haplotypes that take many
hundreds of generations to be broken up by recombination.
What is striking is that only one hotspot out of the six
identified in the region is sufficiently hot to break all
common haplotypes. Actually, we should not be particularly
surprised by this result. At the hottest recombination hotspot
identified across the autosomes, we would expect only one

cross-over event in 114 meioses (a genetic distance of 0.9 cM),
and at the ‘‘average’’ hotspot we would expect a
recombination event every 1,300 meioses (0.075 cM).
Untaggable SNPs typically, but not always, occur in

recombination hotspots. No matter how hard you try, for
certain SNPs there is just no other variant in the human
genome that is in sufficient association to work effectively as
its tag. Such ‘‘untaggable’’ SNPs are only problematic for
association studies if you don’t know where they are
(otherwise they can just be included in genotyping studies).
However, because even Phase II of the HapMap project will
not type every SNP in the genome, it is important to learn
about the distribution of such SNPs. In particular, can we
predict where they might occur?
To answer this question we need to turn to the HapMap

ENCODE project. This refers to a study within the project
that resequenced 500 kb from each of ten ENCODE regions
in 16 chromosomes from each analysis panel (i.e., a total of 48
chromosomes), followed by genotyping of all identified SNPs
in the entire HapMap sample. While this does not provide
complete ascertainment, it is expected to have identified
almost all common (minor allele frequency . 5%) SNPs in
each region (the average density of common SNPs is 1.5 per
kilobase). A very high proportion of all common SNPs have at
least one highly efficient potential tag (r2 � 0.8; 92% in CEU,
90% in CHB þ JPT, and 80% in YRI), and the figures get
better if you allow for less-efficient tagging and/or a higher
threshold on minor allele frequency. However, across the ten
ENCODE regions, a handful of really high frequency SNPs
(minor allele frequency . 25%) have no tags at all (maximum
r2 , 0.2; 11/3,261 in CEU, 12/3,270 in CHBþ JPT, and 20/2,961
in YRI).
What might cause a really common SNP to be untaggable?

One obvious possibility is that these SNPs lie in the middle of
recombination hotspots. Figure 3 shows the location of the
untaggable SNPs in two of the ENCODE regions, along with
the estimated recombination rate profile. In the region on
Chromosome 2q37.1, all untaggable SNPs fall in the middle of
recombination hotspots. This is also true for two of the four
untaggable SNPs in the region on Chromosome 7q31.33, but
we need a different explanation for the other two in this
region. One possibility is just chance. As seen above, even if
there is no recombination, genealogical structure can lead to
differences in allelic association between populations, and
neither of these untaggable SNPs is completely untaggable in
all populations. It is also possible that these SNPs might be
hypermutable sites (such as methylated cytosine–guanine
dinucleotides), or that they are hotspots of gene conversion,
or that they have a high error rate (all of which would lead to
low allelic association). Whatever the cause, the conclusion is
that untaggable SNPs, while concentrated in recombination
hotspots, are not restricted to them.
Regions of unusual genetic variation point to interesting

biological features. There is great heterogeneity across the
genome in terms of patterns of genetic variation. Some of this
heterogeneity is due to variation in factors such as mutation
rate and recombination rate. Some of this heterogeneity
arises because of the stochastic properties of mutation and
genealogical history. But there are also other forces such as
natural selection and genomic features such as inversions that
may influence local patterns of variation. How can we look
for the effects of such factors? There are two approaches.

DOI: 10.1371/journal.pgen.0010054.g002

Figure 2. Patterns of Haplotype Structure and Recombination in the

HapMap ENCODE Region on Chromosome 7q31.33

The estimated recombination rate (in centimorgans per megabase) is
shown as a dark blue line, with statistically significant recombination
hotspots (see [15] for details) as grey lines. For each analysis panel, each
non-redundant haplotype with a frequency of at least 10% is
represented by a horizontal line between the starting and ending SNPs
(see [15] for details of methodology); the vertical height of these lines is
arbitrary. Note that only one of the six hotspots is sufficiently strong to
break all common haplotypes.
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Either we can try to predict what we would expect to observe
under models with and without such effects [23,24], or we can
simply look at the empirical distribution of statistics of
genetic variation and take as candidate regions those showing
extreme or unusual patterns. The difficulty of the first
approach is that accurately modelling human variation (and
SNP ascertainment) is probably impossible. The difficulty of
the latter approach is that there is no guarantee that
empirically unusual patterns point to biologically interesting
features.

