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Abstract
Messenger RNA (mRNA) localisation enables a high degree of spatiotemporal control on protein synthesis, which contributes 
to establishing the asymmetric protein distribution required to set up and maintain cellular polarity. As such, a tight control 
of mRNA localisation is essential for many biological processes during development and in adulthood, such as body axes 
determination in Drosophila melanogaster and synaptic plasticity in neurons. The mechanisms controlling how mRNAs are 
localised, including diffusion and entrapment, local degradation and directed active transport, are largely conserved across 
evolution and have been under investigation for decades in different biological models. In this review, we will discuss the 
standing of the field regarding directional mRNA transport in light of the recent discovery that RNA can hitchhike on cyto-
plasmic organelles, such as endolysosomes, and the impact of these transport modalities on our understanding of neuronal 
function during development, adulthood and in neurodegeneration.
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The biogenesis and composition of RNA 
granules

From their synthesis, mRNAs interact with several RNA 
binding proteins (RBPs) that dictate their fate, from splic-
ing and translation to cellular localisation and degradation 
[1]. RBPs are recruited to mRNAs by binding to specific 
sequences known as cis-elements and/or by recognising spe-
cific secondary and/or tertiary mRNA structures [1, 2]. Cis-
elements are scattered across the length of the mRNA, but 
are more frequently found within its 3′-untranslated region 
(3′-UTR) [3]. Such mRNA and RBP complexes are known 
as messenger ribonucleoprotein particles (mRNPs). Several 
mRNPs can come together via protein–protein and RNA-
RNA interactions, forming liquid–liquid phase-separated 

RNA granules, such as stress granules and P-bodies [4]. The 
composition of the granules and the signals that trigger their 
formation and their subsequent functions, confer to the dif-
ferent RNA granules their unique identities [2]. Relevant to 
this review are RNA transport granules, in which mRNAs 
are transported in a likely translationally silent state, until 
they reach their targets where they undergo local translation 
in response to specific signals such as external spatial guid-
ance cues [5, 6]. A general conclusion emerging from dec-
ades of research, is that the choice of where these granules 
go depends on a number of factors, such as the sequences of 
cis-elements in the mRNA and the protein composition of 
the granules. However, the full picture of how these granules 
are assembled or processively transported is still unavail-
able and is a subject of intense study [7, 8]. Nonetheless, it 
is clear that the transport of these granules is mediated via 
interactions, either direct or indirect, with the main classes 
of motor complexes: kinesins, cytoplasmic dynein and 
myosins [7, 9, 10].
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Motor proteins

Molecular motors are mechanoenzymes that hydrolyse 
ATP to move along cytoskeletal elements which act as a 
two-way railway system for moving cargo around cells. 
Microtubules have polarised plus (fast growing) and minus 
ends [11, 12], which determine microtubule orientation 
within cells. In axons and distal dendrites, microtubules 
are uniformly organised with their plus ends facing the 
axon terminal, whilst in proximal dendrites their orienta-
tion is mixed, with plus ends pointing in both directions 
[13]. Actin filaments are also polarised with barbed (fast 
growing) and pointed ends [14]. Motor proteins recognise 
the orientation of microtubules and actin microfilaments, 
which determines their overall direction of movement.

The kinesin and dynein superfamilies move along 
microtubules, with kinesins mostly moving towards the 
plus end of microtubules, and cytoplasmic dynein mov-
ing towards the minus end [11, 12]. In contrast, myosins 
travel along actin filaments, with all known myosins except 
myosin VI, moving towards the barbed end [15]. These 
motor proteins either directly, or through adaptor proteins, 
recognise and bind to various cargoes, such as cytoplasmic 
organelles or protein complexes, transporting them to dif-
ferent intracellular locations. Their roles are particularly 
important for long-distance transport in neurons; hence, 
for a complete picture of RNA transport, these proteins 
are briefly discussed below. However, motor proteins have 
been the subject of many excellent reviews [11, 12, 14, 
16–19], to which we would like to direct the readers for 
a more in-depth discussion of their different cargoes and 
binding properties.

