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The liver is a site of complex immune activity. The hepatic immune system

tolerates harmless immunogenic loads in homeostasis status, shelters liver

function, while maintaining vigilance against possible infectious agents or

tissue damage and providing immune surveillance at the same time.

Activation of the hepatic immunity is initiated by a diverse repertoire of

hepatic resident immune cells as well as non-hematopoietic cells, which can

sense “danger signals” and trigger robust immune response. Factors that

mediate the regulation of hepatic immunity are elicited not only in liver, but

also in other organs, given the dual blood supply of the liver via both portal vein

blood and arterial blood. Emerging evidence indicates that inter-organ

crosstalk between the liver and other organs such as spleen, gut, lung,

adipose tissue, and brain is involved in the pathogenesis of liver diseases. In

this review, we present the features of hepatic immune regulation, with

particular attention to the correlation with factors from extrahepatic organ.

We describe the mechanisms by which other organs establish an immune

association with the liver and then modulate the hepatic immune response. We

discuss their roles and distinct mechanisms in liver homeostasis and

pathological conditions from the cellular and molecular perspective,

highlighting their potential for liver disease intervention. Moreover, we review

the available animal models and methods for revealing the regulatory

mechanisms of these extrahepatic factors. With the increasing understanding

of the mechanisms by which extrahepatic factors regulate liver immunity, we

believe that this will provide promising targets for liver disease therapy.

KEYWORDS

hepatic immune regulation, extrahepatic factor, liver disease, immune
cells, inflammation
Introduction

The liver is the largest organ engaged in metabolic, nutrient storage and

detoxification activities, but has increasingly been recognized as a unique immune

organ with its own immune features. Since the dual blood supply of portal venous and

systemic blood transport a large number of foreign but harmless molecules, the liver
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immune cells are largely in an activated state due to continuous

exposure to low concentrations of antigens, and the default

immune status of the liver is anti-inflammatory or immune-

tolerant (1–4). Generally, the hepatic immune system tolerates

harmless molecules under healthy condition. In face of immune

activation challenge posed by pathogens or tissue damage,

however, the liver could mount rapid and robust immune

response and attempt to resolve inflammation to maintain liver

homeostasis. Otherwise, failure to clear ‘dangerous’ stimuli or

appropriately regulate activated immune mechanisms can lead to

chronic and pathological inflammation (5–8). Maintenance of liver

function requires a balance between immunity and tolerance,

therefore, appropriate regulation of the complex hepatic immune

activities is necessary.

Chronic liver disease is generally a multi-stage, multi-hit

process; it is therefore not surprising that multiple cells within

the liver contribute to the immune regulation during disease

progression. Active modulation of immune responses in the liver

could stem from its unique microenvironment including certain

cell types like resident immune cells (9–13), hepatocytes (14),

hepatic stellate cells (HSCs) (15) and liver sinusoidal endothelial

cells (LSECs) (16, 17). In addition to complications relating to

the liver, patients with chronic liver disease also develop

concomitant extrahepatic functional disturbances of multiple

organ systems (18–20), which in turn affect the progression of

liver disease. Given this, the contribution of signals outside the

liver to the ‘balance control’ of hepatic immune calls for

meticulous exploration. In this review, we briefly describe the

changes in hepatic immune status from homeostasis to disease,

as well as the cellular, molecular and neural factors that mediate

these changes. From the perspective of organ-organ communication,

we elaborate on the effects of other organs on hepatic immune

regulation and liver disease progression, and discuss the

available animal models and methods for revealing the

regulatory mechanisms of the extrahepatic factors.
Hepatic immunity and its regulation

The liver has its special intraparenchymal vascular conduits

named hepatic sinusoid. The hepatic sinusoids involve multiple

and disparate cell types: LSECs form the walls, HSCs harbor in

the Space of Disse between the sinusoidal wall and the adjacent

hepatocytes, and various immune cells locate within the sinusoid

(21). All these cells play active roles in regulating the hepatic

immune. The liver is considered a unique immunological organ

for its predominant innate immune role, as it contains an

unusually large number of innate immune cells, including

myeloid cells like macrophages, dendritic cells (DCs), innate

lymphocytes like natural killer (NK) cells, innate lymphoid cells

(ILCs), and innate-like T lymphocytes like NKT cells, and gd T

cells (22). Of course, the adaptive immune cells (T and B cells)
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also count in the hepatic immunity (23). Here, we outline the

hepatic immune state in homeostasis and their alterations upon

activation, and summarize the mechanisms underlying

the alterations.
Orchestrated tolerant hepatic
homeostasis during healthy state

Hepatic resident immune cells together with non-

hematopoietic cell populations maintain hepatic immune

tolerance during healthy state. The liver resident macrophages,

Kupffer cells (KCs), play a key role by producing anti-

inflammatory mediators such as IL-10 and prostaglandins (24,

25), and downregulating expression of co-stimulatory molecules

to limit the adaptive immune response (26). Hepatic resident

DCs appear phenotypically immature and are less potent

activators of T cells, and shown to produce significantly more

IL-10 compared with peripheral derived myeloid DCs (27).

Non-hematopoietic cells such as LSECs, HSCs and hepatocytes

possess the ability to directly present antigen to T cells, but their

presentation of antigens in the liver biases T cells towards

tolerance for their lack of co-stimulatory molecules (e.g.,

driving naïve CD4+ T cells differentiation to regulatory T cells

rather than to T helper cells) (28–31). Meanwhile, LSECs and

hepatocytes constitutively express IL-10 and TGF-b (32, 33).

