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Objective: The aim of this study was to explore the lipidomic profiles of the CAL-27
human tongue cancer cell line and the human oral keratinocyte (HOK) cell line.

Methods: The lipidomic differences between the CAL-27 and the HOK cell lines were
investigated using non-targeted high-performance liquid chromatography–mass
spectrometry lipidomic analysis. The resulting data were then further mined via
bioinformatics analysis technology and metabolic pathway analysis was conducted in
order to map the most affected metabolites and pathways in the two cell lines.

Results: A total of 711 lipids were identified, including 403 glycerophospholipids (GPs),
147 glycerolipids, and 161 sphingolipids. Comparison of the enhanced MS (EMS) spectra
of the two cell lines in positive and negative ionization modes showed the lipid
compositions of HOK and CAL-27 cells to be similar. The expressions of most GP
species in CAL-27 cells showed an increasing trend as compared with HOK, whereas a
significant increase in phosphatidylcholine was observed (p < 0.05). Significant differences
in the lipid composition between CAL-27 and HOK cells were shown as a heatmap.
Through principal component analysis and orthogonal partial least squares discriminant
analysis, noticeably clear separation trends and satisfactory clustering trends between
groups of HOK and CAL-27 cells were identified. The numbers of specific lipid metabolites
that could distinguish CAL-27 from HOK in positive and negative modes were 100 and
248, respectively. GP metabolism was the most significantly altered lipid metabolic
pathway, with 4 metabolites differentially expressed in 39 hit products.

Conclusion: This study demonstrated the potential of using untargeted mass spectra
and bioinformatics analysis to describe the lipid profiles of HOK and CAL-27 cells.
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INTRODUCTION

Oral cancer is one of the most common human cancers and is
associated with an overall 5-year survival rate of less than 50%
(1). Oral squamous cell carcinoma (OSCC) develops from oral
potential malignant disorders (OPMDs) in a stepwise model and
has the highest morbidity of all oral cancer types. Since it is
usually asymptomatic, patients are often diagnosed at an
advanced stage. Screening high-risk populations to detect
OSCC and OPMDs at an early stage is therefore sensible. In
recent years, considerable research has been undertaken to
understand the genetic, proteinic, and lipidomic basis of
OSCC. A number of specially expressed genes and proteins
have been proposed as biomarkers for use in clinical diagnosis
(2–4). However, these approaches have usually shown
insufficient diagnostic sensitivity and specificity.

Lipids, one of the essential cellular components, play important
roles in cell function, acting as a biological barrier and being
involved in signal conduction, substance transportation, and
energy storage (5). The composition of lipids depends on the
different types of cells and tissues. Lipid composition may change
in different physical conditions. Variations in genetic status and
protein expression can also result in changes in particular lipids
(5–12).

Lipids are the most complicated molecules in terms of
chemical structure. The classification of a lipid depends on
both the headgroup and the type of linkage between the
headgroup and the acyl chains (13). Variations in the acyl
chain and the headgroup regulate an extremely large number
of individual lipid molecular species. There are currently more
than 1.5 million lipids found in the lipid database, while only
hundreds of species could be mapped using existing
technology (14).

Mass spectrometry (MS) with high-performance liquid
chromatography (HPLC) is used for lipid profiling (15), as well
as for its reducing ion suppression effects (16). Non-targeted
HPLC-MS lipidomic analysis enables the detection of “all” ion
features in biological samples. Bioinformatics analysis aids in the
simplification of the data and identifies the significantly affected
lipids at the start of the research, making the work more efficient.
Therefore, this study investigated the lipidomic profiles of the
CAL-27 human tongue cancer cell line and the human oral
keratinocyte (HOK) cell line in an attempt to explore whether
the lipid markers identified by untargeted MS and bioinformatics
analysis could be used in the early detection of OSCC.
MATERIALS AND METHODS

Materials
GC grade dichloromethane (DCM), ammonium acetate, and
ammonium hydroxide and 2-propanol (IPA) were supplied by
Fisher Scientific (Waltham, MA, USA). LC-MS grade methanol
(MeOH) and methyl tert-butyl ether (MTBE) were supplied by
CNW Technologies (Stuart, FL, USA). Lipid standards including
d7-PE, d7-LPC, and d7-TG were supplied by Avanti Polar Lipids
(Alabaster, AL, USA).
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The CAL-27 cell line was provided by Professor Youguang Lu
of the Stomatology School, Fujian Medical University. The HOK
cell line was provided by Ruijin Hospital, Shanghai Jiao Tong
University School of Medicine.