Kinesin superfamily proteins (KIFs) is a diverse family 
of motor proteins, encoded by 45 different genes in humans. 
Their structure typically consists of a globular motor 
domain, a stalk region and a tail domain, as exemplified by 
conventional kinesin, known also as KIF5 or kinesin-1 [11]. 
KIFs are broadly grouped into three subtypes based on the 
location of the motor domain within the kinesin heavy chain 
(KHC), and classified into 14 different classes depending 
on their phylogeny. They bind their cargoes through the tail 
region of KHC, which exhibits a high degree of sequence 
diversity, or through associated kinesin light chains (KLCs) 
and adaptor proteins. The variety of the tails and light 
chains, further diversified via alternative splicing, enables 
different kinesins to bind distinct cargoes with a high level of 
specificity, albeit with some degree of redundancy amongst 
the different KIF family members and adaptors; for example, 
FEZ1, a kinesin-1 adaptor, has been reported to bind mito-
chondria as well as synaptic vesicles [17, 20, 21].

Cytoplasmic dynein, henceforth referred to as dynein, is 
the motor protein responsible for most of the microtubule 

minus end-directed intracellular traffic, transporting a wide 
variety of membrane-bound and membrane-less cargoes 
[12, 19]. Structurally, the dynein transport complex is 
made of a dimer of dynein heavy chain (DHC), which 
encompasses the motor and dimerisation domains [22], 
and several accessory subunits, such as dynein interme-
diate chains (DICs), light intermediate chains (DLICs) 
and light chains (DLCs) [19]. In its active form, dynein is 
bound to the dynactin complex and a diverse set of adap-
tor/activator proteins, linking it to its myriad intracellular 
cargoes [19]. Additionally, the accessory subunits that 
bind to the DHC dimer are present in several isoforms, 
thus allowing the formation of a range of diverse dynein 
transport complexes, further increasing the variety and 
specificity of cargo binding [12, 19]

The myosin superfamily is formed of a large group of 
motor proteins, which in humans are classified phylogeneti-
cally into more than 20 classes, consisting of as many as 
40 genes [15, 16, 23]. It contains the first discovered motor 
protein, myosin II, which subsequently led to the discovery 
of the other motor complexes. The force-generating mecha-
nism of these molecular motors has been well-characterised 
in muscles, where muscle myosin II moves along actin fila-
ments causing muscles to contract [24]. Myosins are also 
found in other systems, such as in the stereocilia of auditory 
hair cells, where they play additional structural roles [15, 
25]. They are generally present as dimers of a heavy chain, 
made of a motor region, a neck region and a diverse tail 
region used to bind a variety of cargoes [24].

Several studies over the last two decades have identi-
fied binding of mRNA transport granules to motor proteins 
belonging to all three families [9, 26]. In some model sys-
tems, the composition of the mRNA transport complex, from 
the RBPs to the adaptors and associated motors, has been 
characterised but in most cases the full picture is still far 
from clear. The following sections will discuss some of the 
best studied models, highlighting relevant lessons and exist-
ing knowledge gaps in each, starting with simpler models 
and moving onto more complex systems.

mRNA transport in budding yeast

Budding yeast can exist in two different mating types in 
haploid yeast cells. Following budding, the expression of 
a site-specific endonuclease, HO, is maintained in mother 
cells, allowing them to switch their mating-type [27, 28]. 
However, endonuclease HO expression is inhibited in 
daughter cells, due to the segregation of its transcriptional 
repressor, Ash1p, specifically into daughter cells, thereby 
inhibiting mating-type switching. This process ensures that 
the mother and daughter cells have different mating types, 
allowing them to fuse and form diploid nuclei under per-
missible conditions [27, 28]. The asymmetric distribution 
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of Ash1p is due to the transport of its mRNA, ASH1, into 
the bud tips via an actin-dependent process during budding 
[29, 30].