Besides, the healthy liver also has basal expression of pro-

inflammatory cytokines (including IL-2, IL-7, IL-12, IL-15 and

IFN-g). The complex cytokine milieu helps orchestrate the

homeostasis (34).
Activated hepatic immunity
upon challenge

Once the hepatic homeostasis sheltered by local and

systemic tolerance is disrupted, the innate immune system is

first activated, driving the full development of inflammatory

hepatocellular injury. Depending on the underlying liver disease,

such as viral hepatitis, autoimmune hepatitis, cholestasis, liver

ischemia reperfusion or metabolic associated steatohepatitis,

various triggers mediate immune-cell activation. The initiative

inflammatory activation of HSCs and KCs results in the

chemokine-mediated infi ltration of monocytes (35),

neutrophils (36), NK and NKT cells (37). KCs and the

recruited monocyte-derived macrophages (MoMFs), as key

cellular components of the liver, adapt their phenotype to local

signaling, taking an active part in either inflammation or the

subsequent resolution (38, 39). The ultimate outcome of the

intrahepatic immune response depends largely on the functional

diversity of macrophages. Innate lymphocytes like NK and NKT

cells are another source of immune-regulatory cytokines in
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diseased livers, contributing to the elimination of activated

myofibroblasts and infected or injured cells (40). These disease

conditions are also closely linked to T cell immunity, in which

the heterogeneous pool of hepatic T cells is activated upon

shifting to inflammation (41, 42), Th1 and Th17 responses are

induced, resulting in the secretion of immune-stimulatory

cytokine as well as direct cytopathic function (43). A

systematic understanding of the initiation and regulation of

the activated hepatic immune regulation is critical for the

development of liver disease therapy strategies based on

intervention of hepatic immunity.
Hepatic immune regulation

Mechanisms of hepatic immune regulation involves cell

activat ion, molecule interact ion and neural signal

transmission. At the cellular level, most types of liver ‘insults’

damage epithelial cells, leading to the release of inflammatory

mediators and the initiation of inflammatory cascade. In

response to these inflammatory signals, KCs are first activated

(44), releasing pro-inflammatory mediators that lead to the

recruitment of circulatory-derived immune cells into the

inflamed liver (45). MoMFs, as the primary leukocytes being

recruited, could further recruit T cells and neutrophils to

promote fibrosis by generating pro-inflammatory cytokines

(e.g., TNF-a, IL-6, and IL-1b), and secreting pro-inflammatory

chemokines (e.g., CCL2, CCL5, and CXCL2), thus further

amplifying the inflammatory response (46–48). Also, the

behavior of MoMFs themselves is regulated by the complex

hepatic microenvironment. Emerging understandings of hepatic

macrophage heterogeneity identify a group of CD11bhiF4/

80intLY6Clow restorative macrophage as a phenotypical switch

subpopulation derived from the pro-inflammatory LY6Chi

subset, contributing to inflammation resolution (49). Another

important myeloid cells, DCs, exert their role in hepatic immune

regulation by forming a bridge between the innate and the

adaptive immune system (50). Although T cells are also

activated during hepatic inflammation, the mechanisms of

their activation and “shift” (to Th1 and Th17) are not fully

elucidated, which might require further analysis of the

interaction between hepatic DCs and T cells.

Molecularly, pathogen-associated molecular patterns

(PAMPs) and danger/death-associated molecular patterns

(DAMPs) are the most famous “danger signals”. PAMPs are

conserved structures vital to pathogens, presenting in microbes

and absent in eukaryotes (51, 52). DAMPs represent damaged

cells of the host which are a threat to self (53). PAMPs and

DAMPs initiate the immune response via pattern recognition

receptors (PRRs), which are present in immune cells, as well as

in LSECs and HSCs (51, 54, 55). The recognition of pathogen

molecules by PRRs would lead to activation of the complement

cascade, cytokines, antimicrobial peptides and antigen-
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presenting cells, resulting in a complex interplay of pro- and

anti-inflammatory responses and immunogenic and suppressive

responses in the host (53, 56). Among PRRs, Toll-like receptors

(TLRs) are most extensively studied, responding to most

DAMPs and PAMPs, and have a major influence in liver

diseases (57). Nucleotide binding oligomerization domain-like

receptors (NLRs) represent another subtype of PRRs, for

example, NLPR3 is one of the NLRs expressed on

inflammasome (44). Inflammasomes are intracellular

multiprotein complexes that sense intracellular danger signals

including DAMPs, PAMPs, and ROS, and the activation of

inflammasomes triggers a pro-inflammatory response

commonly associated with caspase-1 activation followed by

activated secretion of IL-1b and IL-18 (58). In addition to

serving as an important mechanism for macrophage activation

signal transduction, inflammasome hyperactivation can also

result in hepatocyte pyroptosis, a specific form of cell death,

leading to increased liver inflammation and fibrosis

development in mice (59). Besides, exosomes have also been

identified to play important roles in hepatic immune regulation

by mediating the intrahepatic cell-cell communication and

transmission of information from other organs to the liver (60).

Furthermore, the liver is innervated by both the sympathetic

and the parasympathetic nerve systems. These nerves are derived

from the splanchnic and vagal nerves that surround the portal

vein, hepatic artery, and bile duct. The nervous system and the

immune system communicate in response to pathogen invasion,

tissue injury, and other “insults” (61). Intrahepatic efferent

nerves endings containing catecholaminergic (releasing

neurotransmitters like epinephrine and norepinephrine),

cholinergic (releasing neurotransmitter acetylcholine) nerves

terminate at the Space of Disse (62, 63), and trigger

responsiveness in effector cells. Findings in preclinical

conditions have indicated the use of vagus nerve stimulation

and acetylcholine (Ach) receptor agonists and centrally acting

AchE inhibitors as therapies for liver inflammatory diseases. The

exact mechanisms of hepatic nervous system regulating the

function of hepatic immune cells and secretion of effector

factors remain to be further studied.
Extrahepatic factors and hepatic
immune regulation