Cell Culture
The two cell lines were cultured in Dulbecco’s modified Eagle’s
medium containing 10% fetal bovine serum (Gibco BRL,
Indianapolis, IN, USA), 100 IU/ml penicillin G, and 100 mg/
ml streptomycin sulfate (Hyclone, Logan, UT, USA). Cells were
cultured at 37°C with 5% CO2 (SANYO MCO-17A, Japan SL
Shel LAB), and the culture medium was replaced every 2 or
3 days.

Cell Lipid Extraction
Each cell pellet (~5 × 106 cells/sample) was mixed with 400 ml
water, and the sample was then incubated in liquid nitrogen for
1 min, then thawed at room temperature. This freezing–thawing
cycle was repeated three times in total. Then, 960 ml of the
extraction solvent (MTBE/MeOH = 5:1, v/v), including 10 ml
10 ppm d7-PE (15:0/18:1), 2 ml 10 ppm d7-LPC (18:1), and 4 ml
10 ppm d7-TG (15:0/18:1/15:0), was added. The sample was
vortexed for 30 s, followed by 10 min of sonication. The solution
was then centrifuged at 3,000 rpm for 15 min. The upper organic
layer (i.e., the MTBE layer) was collected into a new Eppendorf
tube. Then, 500 ml of MTBE was added to the left aqueous layer
for further extraction. The solution was vortexed, sonicated, and
centrifuged three times, as previously described. Finally, the
pooled organic layer was evaporated. The dry extract was
reconstituted using 100 ml of DCM/MeOH (1:1, v/v) prior to
liquid chromatography tandem MS (LC-MS/MS) analysis. 60ml
of the solvent was carefully transferred into a 2-ml tube. Of each
sample, 10 ml was mixed to form pooled quality control (QC)
samples, then 60 ml was taken for further analysis.

Chromatography and Mass Spectrometry
LC-MS/MS analysis was performed using an HPLC system (1290
series, Agilent Technologies, Santa Clara, CA, USA) coupled
with quadrupole time-of-flight mass spectrometry (TripleTOF
6600; AB Sciex, Redwood City, CA, USA). Lipid extract
separations were performed on a Phenomenex Kinetex C18
column (1.7 mm particle size, 100 mm in length × 2.1 mm i.d.)
with a column temperature of 55°C. The injection volume was
3 ml in negative mode and was 0.5 ml in positive mode. Mobile
phase A was 10 mM ammonium formate in H2O/ACN (4:6, v/v)
and mobile phase B was 10 mM ammonium formate in IPA/
ACN (9:1, v/v). The two mobile phases were used for
electrospray ionization in positive and negative modes. The
linear gradient eluted from 40% to 100% B (0–12 min), 100%
B (12–13.5 min), and from 100% to 40% B (13.5–13.7 min), and
then equilibrated at 40% B until 18 min. The flow rate was set at
0.3 ml/min.

High-resolution MS and MS/MS data were acquired using
TripleTOF 6600 MS based on an information-independent
acquisition function under the control of the software Analyst
TF (version 1.7.1, AB Sciex). The MS ion intensity and counts
larger than 100 were further dissociated for MS/MS at every
December 2021 | Volume 11 | Article 771337
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acquisition cycle. The dissociation energy was set to 35 eV for the
generation of the tandem mass spectra (MS2), and the speed of
the MS2 scan was set to 500 counts every 50 ms. The parameters
of electrospray ionization were set as follows: ion source gas 1, 60
Pa; ion source gas 2, 60 Pa; curtain gas, 30 Pa; temperature, 550°C;
ion spray voltage floating, 5,500 V in positive mode and −4,500 V in
negative mode.

The raw data files (wiff format) were converted into files
in mzXML format using the msconvert program from
ProteoWizard, version 3.0.6150. Then, the mzXML files were
loaded into LipidAnalyzer for data processing, which was
developed using R for automatic data analysis. The isotope
signals and repeated signals containing potassium ions, sodium
ions, and ammonium ions were removed during the analysis.
Peak detection was first applied to the MS1 data. The centWave
algorithm in XCMS was used for peak detection. The cutoff for
matching scores was set at 0.6 and the minifrac was set at 0.5.
With the MS/MS spectrum, lipid identification was achieved
through a spectral match using an in-house MS/MS spectral
library. The preprocessing results generated a data matrix that
consisted of the retention time, the mass-to-charge ratio (m/z),
and the peak intensity. The absolute quantitation of lipids can be
achieved using the peak area, stable isotope-labeled internal
standard (SIL-IS), and response factor (RF) information.

