
https://doi.org/10.1177/1759720X20969262 
https://doi.org/10.1177/1759720X20969262

Ther Adv Musculoskel Dis

2020, Vol. 12: 1–21

DOI: 10.1177/ 
1759720X20969262

© The Author(s), 2020.  
Article reuse guidelines:  
sagepub.com/journals-
permissions

Therapeutic Advances in Musculoskeletal Disease

journals.sagepub.com/home/tab 1

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License  
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
Long bone fractures in childhood are common,1 
but early identification of pathological causes of 
bone fragility is important for the identification of 
any hidden vertebral fractures, prevention of 
future fractures and screening for associated com-
plications. Understanding of normal growth, 
puberty and the developing skeleton is needed to 
accurately make this assessment.

Definition of paediatric osteoporosis
In 2013, the task force convened by the 
International Society of Clinical Densitometry 
(ISCD) produced Paediatric Positions that define 
paediatric osteoporosis.2,3 Based on these posi-
tions, osteoporosis in children is defined by the 
presence of a clinically significant fracture [i.e. 
vertebral fracture (VF)] or a significant fracture 
history and a low bone mineral density (BMD). 
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These positions emphasise the importance of rec-
ognising VFs that can be asymptomatic, or can 
present even with a normal bone density. Below 
are the official position statements for the defini-
tion of osteoporosis:

1. The finding of one or more vertebral com-
pression fractures is indicative of osteopo-
rosis in the absence of local disease or high 
energy trauma regardless of the BMD 
z-score.

2. In the absence of VFs, the diagnosis of oste-
oporosis is indicated by both the presence 
of a clinically significant fracture and BMD 
z-score ⩽−2. Clinically significant fractures 
are either:
- Two or more long bone fractures by age 

10 years;
- Three or more long bone fractures at 

any age up to 19 years.

Recently, the strict use of ISCD criteria to define 
osteoporosis in children has been challenged. A 
more contemporary view suggests taking into 
account further characteristics, including under-
lying condition and fracture risk, use of gluco-
corticoids, signs of genetic disorder, clinical 
features of fracture including site, BMD trajec-
tory, etc.4 These are nuances of osteoporosis 
diagnosis encountered in clinical care that are 
not definitively tackled by the current ISCD 
criteria.

This article gives an overview of the definition of 
primary and secondary osteoporosis in children/
young persons, and the diagnosis, management 
and follow up of children/young persons with 
osteoporosis.

Pathophysiology
In childhood, bone mass, and to a large extent, 
strength, is determined by accrual of new bone 
(growth) and by remodelling of existing bone. 
Three key specialised cells enable the skeleton to 
establish and maintain bone strength: bone form-
ing osteoblasts, bone resorbing osteoclasts and 
regulatory osteocytes that sense and feedback 
regulatory signals. Osteoblasts and osteoclasts are 
coupled tightly in the form of remodelling units, 
which renew and repair the bone constantly. 
Signalling between all three units is important in 
skeletal integrity. Compromise of this signalling 
can result in altered bone strength but can also be 
a target for pharmacological manipulation. A key 

signalling pathway is the RANK (receptor activa-
tor of nuclear factor K beta), RANKL (RANK 
ligand) and OPG (osteoprotegerin) pathway. 
RANKL is released from osteoblasts and osteo-
cytes and, upon activation of RANK, induces 
osteoclast differentiation. Osteoblasts also express 
OPG, which is a soluble inhibitor to RANKL. 
Thus, the balance of RANKL and OPG deter-
mines the differentiation of osteoclasts and subse-
quent resorption.5 In children, there is a net 
increase in bone mass with deposition of bone by 
osteoblasts being greater than resorption by oste-
oclasts.6 In osteoporosis, this balance is disrupted 
due either to primary genetic causes or the impact 
of secondary causes, resulting in insufficient bone 
mass and suboptimal resilience to withstand 
mechanical stress.

Primary osteoporosis
Primary osteoporosis in children covers a range of 
bone fragility conditions that have a genetic ori-
gin. With an incidence of 1:15–20,000 births, the 
most common form of primary osteoporosis in 
children is osteogenesis imperfecta (OI),7 which 
comprises a group of disorders characterised by 
abnormalities in type I collagen synthesis or pro-
cessing. However, it is now well known that the 
bone fragility in OI and other primary osteoporo-
sis derives not only from abnormalities in type 1 
collagen, but also from multiple other factors 
including high bone turnover, osteoblast dysfunc-
tion, matrix abnormalities and abnormal miner-
alisation.8 The diagnosis of OI is made on clinical 
history and examination, and is supported by 
positive family history and other investigations, 
such as imaging techniques, genetic analysis and 
histology. Genetic analysis for known genes is 
helpful but not diagnostic.

OI ranges from mild to severe, based on the 
degree and frequency of fractures, deformities 
and growth retardation. The Sillence initial clas-
sification from 1979 of four types of OI (I–IV) 
based on severity of disease has now been 
expanded to include novel forms based on the 
underlying mutations that are listed on the 
Online Mendelian Inheritance of Man (OMIM; 
http://www.ncbi.nlm.nih.gov/omim/) database.9,10 
However classification, mixing gene-based OI 
types with phenotypically defined types has been 
controversial.11

Other causes of primary osteoporosis include hom-
ocystinuria, osteoporosis-pseudoglioma syndrome 
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(OPPG), primary osteoporosis due to mutations 
in WNT1 and PLS3 genes, geroderma osteodys-
plasticum, RAPADILINO syndrome, gnathodia-
physeal dysplasia, spondylo-ocular syndrome, 
cleidocranial dysplasia, Ehlers–Danlos Syndrome 
and Hajdu–Cheney syndrome (HCS).8 A more 
inclusive list is given in Table 1.