Hepatic immunity is a complex and adaptable process,

which is flexibly regulated by the changing hepatic responses

in homeostasis and various disease states. In addition to

complications relating to the liver, patients with liver disease

often develop concomitant extrahepatic functional disturbances

of multiple organ systems; and the liver itself also intensively

participates in the acute phase reaction in response to

inflammation that occurs in other organs. There have been

clues of the liver communicating with other organs through
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molecular and cellular mediators and the nervous system, but

how these extrahepatic factors are involved in hepatic immune

regulation is incompletely understood. Below, we discuss in

detail the various ways in which other organs regulate hepatic

immunity (Figure 1).
Spleen and hepatic immune regulation

The spleen is the largest immune organ and plays a critical

role in the production of various immune cells and numerous

cytokines. Compared with other tissues and organs, the spleen is
Frontiers in Immunology 04
more closely linked with the liver in anatomical structure and

function, all spleen blood flows into liver through the portal vein,

which facilitates transportation of immune mediators such as

immune cells and cytokines into the liver. In chronic liver

diseases, splenomegaly and hypersplenism are always

manifested following the development of portal hypertension.

Splenectomy has been reported to have a role of ameliorating

patients’ condition or suppressing liver fibrosis in clinical

condition (64–66). Moreover, a large number of studies have

shown that the abnormal spleen is involved in the modulation of

hepatic immunity, and the role of the so-called “liver-spleen

axis” is gaining increasing attention in liver diseases (67–69).
FIGURE 1

Mechanisms of extrahepatic factors regulating hepatic immunity. Extrahepatic factors in hepatic immune regulation. (A) Spleen and hepatic
immune regulation. The spleen exerts its role in hepatic immune regulation by affecting the composition of both innate and adaptive immune
cells. Spleen-derived Lcn-2 suppresses macrophage mediated HSC activation. (B) Gut and hepatic immune regulation. Intestinal microbiota and
their byproducts (including PAMPs, DAPMs, and metabolites) could be translocated to the liver to active hepatic immune cells and promote the
secretion of pro-inflammatory cytokines. Active lymphocytes could also be recruited from the gut into liver to modulate hepatic immunity. (C)
Lung and hepatic immune regulation. Hepatic acute phase response is induced by the crosstalk between lung and liver communication, and
pro-inflammatory cytokine like TNF-a acts as "shuttle" factor in modulating the lung-liver axis. (D) Adipose tissue and hepatic immune
regulation. Adipose tissue-derived proinflammatory cytokines, adipokines, and exosomes modulate hepatic immunity by activating hepatic
immune cells and promoting the secretion of pro-inflammatory cytokines. Adipose tissue macrophages are activated and migrate to the
diseased liver. (E) Brain and hepatic immune regulation. The hepatic inflammatory signals are transmitted and integrated in the CNS, and then
descend via sympathetic and efferent vagus nerve fibers, releasing catecholamine and acetylcholine through hepatic nerve endings and
modulating the liver immune response. Lcn-2, lipocalin-2; HSC, hepatic stellate cell; PAMP, pathogen associated molecular pattern; DAMP,
danger/death-associated molecular pattern; CNS, central nervous system; KC, Kupffer cell; NKT, natural killer T cell.
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Spleen-mediated hepatic immune
cell alteration

The spleen exerts its role in hepatic immune regulation by

affecting the composition of both innate and adaptive immune

cells in liver (Table 1). For innate immune cells, the spleen serves

as a reservoir of monocytes, contributing to the heterogeneity of

hepatic macrophages which are indispensable for rapid

responses to liver injury (81). In mice with diet-induced

NAFLD, macrophages produced increased inflammatory

cytokines like TNF-a and IL-6 (M1-type) were increased, but

macrophages mainly secreting the anti-inflammatory IL-10 were

unchanged (70, 82). The increased hepatic macrophages during

the progression of NAFLD was indicated to migrate from BM to

liver via the spleen (70). The similar M1 dominant phenotype

was also observed in a CCl4-induced rat liver fibrosis model. In

this model, the increased monocyte recruitment and the

establishment of an M1-dominant hepatic macrophage

phenotype was facilitated by up-regulated secretion of hepatic

CCL2, which was prompted by splenic macrophages (71). In

another TAA-induced liver fibrosis model, splenectomy

attenuated murine liver fibrosis with hypersplenism and

stimulated accumulation of Ly-6Clo macrophages in the liver

(83). Our previous study in a chronic restraint stress prompted

hepatocellular carcinoma mice model also found that

splenectomy could inhibit tumor growth and prevent the

increase of macrophage in tumor tissues (72). Clinically,

patients suffered with liver cancer showed improved prognosis
Frontiers in Immunology 05
upon splenectomy, but this is only viable in the subgroup with

an increased neutrophil-lymphocyte ratio (NLR) and increased

infiltration of CD163+ tumor associated macrophages (TAMs)

in the tumor stroma (84), indicating the crucial role of spleen-

derived macrophages in tumor progression.

As for hepatic adaptive immune cells, their composition can

also be altered by the spleen. In a CCl4-induced liver fibrosis

mice model, researchers found that splenectomy biased the Th1/

Th2 balance in the liver towards Th1 dominance. Upon the

transplantation of labelled splenocytes into the spleens of

syngeneic wild-type mice, labelled CD4+ lymphocytes

appeared in the liver after fibrosis induction, among which the

vast majority were Th2 lymphocytes (73). That is, Th2-

dominant splenic lymphocytes were recruited to the liver and

promoted liver fibrosis by transforming the cytokine balance

into Th2 dominance, and splenectomy suppressed the

progression of fibrosis at least partly by restoring the Th1/Th2

balance. In the Schistosoma japonicum infection caused liver

fibrosis model, dynamic changes of lymphocyte populations in

the spleen and concurrent upregulation of chemokines and cell

adhesion molecules in the liver also suggested a recruitment of

active immune cells from spleen to the liver (74), among

which CXCR3+ Tregs were supposed to occupy a considerable

proportion of the lymphocytes that migrate from spleen to Th1-

infiltrated liver tissues to regulate liver fibrosis (75).