Statistical Analyses
Data were expressed as the mean ± standard deviation. After data
processing, univariate and multivariate statistical analyses were
performed to screen the significant differentially expressed
features. Those features were then confirmed by searching
Frontiers in Oncology | www.frontiersin.org 3
LIPID MAPS and the HMDB database and matching
standards and the targeted data-dependent acquisition spectra.
SIMCA-P 14.1 (Umetrics, Umca, Sweden) was used for
multivariable analysis, including principal component analysis
(PCA) with mean-centered scaling and orthogonal partial least
squares discriminant analysis (OPLS-DA) with unit variance
scaling. As well as generally interpreting the clustering trend for
the multidimensional data, PCA was carried out to reduce the
dimensionality of the dataset. OPLS-DA was then applied to
detect global lipid differences among CAL-27 and HOK cells; at
the same time, the corresponding variable importance in
projection (VIP) values were calculated in the OPLS-DA
model. The criteria for selected potential metabolic biomarkers
were set as follows: a VIP value greater than 1 and a p-value less
than 0.05 using Student’s t-test. In addition, by conducting a
further search of commercial databases, such as the Kyoto
Encyclopedia of Genes and Genomes database (KEGG; http://
www.genome.jp/kegg/), large quantities of differential
metabolites were cross-mapped to the pathways.
RESULTS

Positive and Negative Electrospray
Ionization MS/MS
The correlation coefficient of the QC samples was close to 1,
indicating that the QC samples were tightly clustered
(Figures 1A, B). A total of 711 lipids were identified, including
403 glycerophospholipids (GPs), 147 glycerolipids, and 161
sphingolipids (SPs) (Figure 2). Comparing the enhanced MS
A B

FIGURE 1 | Correlation analysis of quality control samples. (A) Positive mode. (B) Negative mode.
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(EMS) spectra of the two cell lines in positive/negative ionization
modes, it was found that the lipid compositions of HOK and
CAL-27 cells were similar.

Relative Quantitative Analysis
The expressions of diglyceride (DG) and most of the GP species
[phosphatidylcholine (PC), phosphatidylglycerol (PG), and
phosphatidylinositol (PI)] in CAL-27 cells showed an
increasing trend as compared with those of HOK cells,
whereas a significant increase in PC was observed (p < 0.05;
Figure 3). The expressions of phosphatidylserine (PS), SP, and
triglyceride (TG) were downregulated in the CAL-27 cell line,
and among them, the expressions of SP and TG were both
significantly decreased (*p < 0.05; Figure 3).

Multivariate Data Analysis
Significant differences between CAL-27 and HOK cells are
shown as a heatmap in Figures 4A, B, ranked by variance
analysis. Each row represents an individual lipid, and each
column represents an individual sample. The lipid
compositions of the two cell lines were similar. However, they
showed quite different expression trends in each lipid, and this
Frontiers in Oncology | www.frontiersin.org 4
may have resulted in the different biological properties seen
between the two cell lines.

PCA
Through PCA, clear separation trends between groups of HOK
and CAL-27 cells were identified (Figures 5A, B). Subsequently,
a supervised method, OPLS-DA, was applied in the data analysis.
As can be seen in Figures 5C, D, satisfactory clustering trends
among HOK and CAL-27 cells were observed in the scores plot.

Lipid Metabolite Features
The numbers of specific lipid metabolites that could distinguish
CAL-27 from HOK in positive and negative modes were 100 and
248, respectively (Supplementary Table 1, 2). In the volcano
plots, each spot represents an individual lipid. The red spots
represent the lipids undergoing a fold change increase of more
than 1.5, the blue spots indicate the lipids that declined by more
than 1.5-fold, and the gray spots represent the lipids that did not
demonstrate significant changes (p < 0.05). The volcano plots
above showed visually that there were some lipid metabolites
that had the potential to discriminate between the two cell
lines (Figures 6A, B). A combination of differentially
FIGURE 2 | Lipid compositions of the CAL-27 and human oral keratinocyte cell lines.
FIGURE 3 | Differential lipidomic metabolites in the CAL-27 and human oral keratinocyte cell lines.
December 2021 | Volume 11 | Article 771337
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expressed lipid metabolites would be more sensitive and specific
for biomarker selection.