Five independent She genes have been shown to be 
important regulators of mating-type switching [29]. Yeast 
cells lacking these genes showed symmetrically distrib-
uted ASH1 mRNA across the mother and daughter cells, 
leading to the global repression of mating-type switching 
[31, 32]. Moreover, symmetrical ASH1 distribution has 
also been observed upon treatment of yeast cells with the 
actin depolymerising drug, latrunculin, and in mutants for 
proteins important for actin functions, indicating that ASH1 
mRNA localisation to the yeast bud is actin-dependent [31, 
32]. One of the five She genes identified as regulators of 
mating-type switching encodes She1p, which is the type-
V non-processive single-headed myosin motor known as 
Myo4p. Immunoprecipitation studies showed that ASH1 
mRNA associates with Myo4p, but only in the presence of 
two other She proteins, She3p and She2p [33, 34]. She3p 
was able to bind Myo4p directly even in RNA degrading 
conditions, but it co-immunoprecipitated with ASH1 mRNA 
only in the presence of She2p [34]. A separate set of studies 
using the yeast two-hybrid and three-hybrid systems dem-
onstrated that She3p acted as an adaptor between She2p and 
Myo4p [35, 36].

In contrast, She2p was able to pull-down ASH1 mRNA 
even in mutants lacking She3p and Myo4p [34]. ASH1 
mRNA contains four cis-elements that are important for 
its localisation, including one in the 3′-UTR [37, 38]. UV-
crosslinking showed that She2p can bind all four localisation 
elements, but with different affinities, demonstrating that it 
is an RNA-binding protein [36]. The binding of She2p to 
She3p was RNA-independent, as a She2p mutant unable to 
bind RNA was still capable of interacting with She3p [39]. 
Later experiments then showed that She2p binds ASH1 co-
transcriptionally in the nucleus forming a pre-complex that 
is shuttled to the cytoplasm [40–42].

Structural analysis and in vitro reconstitution studies have 
revealed that Myo4p is present in the cytoplasm in an inac-
tive state bound to a She3p dimer and that She2p binds ASH1 
as a tetramer [43–45]. Following its nuclear shuttling, the 
RNA-She2p precomplex recruits two Myo4p-She3p motor 
complexes, effectively coupling two single-headed myosin 
motors and turning them into processive motor complexes 
[43–45]. Recent structural analysis showed that ASH1 under-
goes marked conformational changes upon She2p binding 
[46]. The binding of this complex to She3p further restricts 
the structure of ASH1, increasing the specificity of She2p 
association with ASH1 mRNA and enabling She3p to spe-
cifically bind to specific ASH1 localisation elements. Cru-
cially, these sequential changes drive the stabilisation of the 
forming RNP transport complex [46].

From these studies, it was concluded that ASH1 mRNA is 
transported into the yeast bud in a complex made of She2p, 
She3p and Myo4p (Fig. 1a). In this complex, Myo4p powers 
the movement of the complex along actin filaments towards 
the barbed end facing the newly forming bud [28]. Interest-
ingly, some studies have suggested that the mRNA moiety 
maybe be important for Myo4p processivity, as it was found 
that a transport complex preserving protein–protein interac-
tions, but lacking the ASH1 mRNA, is unable to efficiently 
translocate to the bud tip [39]. Indeed, artificially tether-
ing LacZ mRNA to She3p was sufficient for the asymmetric 
distribution of She3p and Myo4p to the yeast bud [36, 40]. 
The aforementioned in vitro reconstitution studies [44, 45] 
conclusively demonstrated that the impact of mRNA binding 
on Myo4p processivity is at least partly due to the pairing 
of two Myo4p proteins by She2p. They however, reached 
contradicting conclusions on the role of ASH1 mRNA itself, 
with one study concluding that the mRNA itself is essential 
for processivity under physiological conditions to stabilise 
the transport complex [45], whereas the other argued that the 
cargo mRNA is dispensable for in vitro processivity [44]. It 
therefore remains unclear if the RNA moiety is essential for 
transport in living cells [47, 48].