To date, the role of spleen in affecting the composition of

hepat ic immune ce l l composi t ion have been wel l

acknowledged, however, these conclusions are mostly based
TABLE 1 Immune cells migrating from extrahepatic organs to the liver.

Cell types Cell source Cell feature and fonction Liver disease model Reference

Macrophage Spleen CD68+F4/8ü+ Mice/ Diet-induced NAFLD (70)

Produce more TNF-a and IL-6

Macrophage Spleen Promote CCL2 secretion by hepatic Mcp Establish an Ml-dominant hepatic Mcp
phenotype

Rat/ CC14-induced liver
fibrosis

(71)

Myeloid
cells

Spleen Promote hepatocellular carcinoma growth Mice/ Hepatocellular
carcinoma

(72)

under chronic restraint stress

T cell Spleen Transform the cytokine balance into Th2 dominance Mice/ CC14-induced liver
fibrosis

(73)

Bias the hepatic T cells toward Th2

T cell Spleen CXCR3+ Tregs account for a considerable Mice, human/ Liver fibrosis (74, 75)

proportion caused by Schistosoma

Modify T helper cytokine balance japonicum infection

Lymphocyte Gut CCR9+ Human/ Inflammatory bowel (76, 77)

Drive hepatobiliary destruction in PSC disease

B cell Gut Reactive to commensal bacteria Mice, human/ Alcoholic liver (78)

Clear gut-derived antigens disease

Protect organs from pathogens

ATM Adipose Promote insulin resistance and inflammatory Obese mice/ High-fat diet (79, 80)

tissue response
fro
Mcp, macrophage; Th2, T helper 2; PSC, primary sclerosing cholangitis; ATM, adipose tissue macrophage.
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on splenectomy. We have limited information about whether

splenic immune cells are directly recruited to the liver, and

whether the spleen delivers specific subtypes of immune cells to

liver at different stages of liver disease progression. In addition,

it is also worth investigating whether and how the diseased

liver regulates the composition of splenic immune cells. A

better understanding of these issues is crucial to delineate

spleen-mediated hepatic immune regulation and lay a

foundation for developing novel strategies for liver

disease immunotherapy.

Spleen-derived factors mediated hepatic
immune regulation

Lipocalin-2 (Lcn2) is an antimicrobial protein that

regulates macrophage activation. Significant increase of

splenic Lcn2 was detected in mice with liver fibrosis, but

levels of all other measured cytokines were unchanged. The

splenectomy mice showed enhanced liver fibrosis and

inflammation, accompanying significantly decreased Lcn2 in

portal vein. Upon treatment with recombinant Lcn2 in vitro,

LPS-stimulated primary KCs produced less TNF-a and CCL2,

and the activation of HSCs was suppressed by co-culture with

rLcn2-treated KCs. The mechanism of splenic protection

against liver fibrosis development may involve the splenic

Lcn2. The splenic Lcn2 might have an important role in

regulating hepatic immune tolerance during the development

of liver fibrosis (85). The liver has an extraordinary capacity to

regenerate upon various injuries (86). Several experimental

studies have demonstrated that removal of the spleen

accelerates liver regeneration and inhibits the development

of liver fibrosis (71, 87–89), indicating a certain role of the

spleen in liver regeneration. TGF-b is recognized as the critical

factor in the performance of spleen to inhibit liver regeneration

in both the thioacetamide-induced liver fibrosis rat model (90)

and the partial hepatectomy rat model (91). Upon injury, the

liver goes through a process from initiation and proliferation to

resolution and repair. These results suggest that the spleen

might also plays a role in the resolution and repair of

fibrotic liver.
Gut and hepatic immune regulation

Close anatomical and physiologic connections exist between

the gut and liver. These two organs are linked through the portal

circulation, and the liver receives 70% of its blood supply from

the intestine through the portal vein. Therefore, the liver acts

as the first line of defense against gut-derived antigens, and one

of the most exposed organs to gut-derived toxic factors, such as

bacteria and bacterial byproducts (92). Besides, the gut and liver

also communicate through biliary tract and systemic circulation,

the bidirectional crosstalk facilitates the formation of gut-

liver axis.
Frontiers in Immunology 06
The gut microbiota consists of various microorganisms that

normally coexist in the gut and have a role of maintaining the

homeostasis of the host. A shift in gut microbiota composition

can lead to activation of the mucosal immune response, causing

homeostasis imbalance. This imbalance results in the

translocation of metabolites and components derived from the

gut microbiota, and also leads to the transport of active immune

cells to the liver, thus inducing pathologic effects in the liver (8,

93). Clinical observations and animal experimental studies

reveal that the gut barrier damage seldom leads to liver injury

independently but aggravates pre-existing liver diseases, and the

circulatory homeostasis is largely intact in patients with early

cirrhosis and portal hypertension (94). With the progression of

liver fibrosis, regardless of the cause, pathophysiology extends to

the intestinal tract with increased intestinal permeability and

overgrowth of gut microbiota. The microbiota and their

byproducts could then enter the liver through the portal vein,

causing inflammation and damage in the liver (95–100). Extra

evidence of this process is provided by transplantation of

intestinal microbiota from humans with acute alcoholic

hepatitis into germ-free and conventionally housed mice (101,

102). Intestinal microbiota entering the liver regulates hepatic

immunity via several mechanisms.
Intestinal microbiota and their byproducts
activate hepatic immune cell response

The signature and role of gut microbiota in different liver

diseases has been reviewed elsewhere (103). Here we emphasize

its role in hepatic immune regulation and attempt to disclose

the mechanism of its influence on liver disease progression

from the perspective of immunity.