Idiopathic juvenile osteoporosis (IJO) is a diagno-
sis of exclusion.12 It classically presents with ver-
tebral and metaphyseal fractures in the prepubertal 
period. Patients have reduced BMD and reduced 
trabecular bone density measured on dual-energy 
X-ray absorptiometry (DXA), quantitative com-
puted tomography (QCT) and peripheral QCT 
(pQCT).13,14 Bone biopsies of these children clas-
sically show a low turnover osteoporosis with 
reduced bone formation and increased bone 
resorption, suggesting decreased ability of cancel-
lous bone to adapt to the increasing mechanical 
needs during growth.13–15 The location of the 
fractures is likely to reflect the areas in which 
growth is occurring. Growth is not compromised 
but, with decreased osteoblast function, bone 
mineralisation, and thus strength, is. With ongo-
ing secondary mineralisation, which is a slower 
process,16 the bones are able to then mineralise, 
which may explain the phenotype. In most cases, 
there is spontaneous remission after puberty, but 
some might remain with residual deformities. 
Genetic exclusion of other causes of idiopathic 
osteoporosis is important, as children with hete-
rozygous loss-of-function mutations in LRP5 
were previously thought to have IJO. Identification 
of the mutation in the children also led to the 
diagnosis of osteoporosis in their parents.17

Secondary osteoporosis
Secondary osteoporosis is the result of chronic 
conditions or their treatment,18 for example with 
corticosteroids, anticonvulsants and proton pump 
inhibitors (PPI), that have been found to affect the 
bone mineral density and/or cause fractures.19–22 
With the advances of medicine, the life expectancy 
of patients with chronic conditions has been 
extended significantly. Therefore, the longer term 
effects of morbidity have become more important, 
especially since there has been an increase in the 
number of children presenting with secondary 
osteoporosis. The most common causes are 
immobility, inflammatory conditions treated with 
steroids, Duchenne muscular dystrophy (DMD) 
and other myopathies, leukaemia and other 
 cancers, hypogonadism and thalassaemia.

Disuse osteoporosis. The Mechanostat Theory, 
initially proposed by Frost,23 provides the basis 
on how development of bone strength in child-
hood is driven by mechanical loads. Loss of these 
loads leads to loss of bone tissue strain and results 
in reductions in bone mass and, in some cases, 
disuse osteoporosis. Nonambulation causes sig-
nificant decrease of BMD.24 It also significantly 
impacts bone geometry, causing decreased peri-
osteal circumference,25 which is the main reason 
these children continue to fracture despite BMD-
altering treatments like bisphosphonates. The 
most common form of disuse osteoporosis is 
among children with cerebral palsy (CP). The 
prevalence of fractures in CP ranges between 6% 
and 50%, and incidence increases with severity.26 
The typical site of these fractures is in the distal 
femur and proximal tibia. Not all children with 
low BMD will require treatment, and prophylac-
tic bisphosphonate treatment is difficult to justify, 
but can be considered if they are due orthopaedic 
surgery that requires better bone quality. Based 
on the latest consensus statement, they should be 
treated if they sustain two low trauma long bone 
fractures (not including hand, feet) or VF. Dura-
tion of treatment varies between centres with a 
minimum of 12 months. Bisphosphonates should 
be used only after optimising vitamin D status, 
calcium intake, physical therapies to maximise 
mobility, and gonadal hormone treatment of 
absent, delayed or arrested puberty or late-pre-
senting hypogonadism.27

Effect of steroids. The Steroid Induced Osteopo-
rosis in the Paediatric Population (STOPP) Con-
sortium – a longitudinal prospective study from 
Canada that followed children with chronic dis-
eases treated with glucocorticoids – demonstrated 
the effect of steroids on the skeleton for various 
different conditions.28–30 The follow up of 186 
children treated for acute lymphoblastic leukae-
mia (ALL) showed that 77.3% had complete 
reshaping of vertebral fractures without any treat-
ment with bisphosphonates. Vertebral fractures at 
baseline (regardless of severity) and glucocorti-
coid exposure were the strongest predictors of 
both VF and non-VF risk in childhood ALL. 
Importantly, there was a 32.5% cumulative inci-
dence of VF from baseline to 6 years’ follow up, of 
which 39% were asymptomatic. Older children 
and those with more severe vertebral collapse at 
diagnosis were more likely to have persistent ver-
tebral deformity following VF. Therefore, the 
authors concluded that treatment should focus on 
these children.28 The same consortium followed 
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children treated with steroids for rheumatoid 
conditions and showed that increase in average 
daily glucocorticoid (prednisone equivalents) 
dose was associated with an increased VF risk. 
Almost one-half of the children were asymptom-
atic, and therefore would have been undiagnosed 
in the absence of radiographic monitoring, stress-
ing the importance of surveillance of these popu-
lations with DXAs and vertebral fracture 
assessments (VFAs—see later section) or lateral 
spinal radiographs.29

Children with DMD and other myopathies 
requiring high dose steroid treatment are also at 
risk of developing osteoporosis that can often pre-
sent with asymptomatic VF or long bone frac-
tures.31,32 The occurrence of VF ranges from 15% 
to 75% after a mean duration of 6.3 years on 
treatment, and the incidence of long bone frac-
tures is 24% in treated and 26% in untreated 
patients.31 This is due to the combination of long-
term high-dose steroid use, immobility and 
delayed puberty. If VF are left untreated, they can 
lead to a ‘vertebral fracture cascade’ that impacts 
significantly on their quality of life.33 DMD Care 
Considerations Working Group published guid-
ance in 2018 advising for early monitoring of 
bone health with DXA and either lateral spinal 
radiographs or VFA and treatment with bisphos-
phonates when indicated.32

Effect of proton pump inhibitors. A large popula-
tion-based study in the United States (US) showed 
that proton pump inhibitors (PPIs) are associated 
with increased fracture risk in young adults when 
they are given at higher intensity or when total 
exposure to them is increased, but did not manage 
to show any dose-response effect to children or 
higher fracture risk.34 However, another US study 
and a nationwide register-based cohort study from 
Sweden showed that PPI use was associated with 
a small but significant increased risk of any frac-
ture in children; the effect was greater after 
1 month and even greater after 1 year of use.35 The 
most common sites for fractures were lower 
extremity, rib and spinal fractures.35