mRNA transport in Drosophila oocytes

In the fly model D. melanogaster, the developmental axes 
are pre-determined through the transport of specific mRNAs 
from the nurse cells into the oocyte during early oogenesis 
[10, 49]. Bicoid mRNA, which encodes an essential morpho-
gen, is transported to the anterior cortex of the oocyte, thus 
establishing the anterior pole [50]. Gurken mRNA, encoding 
a TGFɑ homologue, is also transported towards the anterior 
pole, but later localises antero-dorsally, specifying the dorsal 
pole [51]. In contrast, the oskar mRNA localises posteriorly 
for posterior axis specification and germ cell determination 
[51–53]. Unlike ASH1 mRNA transport, these mRNAs are 
transported into the oocyte by dynein moving along micro-
tubules, which are oriented with their minus ends pointing 
towards the oocyte and away from nurse cells, as treatment 
of Drosophila ovaries with microtubule-destabilising drugs 
disrupts this localisation [50, 54]. These mRNAs are trans-
ported in a complex with Egalitarian (Egl), an RBP, and 
the dynein-adaptor protein Bicaudal (BicD) [55–58]. This 
Egl-BicD complex also seems to underlie the apical locali-
sation of pair-rule transcripts in the blastoderm syncytium, 
such as wingless and hairy, which are important for pattern-
ing of embryonic segments [56, 59]. In the case of gurken 
mRNA, the identity of these RNA-containing structures as 
membrane-less organelles was validated by electron micros-
copy [60].
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The RNA binding properties of Egl were demonstrated 
via an elegant series of experiments by Simon Bullock’s 
team [61]. They incubated an ovary extract with immobilised 

minimal RNA localisation elements and identified Egl and 
BicD as the only proteins that specifically associated with 
these structures. However, Egl could bind a number of 

Fig. 1  Summary of direct 
motor-mRNA granule interac-
tions for mRNA transport across 
different systems. a Proteins 
involved in ASH1 mRNA 
transport along actin filaments 
into the newly formed bud 
in budding yeast. Additional 
RBPs still to be identified are 
marked by a question mark. 
b-i Diagram of a stage 10/12 
Drosophila oocyte, showing the 
Egl-BicD complex mediating 
the transport of bicoid, gurken 
and oscar mRNAs from nurse 
cells into the forming oocyte 
during oogenesis. Oskar mRNA 
is initially released into the 
oocyte and is later transported 
in a complex with kinesin-1 and 
Stau1 and possibly other still 
unidentified RBPs to the pos-
terior pole (b-ii). c Schematic 
summarising the main motor 
proteins and RBPs mediating 
mRNA transport in dendrites 
and axons (c-i) and poten-
tially in pre- and post-synaptic 
regions (c-ii). The adaptor 
identity in (c-i) is currently 
unknown, in vitro reconstitution 
studies suggest KAP3 to be one 
potential adaptor [96]. Question 
marks indicate that the stoichi-
ometry and exact composition 
of these complexes are still 
unclear. Furthermore, whether 
myosin Va drives the transport 
of mRNPs is still under investi-
gation. Ribosomal proteins have 
also been observed in mRNA 
transport granules in neurons, 
but have been omitted for clar-
ity. See main text for further 
information
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different localisation sequences, thus revealing that it is a 
promiscuous RBP [61], which might explain how it is able 
to transport a wide range of mRNAs [62]. In addition, Egl 
binds through its N-terminus to BicD, an adaptor and activa-
tor of the dynein-dynactin motor complex [63], which links 
the mRNP to the transport machinery [61]. Downregulation 
of Egl mislocalised bicoid, gurken and oskar transcripts in 
oocytes, showing that Egl is necessary for their correct local-
isation [64]. Recent studies reported the in vitro reconstitu-
tion of the minus end directed transport of mRNAs using 
only purified proteins of the Egl-BicD transport machinery, 
thus demonstrating that these proteins are not only neces-
sary, but also sufficient for RNA transport (Fig. 1b) [65, 66]. 
However, additional factors might help direct the different 
mRNA cargoes to their correct location in vivo, such as Exu 
protein for early-stage bicoid mRNA localisation [50].