In a ConA-induced hepatitis model, ConA treatment failed

to activate hepatic NKT cells in germ-free mice, but

supplementation with killed intestinal bacteria facilitate NKT

cell activation (104). Also, another study with mice transplanted

with gut microbiota from a patient with severe ALD found that

the mice developed more severe liver inflammation with

increased NKT cells (101). Growing evidence suggests that gd
T cells expand in response to invading bacterial pathogens and

modulate tissue injuries (105, 106). As the major producers of

IL-17A, the production of IL-17A by hepatic gd T cells was

found modulated by the commensal bacterial load (107). Both

NKT and gd T cells are innate lymphocytes enriched in the liver

(108). That is, gut-derived microbiota activate innate

lymphocytes in the liver, although the mechanism is unclear.

PAMPs, conserved structures vital to microbiota, are one of

the main mechanisms of microbiota to activate hepatic

immunity. Once gut-derived PAMPs enter the liver through

the portal vein, they can activate cells expressing PRRs (e.g.,

TLRs, NLRs) and induce inflammation (109). Examples of

relevant gut-derived PAMPs include LPS, lipoteichoic acid

(LTA), and b-glucan (110). LPS is one of the most well-known
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components of gram‐negative bacteria, and activates hepatic

macrophages through interaction with TLR4 (103, 111). Indeed,

in NAFLD patients, LPS-induced activation of liver

macrophages is associated with inflammation and fibrosis,

TLR4 knockout attenuates experimental NASH (112). LTA is

a gram-positive microbial component, functions through up-

regulating the expression of cyclooxygenase-2 (COX-2), and

COX-2-mediated prostaglandin E2 (PGE2) production

suppresses antitumor immunity, thereby contributing to the

immunosuppressed hepatic microenvironment (93). 1,3-b-
glucan, from the overgrowth of fungi, on the one hand binds

to the C-type lectin domain family 7 member A (CLEC7A) of

KCs and possibly other bone marrow–derived cells and

promotes liver inflammation, on the another hand increases

PGE2 production in the liver (113, 114). DAMPs, another

famous “danger signal”, have also been identified deriving

from the intestine and triggering immune response in the

liver. In the ASC−/- mice on a high-fat diet (HFD), Chen and

colleagues (115) identified a DAMP molecule high-mobility

group protein B1 (HMGB1) as a “cargo” transported by

exosomes from the intestine to the liver, triggering hepatic

steatosis. Recently, injection of intestinal exosomes from

ischemia/reperfusion (I/R) mice to healthy mice was also

shown able to cause macrophage infiltration, M1 polarization,

and liver inflammation in mice (116).

In addition, metabolites derived from the gut microbiota also

play roles in hepatic immune regulation. BAs (bile acids)

represent one of the classic components that function in the

gut-liver axis. BAs including chenodeoxycholic acid and

deoxycholic acid (DCA), could upregulate NLRP3 in hepatic

macrophages, contributing to cholestatic liver diseases (117).

Another important component, D-lactate, could protect against

pathogen dissemination by upregulating the phagocytic

capability of KCs, thereby generating an intravascular immune

firewall (118).

Intestinal microbiota and their byproducts
shape hepatic immune milieu

The gut microbiota also shape the hepatic immune milieu by

regulating inflammatory cytokines (119–121). In the alcohol-

related liver disease (ALD) model, LPS-TLR4 signal in

macrophages was delivered by the recruitment of adapter

molecules, such as MyD88 and TRIF (122). MyD88-mediated

NF-kB activation produced pro-inflammatory cytokines (e.g.,

TNF-a, IL-6, and IL-1b) and chemokine CCL2, whereas the

TRIF pathway induced the production of type-I interferons (123,

124). In murine liver fibrosis, translocation of gut microbiota

induced tonic type I IFN expression in the liver, and then

conditioned liver myeloid cells to produce high concentrations

of IFN in response to intracellular infection with bacteria. Such

IFN-receptor signaling also caused myeloid cell IL-10

production that corrupted antibacterial immunity, leading to

loss of infection control and to infection-associated mortality
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(125). The prominent liver IFN signature and myeloid cells with

increased IL-10 production after bacterial infection was also

found in patients with liver cirrhosis. The augmented IFN and

IL-10 expression incapacitated antibacterial immunity of

myeloid cells and caused failure to control bacterial infection

in severe liver fibrosis and cirrhosis (126–128). HSCs could also

response to LPS by releasing pro-inflammatory cytokines (e.g.,

TNF-a, IL-6, and IL-8) and chemokines (e.g., CCL2, CCL5) and

gained expression of adhesion molecules (55, 124). In addition to

the TLRs, LPS can also activate inflammasomes by binding to

NLRs, which leads to increased release of IL-1b and IL-18 (129,

130). These studies depicted changes in cytokine profile induced

by PAMPs, providing potential therapeutic targets for liver

diseases based on the gut-liver axis.

Recruitment of mucosal immune
cells into the liver

In parallel to the ‘leaky gut’ as described above, the ‘gut

lymphocyte homing’ is another supposed interaction between

the gut and liver immune system. Primary sclerosing

cholangitis is strongly linked to inflammatory bowel disease, in

which the liver disease develops in the absence of a diseased

colon. In this condition, some mucosal lymphocytes generate in

the gut during active inflammatory disease and persist as long-

lived memory cells are supposed to home to the liver

(131). Subsequent studies showed that the CCR9+ gut-homing

lymphocytes were recruited by gut-specific chemokine CCL25

expressed by the hepatic endothelium (76, 132). The LSECs also

expressed increased levels of mucosal addressin cell adhesion

molecule-1 (MAdCAM-1), inter-cellular adhesion molecule-1

(ICAM-1) and vascular-cell adhesion molecule-1 (VCAM-1) for

lymphocyte adhesion (77, 132, 133). In addition, there were

other studies revealed existence of T cells expressing clonally

related TCRb chain and recognizing the same antigen in the

intestine and liver (134), and hepatic B cells that produce IgA

deriving from intestinal lymphoid tissue (135). These

phenomenon highlight the association of lymphocyte

recruitment in gut-liver axis, and call for further exploration of

other communication in this axis.
Lung and hepatic immune regulation

Physiologically, the lung and liver are closely coordinated.When

the liver function is perturbed, dysfunctional liver can lead to

the abnormal expansion of pulmonary, triggering hypoxemia

and a series of other pathophysiological changes and clinical

symptoms known as hepato-pulmonary syndrome, which is

common in patients with cirrhosis (78). Correspondingly,

many hepatic manifests are often secondary to pulmonary

disease such as pneumonia, due to the fact that mediators

derived from the inflamed lungs can cause liver inflammation.