Inflammatory bowel disease. Paediatric inflamma-
tory bowel disease (IBD), especially Crohn’s dis-
ease (CD), is commonly associated with poor 
skeletal health, due to the direct effects of chronic 
inflammation, prolonged use of glucocorticoid 
(GC), poor nutrition, delayed puberty and low 
muscle mass.36,37 At diagnosis, children with IBD 
had lower BMD z-score compared with controls,38 

and those with CD had also reduced trabecular 
volumetric BMD, thin cortices of the diaphysis 
and on pQCT.39 Despite that, the incidence of VF 
was low but not absent,36,39,40 especially when 
patients are treated with corticosteroids,41 so care 
of all paediatric patients with IBD should include 
an evaluation of BMD. Regarding long bone frac-
tures, there is no evidence of increased risk in chil-
dren with IBD.36,42,43

Puberty. The onset of puberty is associated with a 
significant increase in bone mass. The maximal 
accumulation of aerial BMD (aBMD) at the lum-
bar spine and at the femoral neck or mid-shaft 
occurs in the last stages of puberty in both sexes, 
but especially in boys.6 Sex steroids can act on the 
skeleton through direct stimulation of their recep-
tor in bones and indirect activation of the GH-
IGF-I axis by oestrogens, leading to triggering of 
longitudinal bone growth. Beside their bone-ana-
bolic actions, androgens and oestrogens both exert 
anti-resorptive effects. The anti-resorptive action 
of oestrogens appears to be mediated by the down-
regulation of cytokines, which are also involved in 
osteoclast formation.44 A study by Ferrari et  al. 
showed that girls with fractures had decreased 
peak bone mass gain in the axial and appendicular 
skeleton and reduced vertebral bone size, indicat-
ing that childhood fractures may be markers for 
low peak bone mass and persistent bone fragility.45 
The incidence of fracture at the distal end of the 
radius or ulna is higher in children between the 
ages of 10 and 14 years than in prepubertal chil-
dren or young adults, underlying the effect of 
puberty – a period of rapid growth – on bones.46 
The asynchrony between BMD accumulation and 
height gain is likely to play a role, as skeletal vol-
ume is increasing at a faster rate than the mineral-
ization process. Exposure to oestrogens and 
testosterone has a protective effect on BMD and is 
associated with a reduced incidence of atraumatic 
fractures. Delayed puberty as part of a chronic 
condition like DMD, IBD, thalassaemia or in cases 
of primary or secondary pubertal arrest (e.g. 
Turner syndrome, hypogonadotrophic hypogonad-
ism, ovarian failure, Klinefelter syndrome, anorexia 
nervosa) can result in reduced bone mineral den-
sity and subsequent increased rate of fractures.47

Thalassaemia major. The pathogenesis of osteopo-
rosis in thalassaemia major is polyfactorial and 
involves bone marrow expansion due to increased 
erythropoiesis and endocrine dysfunction second-
ary to excessive iron loading, including delayed 
puberty and hypoparathyroidism, this results in 
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increased osteoclastic activity and insufficient 
osteoblastic bone formation.48–50 The reported fre-
quency of osteoporosis, even in well treated patients 
with thalassaemia major varies from 13.6% to 
50%. The recommendations of the International 
Network on Growth Disorders and Endocrine 
Complications in Thalassaemia (I-CET) for diag-
nosis and management of osteoporosis in thal-
assaemia major need to be followed.51 An adult 
study showed that vertebral bone density measure-
ments by DXA are influenced by hepatic iron over-
load in non-compliant with chelation therapy 
patients, particularly in patients with a liver iron 
concentration >5000 μg Fe/g wet tissue, so that 
must be taken into account when interpreting 
DEXA results.52

Investigations

Bone biochemistry
After careful history and examination, baseline 
investigations for calcium, phosphate, magne-
sium, ALP, PTH, Vitamin D, urinary calcium to 
creatinine ratio should be strongly considered. In 
most cases these markers will be normal, but pri-
mary disorders of bone metabolism must be 
excluded and bone health should be optimised in 
children with fragility fractures. Furthermore, 
normal calcium and vitamin D, as well as normal 
bone profile, is essential before initiating treat-
ment for osteoporosis. There are limitations in 
the use of calcium to creatinine ratio. Levels can 
alter depending on whether the urine are dilute or 
concentrated. Also, creatinine levels may be 
raised secondary to various factors, such as renal 
impairment, destruction of muscle, high dietary 
intake of meat, hypothyroidism, testosterone use, 
or reduced secondary to reduced muscle mass, 
malnutrition, vegetarian diet, giving falsely high 
or low ratio levels.

Dual-energy X-ray absorptiometry
At the 2013 update of the position paper of the 
ISCD the committee concluded that DXA is the 
preferred method for assessment of areal bone 
mineral content (BMC) and density (aBMD) and 
that estimating aBMD should be part of the over-
all assessment for children at elevated risk of a 
clinically significant fracture.2 Measurements of 
total body less head (TBLH) and/or posterior-
anterior lumbar spine aBMD or BMC are recom-
mended.53 The 2019 ISCD position added the 
use of proximal femur, distal lateral femur and 

55% radius DXA measurements, if reference data 
are available. Proximal femur DXA measure-
ments can be used for assessing children with 
reduced weight bearing, or in children at risk for 
bone fragility who would benefit from continuity 
of DXA measurements through the transition 
into adulthood. DXA measurements at the 33% 
radius may be used clinically in ambulatory chil-
dren who cannot be scanned at other skeletal 
sites. Lateral distal femur (LDF) DXA measure-
ments, correlate well with increased lower extrem-
ity fragility fracture risk in non-ambulatory 
children and can be used in the presence of non-
removable artefacts, scoliosis, and positioning 
difficulties.54 The advantages of DXA are low 
radiation dose, short scan time and widespread 
availability. DXA is a two dimensional measure-
ment, so it can underestimate BMD in children 
with short stature or growth delay and overesti-
mate BMD in tall children. Therefore, the meas-
urements should be size-corrected using the 
appropriate methods and bone mineral apparent 
density (BMAD) for i-DEXA Lunar scanners or 
height adjusted Z-score (HAZ) for Hologic scan-
ners are the preferred methods to correct for short 
stature.55–58 Efforts have been made to create ref-
erence range data for children.59,60 DXA is gener-
ally not used in children less than 5 years due to 
movement artifact and lack of reference data.