Egl binds to the DLC subunit of the dynein motor com-
plex through its C-terminal domain [67]. Hypomorphic Egl 
mutants that lose their ability to bind DLC but not BicD, 
display defective RNA localisation, demonstrating that Egl 
binding is essential for the processivity of the motor [61, 
67]. In vitro reconstituted RNA transport studies revealed 
that two Egl molecules are present in the moving RNA gran-
ule, and that the bivalent mRNA-bound configuration of 
Egl relieves autoinhibition of BicD and induces processive 
movement of dynein [66]. It was subsequently demonstrated 
that the binding of Egl to DLC, enables Egl dimerisation, 
potentially explaining why the lack of Egl-DLC binding 
results in defective RNA transport [68].

Although the dynein-dependent transport of Egl-BicD 
mRNPs is crucial for mRNA localisation in Drosophila, 
other motor proteins also contribute to this process. For 
example, once localised to the oocyte, oskar travels poste-
riorly, moving towards the plus ends of microtubules using 
conventional kinesin in a complex with Staufen (Stau) and 
other RBPs (Fig. 1b) [52, 53, 69, 70]. As a result, kinesin 
heavy chain-null oocytes have defective oskar mRNA locali-
sation with normal bicoid distribution [69], and deletions of 
specific Stau domains also disrupt oskar localisation [71]. 
In addition, Stau was found to play a role in bicoid anterior 
localisation pattern at later stages of oocyte development 
[54, 71]. However, the precise molecular aspects of this 
mechanism are yet to be clarified.

Neuronal mRNA localisation

Neurons are classic examples of polarised cells, with dis-
tinctive dendritic and axonal compartments carrying out 
unique functions that rely on their specific morphologies [3]. 
Indeed, their dendritic tree can be extremely complex, and 
their axons can extend more than a meter in length in large 
mammals, including humans. mRNA localisation is crucial for 

establishing and maintaining such a polarity [3]. Additionally, 
neurons host up to several thousand synapses where mRNA 
localisation and local translation are key for ensuring the rapid 
spatio-temporal regulation of protein synthesis required for 
synaptic plasticity [3, 6, 72]. For instance, Camk2ɑ mRNA 
was found to localise to dendrites at sites receiving high-fre-
quency stimulation [73], whereas NMDA-induced neuronal 
activation was demonstrated to trigger the translocation of 
Calmodulin-3 mRNA into dendrites in rat cortical neurons 
[74]. Deep sequencing of hippocampal neuropil coupled with 
Nanostring analysis and high-resolution fluorescent in situ 
hybridisation, estimated the number of distally localised 
mRNAs in dendrites to be around 2500 [75]. Imaging studies 
also demonstrated that mRNA translation occurs in a specific 
and spatially restricted manner in stimulated synapses in Aply-
sia (a sea slug) neurons, thereby mediating long-term synaptic 
plasticity [76]. This combined evidence clearly supports the 
hypothesis that mRNA localisation and translation are impor-
tant phenomena in dendrites [6].

However until a few years ago, it was less widely accepted 
that such processes take place in axons despite early support-
ing evidence dating back to the 1960s [77]. Pioneering stud-
ies led by Christine Holt’s group demonstrated that growth 
cones in developing axons contain beta actin transcripts, 
which are translated in response to extrinsic guidance cues 
only in the immediate vicinity of the specific spatial signal 
[78]. Indeed, acute inhibition of protein synthesis in Xenopus 
larval brains disrupts axonal branching dynamics of develop-
ing axons detached from their somas in the tectum, demon-
strating the in vivo importance of axonal protein synthesis 
during development [79]. Similar findings obtained through 
the immunoisolation of genetically tagged ribosomes from 
axons followed by deep sequencing of associated tran-
scripts showed that thousands of axonally localised mRNAs 
undergo active translation in vivo, and that the axonal trans-
latome changes dynamically during development [80, 81]. 
Such studies in addition to early evidence of axonal poly-
somes and mRNA granules, coupled with axonal bulk tran-
scriptomics, conclusively demonstrated that mRNAs can be 
recruited and transported into axons where they undergo 
local translation to support axonal growth and maturation 
in both sensory and motor neurons in vitro and in vivo [77, 
82–85]. mRNA transport and translation continue to play 
important roles in adulthood for processes such as axonal 
regeneration after injury [86–88]. More recently, these con-
cepts were extended to pre- and post-synaptic regions, and 
local protein synthesis was found to be a common feature of 
both compartments [89].
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Neuronal RNA transport granules