Therefore, the pulmonary-mediated hepatic immune
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regulation will be reviewed in conditions of both lung disease

and liver disease.

Hepatic acute phase response induced by the
lung-liver axis

The acute-phase response (APR) is a prominent systemic

reaction of the organism to local or systemic disturbances in its

homeostasis, defined by significant changes in plasma

concentrations of inflammation markers. These inflammation

markers are acute-phase proteins (APPs). The liver is intensively

involved in the APR of the organism in pneumonia and other

cases (136). During pneumonia, inflammatory response caused

within the airspaces is typified by cytokine production (e.g., IL-6,

TNF, and IL-1), leukocyte recruitment and plasma extravasation

(136, 137). Plasma extravasation could then induce the APR in

the liver. The hepatocyte-derived APPs exert a direct role of

curbing injury induced by TNF-a in the liver itself, but also

promote survival in association with innate immunity in the

lungs (136). The APR is an orchestrated response to tissue

injury, infection or inflammation, and the APPs induced

during this response act to limit proteolytic and/or fibrogenic

activity and tissue damage, thereby contributing to the

restoration of homeostasis (138, 139). APR provides novel

signaling axis for the immune-mediated lung-liver

communication (140, 141).

Pulmonary-derived inflammatory cytokines
and hepatic immune regulation

Insult like chronic alcohol exposure results in both alcohol-

related liver disease and alcohol-related susceptibility to acute

lung injury. Alcohol-induced injuries to these two organs share a

deal of parallel mechanisms, including: damages to both organs

are involved to oxidative stress that favors tissue injury (142,

143), inflammatory injuries to both organs are enhanced by

alcohol exposure (144, 145), and most importantly, dysregulated

cytokine production in the development and progression of both

diseases (146, 147). These phenomena indicate that there exists a

“shuttle” between the two organs, promoting the pathogenesis of

both organs. Study in the mechanically ventilated (MV) lung

injury model provides evidence for this assumption: perfusate

from injured lungs was able to cause a robust inflammatory

response with significantly increased production of pro-

inflammatory factors such as G-CSF, IL-6, CXCL1, CXCL2,

and CCL2 in LSECs (148); liver tissues obtained from mice

subjected to in vivo MV also demonstrated significant increases

in hepatic gene transcription of IL-6, CXCL1, and CXCL2 (148).

TNF-a is a common mechanism of alcohol-induced

pathology in both lung and liver (146, 149). In the lung, TNF-

a led to elevated levels of TNF-a-responsive chemokines,

CXCL2 and keratinocyte chemoattractant, all of which were

correlated with increased pulmonary neutrophil recruitment

(150). Moreover, in a chronic alcohol pre-exposure enhanced

endotoxemia-induced acute lung injury model, the lung injury
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could be prevented by blocking systemic TNF-a with etanercept

(147). In the liver, TNF-a activates several intracellular

pathways to regulate inflammation, cell death, and

proliferation, and is closely associated with liver injury (151).

Therefore, although evidence about the predominate source of

TNF-a is still lack, it is reasonable of us to speculate that TNF-a
may act as one of the mediators that derived from the

inflammatory lung to promote the occurrence of hepatic

inflammation. Future studies are required to identify more

mediators that contribute to the hepato-pulmonary association

other than TNF-a.
Adipose tissue and hepatic
immune regulation

Alcoholic (ALD) and non-alcoholic fatty liver diseases

(NAFLD) are clinical symptoms of hepatocellular injury and

inflammation caused by alcohol consumption, high fat diet,

obesity and diabetes, among others, and are both characterized

by the expandability of adipose tissue. Anatomically, adipose

tissue consists of visceral adipose tissue (VAT) and

subcutaneous adipose tissue (152). VAT is mainly present

within the abdominal cavity, and visceral fat venous blood is

drained directly into the liver through the portal vein, and

abnormal metabolic pathways and inflammation in VAT are

implicated in the pathogenesis of ALD and NAFLD (153).

Deregulated adipose tissue has increased lipolysis in adipocyte

and activated inflammatory responses in adipose immune cells

such as macrophages, which in turn lead to the release of free

fatty acids, adipokines, and cytokines into the portal circulation

(154–157), and these factors are associated with hepatic

immune regulation.

Adipose tissue-derived pro-inflammatory
cytokines in hepatic immune regulation

Upregulated expression of pro-inflammatory cytokines (e.g.,

IL-6 and TNF-a) and chemokines (e.g., CCL2) in adipose tissue

are observed in both alcoholic patients (158) and rodent models

(159), particularly, the VAT is found to secret large quantities of

IL-6 (160–162). The development of NAFLD and insulin

resistance is also supposed to be resulted from imbalanced

cytokines (increased pro-inflammatory and decreased anti-

inflammatory cytokines) (163, 164). These pro-inflammatory

cytokines can be delivered into the portal circulation, and

directly associate with liver inflammation and fibrosis in

hepatic steatosis.

Adipocyte-derived adipokines in hepatic
immune regulation

Adipokines are a class of adipose-derived signaling

molecules that contribute to the development of ALD and

NAFLD. Adiponectin, one of the well-known adipokines, has
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insul in-sensit izat ion and ant i- inflammatory effects

in insulin target tissues including liver, and acts as an

important regulator for the development of hepatic diseases.