Disturbed Metabolic Pathway
Topological analysis of the differentially expressed lipid metabolites
was conducted using the MetaboAnalyst platform. Then, based on
the KEGG database, pathway analysis was performed. The detailed
results are listed in Tables 1, 2. SP metabolism was disturbed
significantly in positive mode (impact > 0.1). The only differentially
expressed metabolites among the 25 mapped lipids was ceramide
(d18:1/20:1;cpd:C00195), which was upregulated. On the other
hand, in the negative mode, GP metabolism emerged at the top
of the significantly altered lipid metabolic pathways. There were
four metabolites differentially expressed in 39 hit products.
Phosphatidylethanolamine (PE) (cpd: C00350) was upregulated,
while PC (cpd: C00157), PA (16:0/16:0; cpd: C00416), and PS (16:0/
16:0; cpd: C02737) showed a decrease. According to the criteria, and
using a pathway impact larger than 0.1 and a p-value less than 0.05,
GP metabolism in negative mode showed significant changes.
DISCUSSION

In this study, the correlation coefficient of the QC samples was
close to 1, indicating that they were tightly clustered, and this
demonstrated the stability and reliability of the lipid profiling
platform in this study. Comparison of the EMS spectra of the two
cell lines in positive and negative ionization modes showed the
lipid compositions of HOK and CAL-27 cells to be similar.
Frontiers in Oncology | www.frontiersin.org 5
The overall similarity of the lipid profiles between cancerous and
normal cell lines revealed the similar basic composition of the
lipid membranes in both cell types.

To obtain an overview of the association between the major
lipid composition of the two different cell lines, we performed
relative quantitative analysis. The expressions of DG and most of
the GP species (PC, PG, and PI) in CAL-27 cells had a growing
trend compared with those in HOK cells, whereas a significant
increase in PC was observed. The expressions of PS, SP, and TG
were downregulated in the CAL-27 cell line, and among them,
the expressions of SP and TG showed a significant decrease. PC,
as the main plasma membrane phospholipid, accounts for
approximately 50% of the total cellular phospholipids and is
the most abundant phospholipid in mammalian membranes.
The robust increase of PC in CAL-27 cells may predicate the high
proliferation of tumor cells.

Research by Wang et al. indicated that, in the plasma of
OSCC patients, all GPs were decreased compared with that in
healthy controls, especially PC and phosphoethanolamine
plasminogen. In contrast, the SPs were increased, and among
them, there were 12 lipids associated with pathological staging
that could be used in the early diagnosis of OSCC (17).
Uchiyama et al. identified that visualizing PC (16:0/16:1) and
PC (18:1/20:4) could identify the border between the cancer and
stromal regions of OSCC using MS imaging (18). The imaging of
lipidome components distinguished oral cancer from normal
epithelium in tissue samples using matrix-assisted laser
desorption/ionization (MALDI) MS imaging, indicating that
the lipidome components in cancer and normal samples of
A B

FIGURE 4 | Differentially expressed lipid metabolites in the CAL-27 and human oral keratinocyte cell lines. (A) Positive mode. (B) Negative mode.
December 2021 | Volume 11 | Article 771337
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OSCC were different (19). It appears that the results in this study
were different from those of other lipidomics research studies
using other OSCC samples. The differences in the lipid
compositions may in part have resulted from the use of
different sample types. Apart from cancer, tissue or blood
samples could be affected by many factors, such as
inflammation and the immune response (20). Some studies
identified that total plasma cholesterol and high-density and
low-density lipoproteins decreased significantly in OSCC
patients compared with those in normal subjects, while there
was no significant difference in the plasma TG (21–23).
Frontiers in Oncology | www.frontiersin.org 6
In order to further mine the data, multivariate data analysis
(MDA) methods were used for the visualization of the differences
and similarities between normal and tumor cell lines. As with the
heatmap, the PCA and OPLS-DA, volcano plots, the MDA
methods showed that the lipid compositions of the two cell lines
were similar, although they showed different expression trends
in each lipid, and this may have resulted in the different
biological properties between the two cell lines. Thus, it
showed the potential to differentiate between the two cell lines
by lipidomic analysis. Through PCA and OPLS-DA, clear
separation trends and satisfactory clustering trends between
A B

C D

FIGURE 5 | Lipid profiles of the CAL-27 and human oral keratinocyte cell lines. (A) Principal component analysis (PCA) in positive mode. (B) PCA in negative mode.
(C) Orthogonal partial least squares discriminant analysis (OPLS-DA) in positive mode. (D) OPLS-DA in negative mode.
December 2021 | Volume 11 | Article 771337
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groups of HOK and CAL-27 cells were identified, indicating the
potential for using lipidomic analysis to distinguish between two
different cells. From the volcano plots above, it was observed that
the numbers of specific lipid metabolites that could distinguish
CAL-27 from HOK in positive and negative modes were 100 and
248, respectively.