Lateral spine radiograph
Lateral spine radiographs can diagnose VF, but 
can sometimes be of limited quality, depending 
on breathing technique and quality of machine, 
especially at the thoracic spine, due to low BMD 
and overlying ribs and lungs. The main draw-
back, though, is increased radiation exposure. 
Given that VF are a main manifestation of osteo-
porosis in primary and some secondary osteo-
porotic conditions, and that routine screening is 
necessary, the use of a low-radiation method to 
detect VF is pressing. These facts contribute to 
the need for an effective, low-radiation technique. 
EOS imaging is a low-dose, X-ray technology that 
can simultaneously take full-body, frontal and lat-
eral images of the skeletal system of a patient, 
using significantly less radiation than traditional 
X-rays or CT scans. It is not used widely yet, but 
could also be a potential diagnostic method.

Vertebral fracture assessment
The addition of lateral spine imaging technology 
to the densitometer, for VFA, represented a major 
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advancement in the ability to diagnose VF and 
osteoporosis.61 VFA with DXA may reach a high 
level of accuracy for diagnosing VF.62,63 The latter 
can cause significant pain, but can often be asymp-
tomatic and remain undiagnosed; therefore, VFA 
can be a very useful screening tool for VF. VF are 
evaluated using the modified Genant semiquanti-
tative method.64 The automated vertebral mor-
phometry software can be inaccurate, especially in 
very low bone density and, whilst this may be use-
ful in a research setting, the clinical reporting of 
VF should be done by a specialist with significant 
experience in VFA reporting. A recent study 
assessed the use of DXA VFA in children and 
compared that against spinal radiographic assess-
ment (RA) for the identification of VF in children. 
It demonstrated that VFA is as good as RA for 
detecting moderate and severe VF.65 The ability 
to obtain the image at the same time the bone 
density is done, with significantly lower radiation 
exposure than with spine radiography, better 
image quality (Figure 1) and at a lower cost makes 
VFA a preferred method for the detection of VF in 
children,61,65 especially since there is an increased 
number of conditions like OI, DMD and thalas-
saemia that require routine screening regularly for 
asymptomatic VF. Based on the 2019 update of 
the ISCD position statement, following VFA, 

additional spine imaging should be considered in 
the following circumstances: (a) vertebrae that are 
technically unevaluable by VFA (i.e. not suffi-
ciently visible, movement artifact and scoliosis), 
provided the detection of a VF would change clin-
ical management; (b) assessment of a single, 
Genant Grade 1 VF, if confirmation of a Grade 1 
VF alone would change clinical management; (c) 
radiographic findings that are not typical for an 
osteoporotic VF (e.g. suspected destructive 
inflammatory or malignant processes, congenital 
malformations, acquired misalignments or 
dislocations).54

Quantitative computed tomography and 
peripheral QCT
QCT and pQCT can describe the geometry of 
both trabecular and cortical bone, but also meas-
ures the BMD (and muscle density), along with 
muscle geometry [diaphyseal and cortical cross-
sectional area (CSA)]. It is specifically useful for 
children with spinal deformities, contractures or 
metallic implants, where DXA imaging can prove 
challenging. pQCT has much smaller radiation 
compared with QCT and is, therefore, preferred.66 
pQCT measured parameters such as volumetric 
BMD, cortical area and strength–strain index have 
been related to fractures in children.67 High-
resolution scanners (HRpQCT) have low radia-
tion dose, give clear images and can safely assess 
important elements of bone microstructure in ado-
lescents and children.68,69 An attempt to create ref-
erence values by different groups has been partially 
successful, though current reference data should 
be applied only in the centers where the data have 
been developed.70 Both pQCT and HRpQCT are 
used in a few specialised centres around the world, 
mostly as part of research, and need highly quali-
fied personnel to interpret their data.66

Panoramic mandibular X-ray
There seems to be a causal relationship between 
osteoporosis and periodontitis that has not been 
clarified. It has been reported that osteoporosis 
and mandibular cortical index are associated with 
horizontal alveolar bone loss (periodontitis). The 
mandibular cortical width has the best specificity, 
whereas all indices had variable sensitivity reported 
by different studies. Though, currently, panoramic 
radiograph is not a recognised tool for diagnosing 
osteoporosis and is used only as part of research, 
its reliability in screening/detecting osteoporotic 
patients has been frequently investigated and cited.71

Figure 1. Plain spine radiograph (a) and VFA view on 
Lunar i-DXA (b) on the same patient.
DXA, dual-energy X-ray absorptiometry; VFA, vertebral 
fracture assessment.
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Trans-iliac bone biopsy with tetracycline 
labelling
Transiliac bone biopsy gives qualitative and 
quantitative data of bone samples. This is the 
only site for which paediatric histomorphometric 
reference data have been published.72 Dynamic 
parameters of bone cell function can be measured 
when patients have received tetracycline label-
ling. A bone biopsy is helpful in understanding 
the underlying histological process for bone dis-
ease, when diagnosis in not straightforward or in 
differentiating types of osteoporosis. Examples 
are cases of frequent low impact fractures with 
normal bone density, differentiation between var-
ious types of OI or in unexplained mechanism of 
fractures. Since trans-iliac bone biopsies are inva-
sive, and require a short but general anaesthesia, 
they are not recommended for monitoring of 
treatment outside of highly specialized centres, 
and research protocols.

Bone turnover markers (bone formation and 
bone resorption markers)
Bone turnover markers (BTMs) have been used 
frequently in the adult populations in order to 
assist with the diagnosis and management of oste-
oporosis. However, their use in the paediatric 
population is limited. Children have significantly 
elevated bone marker levels due to high skeletal 
growth velocity and rapid bone turnover during 
childhood growth.73–75 Osteocalcin and β-
crosslaps (β-CTx), have been used in assessing 
bone metabolism in children with OI and were 
reduced after treatment with pamidronate.76 
Delayed puberty was also found to affect levels of 
BTMs, as it affects growth.77 OPG and total 
s-RANKL are thought to be indicative of lower 
osteoblast and increased osteoclast signalling.78 
In children with clinical bone fragility, BTMs cor-
related with each other, but not with lumbar 
BMD Z-score. While they were not reliable pre-
dictors of degree of low BMD, the bone markers 
showed suppression during bisphosphonate ther-
apy and may be helpful in monitoring the response 
to therapy.79 Sensitivities and predictive values of 
single markers are still poor.74,80 Paediatric refer-
ence ranges need to be used.81,82

Genetics
With the advances in genetic testing, there is 
enhanced availability and understanding of the 
multiple genes associated with bone fragility. 