Correlation between the onset of hepatic disease and reduced

circulating adiponectin levels, decreased expression of

adiponectin receptors, and impaired adiponectin-mediated

signaling is shown in several animal models of hepatic

syndromes (165). Via its cognate receptors, adiponectin

receptors 1 and 2, adiponectin potently suppresses hepatic

inflammation. KCs constitutively express AdipoR2 (166, 167),

suggesting a role of KCs in adiponectin-mediated hepatic anti-

inflammation properties. Adiponectin is also found has a role of

blocking TNF-a-stimulated CCL2 expression, and thus resulting

in reduced macrophage infiltration in the liver (168,

169). However, there is also data showing decreased

adiponectin in the plasma of alcohol-fed rodents. This might

due to increased TNF-a expression in adipose tissue caused by

alcohol administration in rodents (170), and TNF-a could

directly inhibit the release of adiponectin from the adipose

tissue (171). Leptin, another important adipokine, is able to

induce hepatic inflammation and fibrogenic responses by

activating HSCs and KCs (172, 173). Increased production of

leptin and decreased production of adiponectin were observed in

alcoholic patients and mouse models (110). Therefore, different

adipokines might have distinct roles in hepatic immune

regulation, and their mechanisms might be complicated due to

disease conditions.

Adipose tissue-derived EVs in hepatic immune
regulation

Extracellular vesicles (EVs) are another important way by

which adipose tissue transmits information to other organs, in

addition to canonical hormones, growth factors and cytokines.

EVs, including microvesicles (MVs) and exosomes or exosome-

like vesicles (ELVs), are secreted by donor cells and transferred

to the recipient cells, releasing encapsulated nucleic acids, lipids,

and proteins to transfer information (134). Roles of adipose-

derived exosomes in regulating liver metabolism have been

widely documented both clinically and in animal models (174,

175), but their roles in modulating hepatic immune responses

are less clear. Deng and colleagues (176) first found that adipose-

derived exosomes of obese mice activated monocyte

differentiation into adipose tissue macrophages (ATMs),

leading to increased production of pro-inflammatory cytokines

IL-6 and TNF-a. This process enhanced the migration of ATMs

to liver and promoted the development of insulin resistance.

ATMs accumulated in the liver also released miRNA-rich

exosomes (e.g., miR-155) to regulate hepatic insulin sensitivity

and inflammatory response (79). Exosomes from the adipose

tissue derived mesenchymal stem cells were later demonstrated

capable of promoting NK cells to exert antitumor roles on rat

HCC, thereby inhibiting tumor growth (80). Together, these

data indicate the possibility of adipose-derived EVs functioning
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as an intriguing mode for adipose tissues to regulate liver disease

progression by modulating hepatic immunity.
Brain and hepatic immune regulation

The brain and liver bidirectionally communicate via

humoral and neural networks (177, 178). The neural axis

between brain and liver interacts closely with the central

nervous system (CNS) via the autonomic nervous system

(ANS). The hepatic sympathetic and parasympathetic nervous

systems are collectively known as the ANS, which is part of the

peripheral nervous system and plays a key role in the regulation

of numerous physiological events (including inflammation) in

the liver (179, 180). The hepatic ANS transmits information

from the liver to the CNS, and also receive signals from the CNS

to regulate liver function, that is, the liver acts as both a sensor

and effector affected by neurological signals.

The brain function can be severely affected in severe liver

diseases with considerable inflammatory involvement, and these

alterations in brain are associated with brain cholinergic

dysfunction (181), which is involved with immune regulation.

Cholinergic modulation of liver inflammation by the vagus

nerve was first reported by Tracey and colleagues (182) more

than 20 years ago. In the liver of rodents, they showed that

electrical stimulation of the cervical vagus nerve could attenuate

LPS-induced TNF production. In rats with hemorrhagic shock,

Guarini and colleagues (183) demonstrated that the brain

mAChR-mediated activation of efferent vagus nerve signaling

to liver also caused significant suppression of hepatic TNF

release. Later studies demonstrated a role of KCs in the

cholinergic mediated modulation of hepatic immunity in

several chronic liver diseases (182, 184, 185), indicating the

involvement of immune cells in hepatic neuro-immune

regulation. Such involvement was also demonstrated in hepatic

NKT cells, which received signals from the catecholamine

neurotransmitters, leading to phenotypic transformation (61,

186). Thus, neural signal-expressing cells involved with hepatic

immune regulation deserve further study.

Pathogens are also triggers of the intrahepatic neuro-

immune responses. On the one hand, immune cells in the

liver could detect the presence of pathogen components and

release cytokines (e.g., IL-1b and TNF-a) which function as

chemical messengers. On the other hand, pathogens can also

directly activate the hepatic neurons. These signals are

transmitted and integrated in the CNS, and then descend via

sympathetic and efferent vagus nerve fibers, releasing

catecholamine and acetylcholine through hepatic nerve

endings and modulating the liver immune response (181, 187).

Particularly, in this brain-liver axis, hypothalamus is recognized

to be the critical part for sensing and integrating signals from the

periphery tissue and effecting appropriate changes to maintain

metabolic and immunologic homeostasis (180, 188).
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Hypothalamic inflammation is shown an important event in

brain-involved hepatic immune regulation and insulin resistance

(189–191). As a summary, the nervous system and the immune

system communicate in response to pathogen invasion, tissue

injury, and other homeostatic threats. A systematic

understanding of the mechanism by which dysregulated liver

triggers hypothalamic inflammation is critical for realizing the

nervous system mediated hepatic immune regulation.
Other organs and hepatic
immune regulation

There are also cross-talk between the liver and other organs,

such as the BM, the pancreas, and the kidney, but the role of

these organs in hepatic immune regulation remains to be

further studied.