According to the criteria, using a pathway impact larger than 0.1
and a p-value less than 0.05, GP metabolism in negative mode
showed significant changes. It is necessary to further investigate the
changes in GP metabolism in the lipid metabolism profile. As the
Frontiers in Oncology | www.frontiersin.org 7
largest class of phospholipids in organisms, GPs and the metabolic
pathways have always been the focus of lipidomic histology. There is
a complex transformation relationship between them. PC and PE
could be investigated using the Kennedy pathway or the cytidine
diphosphate diacylglycerol (CDP-DAG) pathway. Moreover, PC,
PE, and PS could transform into each other under certain
conditions (20–23). Therefore, MS analysis coupled with
bioinformatics analysis will help in identifying the targets and key
pathways for further research. The efficiency would be higher when
combining clinical information.
A B

FIGURE 6 | Differentially expressed lipid metabolites in the CAL-27 and human oral keratinocyte cell lines. (A) Positive mode. (B) Negative mode.
TABLE 1 | Relative quantifications of 100 differentially expressed lipids in the CAL-27 cell line versus the human oral keratinocyte cell line in positive mode.

Pathway Total Hits Raw p-value −ln(p) FDR Impact

Sphingolipid metabolism 25 1 0.050906 2.9778 1 0.29423
Glycerolipid metabolism 32 1 0.064781 2.7367 1 0.05145
Glycerophospholipid metabolism 39 1 0.078494 2.5447 1 0.00317
December 2021 |
 Volume 11 | Article
FDR, false discovery rate.
TABLE 2 | Relative quantifications of 248 differentially expressed lipids in the CAL-27 cell line versus the human oral keratinocyte cell line in negative mode.

Pathway Total Hits Raw p-value −ln(p) FDR Impact

Glycerophospholipid metabolism 39 4 2.9135E−07 15.049 0.000023308 0.3663
GPI anchor biosynthesis 14 1 0.028769 3.5485 0.82129 0.0439
Linoleic acid metabolism 15 1 0.030798 3.4803 0.82129 0
alpha-Linolenic acid metabolism 29 1 0.058855 2.8327 1 0
Glycerolipid metabolism 32 1 0.064781 2.7367 1 0.01247
Glycine, serine, and threonine metabolism 48 1 0.095887 2.3446 1 0
Arachidonic acid metabolism 62 1 0.12242 2.1003 1 0
FDR, false discovery rate; GPI, glycosylphosphatidylinositol.
771337
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There are some differences between the results from the
untargeted lipidomic analysis and those from the bioinformatics
analysis. We annotated these for the different data processing and
cutoff value standards. On the other hand, untargeted MS analysis
for lipidomic composition in the two cell lines may have some
influence on the accuracy of the results. Consequently, it is
suggested that a targeted lipid analysis for the significantly
affected lipid molecular species, which have been mapped in
differentially expressed metabolic pathways, be used. A large
number of studies in the past 2 years have suggested that tumor
cells have undergone metabolic remodeling, not only via the
Warburg effect of glucose metabolism in tumor cells, but more
and more research groups have reported that fat metabolism is
abnormally upregulated in tumor cells, while lipidomic profiling of
oral cancer cells has not yet been elucidated. This study has shown
that oral cancer cells with different metastatic potentials can be
found to have characteristic fatty acid chain lengths and different
lipid compositions, and this has broadened the understanding of
oral cancer.
CONCLUSION

Lipid metabolism in cancer cells or cancerous samples remains
largely unclear. This study has demonstrated the potential to
describe the lipid profiles of HOK and CAL-27 cells using
untargeted MS and bioinformatics analysis. The primary
purpose of this work was to construct a reliable and sensitive
MS platform, not to detect a specific lipid or metabolic pathway.
The methodology used in this study to profile the lipid
metabolites of the cell lines is not limited to biomarker
selection, but also offers the potential to describe OSCC by
integrating histological or clinical features.
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