Obtaining a definite genetic diagnosis can help 
confirm clinical suspicion and direct management 
of osteoporosis. It also enables cascade screening 
of other family members, genetic counselling and 
early detection of condition, leading to preventive 
treatment.83 It is particularly helpful in children 
with frequent fractures, but no other extra-skele-
tal features of OI or of other primary osteoporosis 
syndromes; however, the likelihood of finding a 
mutation is relatively small (28%).84 It can also be 
performed in cases where non-accidental injury is 
being investigated and when diagnosis is not 
straightforward. Autosomal dominant mutations 
to COL1A1 and COL1A2 genes should be sought 
first, as they cover 97% of patients with OI type 1 
and 77% of moderate to severe OI. As a next step 
a panel of genes associated with primary osteopo-
rosis should be used.84,85 Whole exome sequenc-
ing can be used to detect rarer genes.86 A rapidly 
increasing number of whole-genome sequencing 
association studies are being conducted to iden-
tify rare variants associated with complex traits 
and diseases, so this might be the future of genet-
ics of rare diseases.

Management

General approach
Management of osteoporosis requires a patient-
centred multidisciplinary approach. The team 
should include doctors (including geneticists), 
nurses, physiotherapists (PT), occupational ther-
apists (OT), psychologists and social workers, but 
there should also be access to dentists, audiolo-
gists, orthopaedic and spinal surgeons, neurosur-
geons and a pain management team. PT and OT 
are of outmost importance for optimising inde-
pendence in mobility and daily living. Needs vary 
depending on the age and severity of each case. In 
severe neonatal cases, respiratory support might 
be necessary, as rib fractures can compromise 
breathing. It is also important to support the head 
and spine until babies have adequate muscle tone, 
and encourage prone positioning and sitting in 
inclined seats in order to prevent scoliosis and 
brachycephaly. In severe cases parents should 
receive instructions on safe handling of the baby 
soon after diagnosis in order to prevent future 
fractures. Various aids from splints and insoles to 
wheelchairs need to be provided, as well as pencil 
holders and wrist splints to help with hypermobil-
ity. Encouragement of early mobility as soon as 
possible after a fracture is of outmost importance. 
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Children with dentinogenesis imperfecta need a 
6-monthly dental review and good dental hygiene 
should be promoted.

Patients with osteoporosis should also be advised 
to avoid contact or high impact sports and activi-
ties that can cause or deteriorate VF, such as 
horse-riding and trampolining.

It is important to maintain sufficient levels of vita-
min D and calcium in accordance with the cur-
rent guidelines,87 as insufficiency can impair the 
response to bisphosphonate therapy and increase 
the risk of hypocalcaemia after treatment. The 
serum 25-hydroxyvitamin D concentrations 
should be maintained above 50 nmol/l.

Secondary prevention of fractures
One of the earliest signs of bone fragility is the 
presence of VF, which in children can often be 
asymptomatic. Therefore, spine fracture surveil-
lance in high risk groups might detect VF at an 
early stage and lead to early intervention and pre-
vent non-reversible damage. Predictors of VF are 
the long term use of corticosteroid, immobility, 
delayed puberty or pubertal arrest, chronic 
inflammation, back pain, reduction in spine 
BMD z-score, thalassaemia with frequent trans-
fusion in children older than 10 years. Children 
with these risk factors should undergo regular lat-
eral spine imaging commencing early on their dis-
ease course.

When assessing treatment or the potential for 
recovery without treatment there are three aspects 
to be considered20:

 • - The severity of bone morbidity, a greater 
number of fractures and greater degree of 
compression, the greater the need to start 
treatment urgently.

 • - The remaining growth potential, as being 
closer to final height reduces the potential 
of vertebral remodelling.

 • - The likelihood of persistent risk factors for 
bone fragility. Children who have resolu-
tion or treatment of their primary disease 
(such as transplant with ALL or diagnosed 
coeliac) may allow healing to occur without 
intervention.

Although a low BMD can assist in diagnosis of an 
osteoporotic condition, the presence of fractures 
and continuing risk are indications for treatment 

and not the BMD value. BMD is, however, used 
primarily for monitoring treatment with 
bisphosphonates.

Medication
The main difference between children and adults 
with osteoporosis is the potential in children not 
only to recover BMD, but also to reshape previ-
ous fractured vertebral bodies,88–90 sometimes 
even without specific osteoporosis treat-
ment.28,91,92 Taking advantage of this period of 
rapid growth can lead to optimal results and pre-
vent future comorbidities of osteoporosis.

Antiresorptives
Bisphosphonates. Bisphosphonates remain the 

main medical treatment, but new drugs are evolv-
ing and various ongoing clinical trials on children 
with osteoporosis might broaden our therapeutic 
choices over the coming years. They are off-label 
worldwide, with the exception of neridronate in 
OI, in Italy.