The BM is an immune-regulatory organ that has a role not

only in hematopoiesis but also in immune responses (192). In

addition to liver-resident immune cells, most inflammatory cells

are derived from the BM (193, 194). MoMFs, key effector cells in

the hepatic immune activities, are derived from infiltrated

bone marrow-derived CCR2+CX3CR1loLy6Chi monocytes,

whose recruitment is dependent on the CCL2-CCR2 axis (195,

196), which has been well-recognized in plenty of liver diseases

including liver fibrosis and hepatic carcinoma. The BM is also

regarded as source of other leukocytes, however, a detailed

depiction of how the BM is involved in hepatic immune

regulation in other ways (e.g., cytokines, hormones, and

exosomes) is still lacking.

Pancreas is a potential candidate extrahepatic organ to be

involved in hepatic immune regulation. Fetuin-A secreted by the

inflammatory liver could stimulate chemokines like CCL2 and

IL-8, and pro-inflammatory cytokines such as IL-6 and IL-1b
expression in the pancreas, and lead to damaged pancreas. In

reverse, damaged pancreas may secrete pro-inflammatory

cytokines (e.g., TNF-a) to directly attack the liver (197).

Besides, there exists a gut-liver-kidney axis during the

development and progression of chronic kidney disease

associated with chronic fatty liver diseases. Kidney dysfunction

led to metabolic acidosis, accumulation of toxins that have

serious impacts on various liver functions, for example,

changing glucose homeostasis, endothelial dysfunction,

enhanced inflammation, and pro-inflammatory cytokines

(198). Furthermore, the skin might also play a role in hepatic

immune regulation. While clinical studies indicated that

psoriasis may be more severe in patients with NAFLD/NASH

(199, 200), livers from psoriatic mice were also found enriched

for macrophages, polymorphonuclear neutrophils, and T

cells (201).

In addition to the organs detailed in our review, correlation

of other organs in hepatic immune regulation are also indicated,

but the specific connection and exact mechanisms remain to be
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cytokines in these processes has been repeatedly mentioned,

warranting our high attention to the overall changes of cytokines

in the organism during disease development.

Animal models and methods for
studying the regulation of
extrahepatic factors

Animal models

To date, studies on the role of spleen in the regulation have

provided the most evidence, but these evidence mainly come

from splenectomy as an intervention. Novel animal models,

including spleen-specific photo-conversion with KikGR

transgenic mice (in which KikGreen cells are turned into

KikRed by site-specific irradiation) (202, 203) and spleen

transplantation (204) between congenic mice strain carrying

differential markers, have been proven effective in studying the

cell communication between spleen and other organs,

employment of these models in studies about spleen-liver

crosstalk may help reveal more details. As for other organs,

some available models, such as bone marrow chimeras and

CD11b-diphtheria toxin receptor mice, have been sophisticatedly

used in studying recruitment of liver infiltrating macrophages

from the peripheral (205, 206). Recently, Zhou et al. (207, 208)

developed a multi-lineage tracing system for in vivo study of

hematopoietic cell migration and development (basing on the

Cre-loxP and Dre-rox dual recombinase), this could potentially be

used to track the movement and differentiation of cells

between organs.
Methods for detection and tracking of
inter-organ mediators

Generally, evidence that cytokines or exosomes from

other organs influence hepatic immune response is not

straightforward, because of the lack of ways to track these

factors in vivo. The effects of these factors are always assessed

by their corresponding changes in the target organs and liver, and

the effect of these factors isolated from the target organs on liver

cells during in vitro treatment. Real-time detecting, tracking and

quantification of these factors will help assess their effects in vivo.

Nanoparticle tracking analysis (NTA) is a technology developed

based on the principle of light scattering and Brownian motion of

particles in suspension and has been used for quantitative

detection of exosomes (209). NTA also has different filters for

analyzing fluorescent samples, so that exosomes with different

markers on their surface (e.g., CD63, HSP70, and TSG-101) could

be distinguished, and the results are more reliable than flow

cytometry (210). For cytokine detection, various methods based
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on the antigen-antibody interaction (e.g., ELISA, ELISpot, bead-

based flow assays) have been developed, but there are still many

challenges. The impact and function of cytokines is directly linked

to their extracellular expression levels, which often drastically vary

with time and spatial location. Recent publications have suggested

an interesting way forward for cytokine detection by combining

molecular target-specific sensors that bind the respective analyte,

and detection of successful binding through electric signals (211,

212). These biochips not only allow for fully automated detection

of dozens to hundreds of cytokines in parallel, but also allow live

and continuous detection of cytokines without the need to obtain

any type of sample. However, methods for tracing and identifying

the source of specific cytokine are not available yet.
Conclusions and future perspectives

Liver disease is generally a multi-stage, multi-hit process,

which may not only be the link between two organs, but also the

link between several organs, especially in metabolic-related liver

diseases such as ALD, NAFLD, and MAFLD. Hepatic immune

alteration from homeostasis to activation is a complex process

involving both intrahepatic and extrahepatic factors. The

emerging understanding of cross-talk between the liver and

other organs complements and completes our knowledge of

the role of hepatic immune regulation in liver disease

development. Better understanding of the origin specialization

and cascade effects of shuttle mediators such as exosomes and

cytokines like TNF-a, the trigger factors and recruitment

mechanisms of immune cells from other organs to the liver,

and the temporal and spatial changes of these events will provide

the key to intervening in liver disease progression and other

organ complications by modulating hepatic and systemic

immunity. These findings will benefit the development of

therapeutic strategies for liver diseases that target the cellular

and molecular levels to minimize adverse reactions and

maximize therapeutic effects. After all, there is an urgent need
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for more up-to-date models and methods relating to tracking

and specific intervention to explore the role of extrahepatic

factors in hepatic immune regulation.
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