However, it is possible to validate empirical approaches by
asking whether regions where independent evidence points
to biological interest are outliers in terms of genetic variation
(or alternatively identify the statistics that identify such
regions as unusual). The good news is that several genes or
features for which biological interest is known do stand out as
being unusual in the HapMap data in some sense. For
example, the lactase gene (LCT, associated with lactose
tolerance) has one of the highest relative extended haplotype
homozygosity (rEHH [25]) scores in the CEU population, as
does the beta-globin gene (HBB, associated with protection
against Plasmodium falciparum malaria) in the YRI population.
The HLA region (associated with resistance to multiple

infectious diseases [26]) is one of a handful of gene clusters
across the genome where there are haplotypes at frequencies
of 1% across the combined population sample that span over
500 SNPs and more than 1cM. The known polymorphic
inversion on Chromosome 17 [27] stands out as having the
greatest number of SNPs in complete association (66 SNPs
with r2¼ 1 in Phase I HapMap) in the entire genome, and
there are only 33 nonsynonymous SNPs across the Phase I
HapMap that show as much population differentiation as the
SNP rs12075 typed in the Duffy gene (FY, associated with
protection against P. vivax malaria). The implication of these
findings is that other genomic regions with similarly unusual
patterns of variation are candidates for biologically
interesting loci. Of course, some may have such extreme
statistics purely by chance, and genotyping projects are likely
to miss certain features (such as high or low genetic diversity
and rare mutations) that are informative about other
biologically interesting loci.
Another question we can ask is whether genes previously

reported as showing evidence for the action of historical
selection (because they do not conform to the expectations of
statistical models that assume neutrality) are also unusual
within the empirical, genome-wide distribution. Table 1
shows the value of two selection statistics (Tajima’s D [28] and
Fay and Wu’s H [29]) that are commonly used to infer the
action of historical selection from genetic variation for 19
genes computed from the HapMap data (in 30-SNP windows
around the midpoint of each gene). Because of the
ascertainment bias in the frequencies of SNPs chosen for
genotyping, we do not expect either statistic to follow the
standard neutral distribution. However, we can ask whether
these genes fall within the tails of the empirical distribution
(computed from regions at least 30 kb from known genes) or
within the tails of the empirical distribution of regions
matched for local recombination rate (the variance of
selection statistics is influenced by recombination rate such
that more extreme values are expected in regions of low
recombination [30]).
Of the 19 genes with previous evidence for historical

selection, 12 show an unusual pattern of genetic variation in
at least one population (defined as having a value lying in
either the bottom 5% or top 5% of empirical values).
Superficially, this result suggests that statistical tests based on
rejecting a simple population genetics model are effective at
detecting genes of interest. However, for 114 tests, we might
expect 11 to lie in either the top or bottom 5% of
observations, compared to the 17 observed. Another concern
is that genes of known functional and selective importance,
such as Duffy and CD40 ligand, do not fall in the tails of the
empirical distribution of Tajima’s D and Fay and Wu’s H
statistics and others, such asMMP3, hemochromatosis (HFE), and
aldehyde dehydrogenase 2 (ALDH2) show patterns that are
unusual, but not indicative of the action of recent selective
sweeps.
There are two main conclusions from these analyses. First,

that biologically interesting loci often do have unusual
patterns of genetic variation, but that there is no single way of
measuring ‘‘unusual’’ that is uniformly powerful for detecting
the action of natural selection. Second, that rejection of
neutral evolutionary models is no guarantee that the locus is
unusual when compared to the rest of the genome. One of the
great strengths of the HapMap data is that they will provide

DOI: 10.1371/journal.pgen.0010054.g003

Figure 3. The Relationship between Recombination Rate, Recombination

Hotspots, and the Location of Untaggable SNPs

For two HapMap ENCODE regions the estimated recombination rate
(dark blue line) and the location of statistically significant hotspots (grey
lines) are shown along with the location of SNPs that are untaggable in
the YRI (green) CEU (red), or CHBþ JPT (purple) panels. Note that most,
but not all, untaggable SNPs occur in recombination hotspots.
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an alternative, empirical basis on which to assess how unusual
the pattern of variation is at a given locus. However, it will
still be many years before we know how reliable ‘‘looking in
the tails’’ is as an approach to identifying genes of selective
and functional importance.

Conclusions

Integrating our knowledge about gene function, genome
structure, chromatin organisation, recombination rate,
mutation processes, and evolutionary history to provide a
coherent understanding of the structure of the human
genome and human genetic variation is a task that is just
starting. It is also a task that has been greatly aided by the
HapMap project with its unprecedented view of SNP
variation, and there is no doubt that researchers will be
uncovering fascinating patterns in the data for years to come.
As the subsequent phases of the project progress, we can also
expect to gain an even more detailed view of the differences
between our genomes and the evolutionary and biological
forces that have made us. &
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