Bisphosphonates are currently the only recom-
mended medical treatment and the standard of 
care for osteoporosis in children in the United 
Kingdom (UK). They have been used both for 
primary and secondary osteoporosis.93 Bisphos-
phonates are antiresorptive agents that inhibit 
osteoclast activity and suppression of bone turno-
ver.94 Recent studies have demonstrated that 
some beneficial effects of bisphosphonates on the 
skeleton could be due to the prevention of osteo-
blast and osteocyte apoptosis.95

Intravenous pamidronate, neridronate or zole-
dronate are the standard of care in children with 
moderate to severe OI, while bisphosphonate 
treatment remains under consideration in chil-
dren with mild forms of OI and depends on vari-
ous factors, like bone density, number of long 
bone or VF, and remaining growth. A systematic 
Cochrane review of 14 randomised studies on 
bisphosphonates in children concluded that oral 
or intravenous bisphosphonates significantly 
increase bone mineral density in children and 
adults with this condition with similar ability.96 It 
is unclear whether oral or intravenous bisphos-
phonate treatment consistently decreases frac-
tures, though multiple studies report this 
independently,76,97,98 and no studies of intrave-
nous bisphosphonates report an increased frac-
ture rate with treatment. Other studies show no 
decrease in fracture rate despite increase in 
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BMD.99–101 The authors also commented that the 
majority of trials analysed were small and not pow-
ered to show a statistically significant difference in 
many outcome measures, such as mobility, frac-
ture rate and quality of life.96 Furthermore, studies 
on the effect of intravenous bisphosphonates on 
vertebral compression fractures, showed that 
reshaping, which is growth dependent, is better the 
earlier they are started.88,89,102 Unfortunately, 
large-scale, placebo-controlled long-term trials on 
bisphosphonate would be extremely difficult to 
conduct, as it would be unethical to leave children 
untreated, so clinicians need to make decisions 
based on existing evidence.

Risedronate is the most potent oral bisphospho-
nate, and a large trial showed that it increased 
lumbar BMD and decreased the risk of long bone 
fractures, but there was no significant improve-
ment in vertebral shape and in some cases there 
was deterioration.103 A different group showed 
that despite increase in BMD, risedronate treat-
ment did not result in histomorphometric differ-
ences in cortical or trabecular indices.100 In 
another large controlled trial on children with 
glucocorticoid-induced osteopaenia in juvenile 
rheumatic disease, risedronate increased BMD, 
but there the number of VF increased compared 
with the control group and BTMs remained 
unchanged.104

Zoledronate is the most potent bisphosphonate 
treatment, can be given over 30 min and the infu-
sion is repeated 6 monthly. Saraff et al. compared 
the efficacy and treatment costs between zoledro-
nate and pamidronate, and showed that zoledro-
nate is a considerably cheaper alternative to 
pamidronate with comparable efficacy, and a 
more convenient option for patients due to fewer 
hospital visits.105 It is therefore preferred, even 
though many centres still administer pamidronate 
due to lack of experience with zoledronate. There 
is no consensus regarding the dose, frequency 
and duration of bisphosphonate treatment. 
Originally pamidronate was given in a dose of 
0.5–1 mg/kg per day administered over 3 days 
every 3 months,106 but since then shorter and 
lower dose protocols have been adapted.107,108 
Zoledronate was given 3 monthly initially,109 but 
then was found to have similar efficacy when 
given 6 monthly,110 which is the common prac-
tice. The dose ranges from 0.025 mg/kg/day to 
0.05 mg/kg/day.105,109–112 Neridronate is also a 
potent IV bisphosphonate that is given 3 monthly 
at a dose of 2 mg/kg.113–115

Approximately 18–27% of patients receiving first 
doses of IV bisphosphonate experience an acute 
phase reaction (fever, headache, myalgia, arthral-
gia, malaise) or, rarely, vomiting occurring up to 
72 h after the infusion. Transient hypocalcaemia, 
hypophosphatemia and a rise in C-reactive pro-
tein can be observed but are rarely of clinical sig-
nificance. Acute phase reactions are more likely 
to occur in patients with secondary osteoporosis 
(13% of all infusions) – a group who may require 
closer monitoring.112 The incidence is reduced 
approximately 50% by acetaminophen (before 
and for 24–48 h after infusion) and decreases with 
subsequent infusions.116 Hypocalcaemia can be 
more easily counter-regulated when levels of vita-
min D and daily calcium intake before infusion 
are sufficient. In case of hypocalcaemia or when 
history of previous hypocalcaemia after the infu-
sion exists, calcium supplementations is required 
for the next few days after the infusion. In order 
to prevent the acute phase reactions many centres 
administer half the dose for the first infusion.117 
Bisphosphonate use in adult patients has been 
linked to osteonecrosis of the jaw. However, no 
paediatric cases have been reported so far.118,119

In bisphosphonate therapy, metaphyseal sclerotic 
lines of long bones, called zebra lines, are seen on 
X-rays.73–75 These represent periods of the drug 
inhibiting osteoclastic activity and increased bone 
and calcified cartilage with low remodelling activ-
ity.73,120 In adults, there is a documented risk of 
atypical femoral subtrochanteric insufficiency frac-
tures (stress fractures) with long-term bisphospho-
nate therapy.121–123 However, Vuorimies et  al. 
looked at 127 femoral fractures in 24 patients with 
OI and compared the group that was naïve to 
treatment with the ones during bisphosphonate 
treatment and those after discontinuation. The 
pattern of femoral fractures was similar in all 
groups and was not related to bisphosphonate 
dose, but more to the severity of OI.124 Trejo et al. 
came to the same conclusion, showing atypical 
appearance in about a quarter of nondeformed 
femur fractures that occurred in children with OI, 
which was related to severity of OI rather than bis-
phosphonate treatment.125 Pamidronate therapy 
has been also associated with delayed healing of 
osteotomy sites after intramedullary rodding pro-
cedure, but not delayed fracture healing.126 
Maintaining a bisphosphonate infusion-free inter-
val of some months after the osteotomy, and ensur-
ing that there is adequate callous formation before 
the next dose, reduces the chances of delayed heal-
ing.127 A detailed table on bisphosphonate therapy 
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in OI can be found at the 2016 Cochrane review.96 
The authors’ approach of Zoledronate use for pae-
diatric osteoporosis is shown in Table 2.

Denosumab. Denosumab is a far more potent 
inhibitor of bone resorption, but its effects on 
the growing skeleton are not yet well described. 
It is an inhibitor of RANKL that has emerged 
as an important novel therapy for skeletal disor-
ders. It binds with high affinity and specificity 
to RANKL, mimicking the inhibitory effects of 
OPG and resulting in rapid suppression of bone 
resorption.128 The FREEDOM trial studied the 
effects of Denosumab on adults,129 but a large 
scale trial of Denosumab on children with OI is 
still ongoing. Data on children are isolated to case 
series. A large scale phase III randomised, double-
blind, placebo-controlled, parallel-group study to 
evaluate the safety and efficacy of  denosumab in 

paediatric subjects with glucocorticoid-induced 
osteoporosis is ongoing [ClinicalTrials.gov iden-
tifier: NCT03164928], assessing the change of 
lumbar spine BMD Z-score from baseline to 
12 months after administering denosumab 1 mg/
kg BW (up to a maximum of 60 mg) SC every 
6 months. Another multicentre, single-arm study 
to evaluate the efficacy, safety and pharmacoki-
netics of denosumab in children with OI has 
stopped recruiting, but is still ongoing [Clini-
calTrials.gov identifier: NCT02352753]. It is 
studying the effect of burosumab on BMD after 
administering denosumab 1 mg/kg (up to a maxi-
mum of 60 mg) subcutaneously every 3 months 
for a minimum of 12 months, and all subjects 
will receive appropriate calcium and vitamin D. 
There is also an extension study of the previous 
one on children with OI [ClinicalTrials.gov iden-
tifier: NCT03638128].

Table 2. Authors’ approach for use of zoledronate in children with osteoporosis.

(A) Disuse osteoporosis secondary to CP, Retts and similar central neurological conditions (not primary muscle disorders):

 2 years of full dose every 6 months (year 1 and 2 of treatment)

 Then: 1 year of half dose (1/2) every 6 months (year 3 of treatment)

 Then: one quarter (1/4) of the dose every 6 months (after 3 years of treatment)

 If BMAD (height adjusted BMD) is >+2 SDS, change to 1/4 of the dose every 12 months

(B)  Primary bone fragility such as OI—primary muscle disorders such as DMD, or CMD—haematological disorders such as 
Thalassaemia, Sickle Cell Anaemia:

 Full dose every 6 months until BMAD is >0 SDS

 If BMAD is >0 SDS, give half (1/2) dose of zoledronate every 6 months

 If BMAD is >+2 SDS, give one quarter (1/4) dose of zoledronate every 12 months

(C) Conditions where the underlying condition may be controlled or treated such as ALL—IBD—renal transplant:

  If commenced, they should have full dose every 6 months, but the duration of treatment will be individualised based on the 
continuation of steroid treatment, their BMD, pubertal status and their underlying condition.

  Before each infusion vitamin D level ⩾50 nmol/l, normal calcium and renal function is ensured. All patients are admitted for 
the first infusion which is half dose and continue with full dose at the day unit for subsequent ones. Prophylactic paracetamol is 
used to mitigate pyrexia and aches and pains. Treatment is stopped once skeletal maturity is achieved.

Full dose based on age:

  <2 years 0.025 mg/kg max dose: 2 mg 3 monthly

  2–5 years 0.035 mg/kg max dose: 2 mg if <3 years, 4 mg if >3 years 4 monthly

  >5 years 0.05 mg/kg max dose: 4 mg 6 monthly

ALL, acute lymphoblastic leukaemia; BMAD, bone mineral apparent density; BMD, bone mineral density; CMD, congenital muscular dystrophy; CP, 
cerebral palsy; DMD, Duchenne muscular dystrophy; IBD, inflammatory bowel disease; OI, osteogenesis imperfecta; SDS, standard deviations.
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Denosumab has been used in children with OI, 
giant cell tumour, Paget disease, DMD and 
fibrous dysplasia, and was found to cause modest 
increase in BMD and suppress BTMs.130–137 
Nevertheless, its action is of shorter duration 
compared with adults.138 The follow up for 2 years 
of four children with OI type VI that were treated 
with Denosumab showed an increase in BMD, a 
normalisation of vertebral shape, an increase in 
mobility, and a reduced fracture rate.133 The 
same group followed 10 children diagnosed with 
type I, III and IV OI and reported that deno-
sumab significantly improved BMD by week 
48.134 Follow up of this trial cohort used longer 
intervals between injections based on urinary 
bone turnover markers. Despite stable laboratory 
findings for bone resorption markers, patients 
presented with a significant reduction of areal 
BMD during the follow-up year, but there were 
no new VF and vertebral shape further 
improved.139 However, a 23-month-old boy with 
type 6 OI who was treated with denosumab had a 
persistent decline in BMD and continued to frac-
ture over a 12-month treatment period.140

In contrast to bisphosphonates, denosumab’s 
effect on bone turnover is rapidly reversible.128 
Also, discontinuation of denosumab can lead to 
rebound increased bone turnover and severe 
hypercalcaemia in children, as soon as 4 weeks 
after the injection.136,141 This might be related to 
the high baseline bone turnover in children, espe-
cially in conditions like OI. Uday et al. reported 
the first case of jaw osteonecrosis in a child treated 
with Denosumab for giant cell tumour of bone.136 
Denosumab did not seem to adversely affect 
growth plates in a growing child,142 though 
another case report showed sclerotic epiphyseal 
bands that faded with time.143

Anabolics. Various forms of osteoporosis in child-
hood are characterized by low bone turnover (e.g. 
osteoporosis due to neuromuscular disorders and 
glucocorticoid exposure). In these cases antire-
sorptive therapy causes further reduction of bone 
turnover with potential risks, which has led to the 
increased interest in anabolic therapies.

Growth hormone. Growth hormone (GH) 
has been shown to increase bone mineral con-
tent, mainly through increasing muscle area 
and strength–strain index and by changing bone 
geometry in children with GH deficiency.144,145 
However, there is no clear benefit in terms of 
reduced fracture rates and improvement in bone 

mass compared with bisphosphonate treatment in 
children with OI, given that GH increased lumbar 
spine BMD by only 5–7% over the first 6 months 
of therapy.146 Treatment with GH should be lim-
ited to indicated current conditions as the cur-
rent evidence does not support its isolated use for 
osteoporosis.

Testosterone. Bone mineralisation increases 
with age, height and weight through childhood, 
with a significant gain during pubertal devel-
opment. Serum testosterone concentration at 
the age of 12 years is correlated positively with 
a subsequent increase in BMAD by the age of 
18 years.147 Delayed puberty is a common fea-
ture of boys with DMD and other steroid treated 
conditions, such as IBD, or even in thalassaemia. 
It has been shown that hypogonadal patients 
increase their BMD when treated with sex ster-
oids in adulthood, but normal adult BMD values 
are not reached, while if treatment starts at an 
appropriate age, they will acquire a better increase 
in BMD.148 Therefore, induction of puberty with 
testosterone must not be forgotten and postponed 
in boys with delayed puberty. In healthy boys, cir-
culating oestradiol (that can be aromatised from 
testosterone) is associated positively with bone 
maturation and aBMD and vBMD, and nega-
tively with endosteal circumference, whereas tes-
tosterone is associated positively with lean mass, 
lumbar and whole-body bone area, trabecular 
and cortical area, and periosteal circumference 
at the radius.149 Therefore, testosterone adminis-
tration in boys with delayed puberty will increase 
their BMD, but also muscle strength, and subse-
quently reduce the risk for fractures. In boys with 
DMD, testosterone is unlikely to increase mus-
cle mass and strength due to the nature of the 
condition. A recent study investigating the effect 
on testosterone treatment on DMD confirmed 
that there is no change in lean body mass index, 
but interestingly motor functions scores in non-
ambulatory boys improved and there was statisti-
cally significant increase in median BMD of the 
lumbar spine.150

Oxandrolone, a non-aromatizable synthetic deri-
vate of 5-alpha dihydrotestosterone, may be a 
preferred anabolic agent in children, as it prevents 
conversion to oestrogen and earlier closure of epi-
physeal growth plates. It is not commonly used 
though for induction of puberty.

Parathyroid hormone. Teriparatide, recom-
binant human parathyroid hormone (PTH) has 
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been used as treatment of osteoporosis in adults, 
but it is not used in children with osteoporosis 
due to the potential risk of osteosarcoma whilst 
their growth plates are still open.151 This is based 
on studies in cancer-prone rats treated with high 
doses of PTH and there were no malignant bone 
changes with lower doses.152,153

Anti-sclerostin antibodies. The glycoprotein 
sclerostin is secreted by osteocytes and interacts 
with LRP5 and LRP6 receptors, inhibiting Wnt 
signalling and bone formation. Anti-sclerostin 
antibodies have been found to increase bone for-
mation in mice and postmenopausal women, but 
this effect decreases with time and there is bone 
loss after therapy discontinuation.154,155 This 
can be prevented with the use of anti-resorptive 
therapy after discontinuation of anti-sclerostin 
antibodies.156 In a phase IIa randomised trial Glo-
rieux et  al. showed that BPS804 anti-sclerostin 
antibody stimulates bone formation, reduces 
bone resorption and increases aBMD in adults 
with moderate OI.157 A paediatric trial is ongoing, 
but the results are still not available.

Anti-tumour growth factor beta therapy.  
Tumour growth factor beta (TGFβ) is a multi-
factorial growth factor. Modulation of TGF-β 
signalling has proven effective pre-clinically in the 
treatment of multiple pathologies.158 Data from 
murine models suggest that injections with anti-
TGF-β may increase bone mass in OI mice.159 
The effect of anti-TGFβ antibodies in humans is 
yet to be investigated. Losartan is an angiotensin 
II type 1 receptor blocker that also downregulates 
TFG-β signalling and there are ongoing trials on 
its potential use as a treatment for osteoporosis.160

Whole body vibration therapy
Several small randomised controlled trials and 
observational studies in children with CP and 
other paediatric disabling conditions have dem-
onstrated a beneficial effect of whole body vibra-
tion (WBV) therapy on walking speed, muscle 
strength, spasticity and balance. Based on the 
mechanostat theory,23 attempts have been made 
to implement WBV therapy to the management 
of osteoporosis. A trial on children with Crohn’s 
disease showed that ‘low-magnitude’ vibration is 
much less effective than bisphosphonate therapy, 
at least when bone density is considered the main 
outcome measure.161 Also, in children with OI, 
WBV resulted increase in lean mass without 
changes in muscle function or bone mass, 

suggesting reduced biomechanical responsiveness 
of the muscle-bone unit.162

Conclusion
Osteoporosis in children is quite distinct from the 
pathology in adults, as it has a different definition, 
different methods of diagnosis and monitoring 
and different treatment options. Primary osteopo-
rosis comprises mainly of OI, but there are other 
forms that also cause reduced bone density and 
may require treatment. Secondary osteoporosis 
can be a result of immobility and muscle disuse, 
iatrogenic, with high dose steroids as the most 
common contributor, chronic inflammation, such 
as in inflammatory bowel disease, delayed or 
arrested puberty and thalassaemia major. 
Investigations involve bone biochemistry to 
exclude other causes of metabolic bone disease, 
DXA scan for bone densitometry and VFA, radio-
graphic assessment of the spine and in some cases 
QCT or pQCT. It is important that BMD results 
are adjusted based on age and gender, but also on 
height for lumbar spine, in order to reflect size 
corrections. Genetics are increasingly being used 
for the confirmation of diagnosis and classification 
of various cases of primary osteoporosis. Bone 
turnover markers are used less frequently in chil-
dren, but can be helpful in monitoring treatment, 
and bone biopsy is another tool that can assist in 
the diagnosis of atypical cases of osteoporosis.

The management of children with osteoporosis 
requires a multidisciplinary team of health profes-
sionals with expertise on paediatric bone disease. It 
aims for the prevention and treatment of long bone 
and VF and improvement of the quality of life of 
patients. The drugs used most commonly are bis-
phosphonates, which have been used for over 
30 years with good results in improving BMD and 
reshaping VF when started early. The data regard-
ing their effect on reducing long bone fractures are 
equivocal. The unlicenced use of denosumab is 
increasingly being reported for various conditions 
with mixed results. There are many more drugs tri-
alled in adults with osteoporosis and some on chil-
dren with OI, but as yet none has been licenced for 
use in children. Finally, WBV therapy has been 
used in osteoporosis, but with less effect on bone 
structure or fracture risk. Increasing awareness of 
the various forms and risks of paediatric osteopo-
rosis and referral to a specialist team for appropri-
ate management can lead to early detection and 
treatment of asymptomatic fractures and preven-
tion of further bone damage.
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