The molecular composition of neuronal RNA transport 
granules is still not completely clear. However, several 
RBPs such as, STAU, FMRP (Fragile X Mental Retardation 
Protein) and G3BP1 (ras-GTPase-Activating Protein SH3-
Domain-Binding Protein 1), are known to be associated 
with these granules [87, 90–92]. Nevertheless, how these 
RBPs interact with motor proteins remains undetermined. 
Early studies identified a 1000S complex from mouse brain 
homogenates as a binding partner of kinesin-1 using an 
immunoprecipitation approach [93]. Several RBPs, includ-
ing Pur proteins, FMRP and STAU, were found associated 
with this complex in an RNase-insensitive manner. Reverse-
transcription polymerase chain reaction (RT-PCR) demon-
strated that Camk2a and Arc mRNAs were present in the 
immunoprecipitates, thereby suggesting that the 1000S com-
plex is an RNA transport granule (Fig. 1c). Immunostain-
ing experiments for Pur-ɑ, the strongest binding partner of 
kinesin-1 in this structure, showed a punctate distribution 
in dendrites of cultured hippocampal neurons, which co-
localised with mRNAs, kinesin-1 and several RBPs [93]. 
These structures were then demonstrated to be RNA trans-
port granules based on time-lapse experiments showing their 
bi-directional transport in cultured neurons. Overexpression 
of kinesin-1 caused an increase in the anterograde movement 
of these RNA granules away from the soma, whilst expres-
sion of a dominant-negative kinesin-1 mutant reduced their 
dendritic localisation. Consistently, knockdown of specific 
RBPs, such as STAU, also reduced their dendritic locali-
sation. Mass spectrometry analysis of isolated complexes 
enabled the identification of additional RBPs, raising the 
number of protein components of these RNA granules to 
more than 40 [93]. This study therefore provided conclu-
sive evidence that kinesin-1 mediates the transport of Pur-
ɑ-positive RNA granules, perhaps through direct binding to 
the motor tail domain [93].

In line with the previous findings, STAU1- and STAU2-
containing granules isolated from rat brain homogenates 
were also found to be enriched in kinesin heavy chain [94]. 
Furthermore, in another study, kinesin-1 pulldowns from 
extracts of mouse brain synaptosomes were enriched in 
Rac1 and Map1b mRNAs, and contained FMRP, STAU1 
and TAR DNA binding protein 43 (TDP-43) [92]. Addi-
tionally, FMRP was shown to bind neuronal KIF3C in a 
yeast two-hybrid screen using a human foetal brain cDNA 
library, suggesting that these findings could be extended to 
the human nervous system [95].

Recent in vitro studies have successfully reconstituted 
processive transport of beta actin and b2B-tubulin mRNAs 
via kinesin-2, as part of an RNA transport granule made 
of the RBP, adenomatous polyposis coli (APC) and the 

kinesin-2 adapter, KAP3 [96]. APC binds hundreds of 
mRNAs in the mouse brain, 45% of which are known to 
be present in axons. This binding is functionally important 
for localising at least some of these transcripts to axons, as 
blocking the interaction of APC to b2B-tubulin in mouse 
neurons, causes b2B-tubulin mislocalisation away from 
axons to the soma [97]. The in vitro reconstitution experi-
ments revealed that APC bound to the mRNA cargo is asso-
ciated to kinesin-2 via KAP3 [96]. Interestingly, APC was 
found to be required for the activation of motor processiv-
ity, whilst cargo mRNA enhances transport. One to three 
mRNAs can be transported simultaneously by one complex, 
and mRNAs with different APC binding sequences are trans-
ported at varying efficiencies and have different APC bind-
ing affinities. Such binding properties may fine-tune mRNA 
transport in vivo to potentially ensure that low-abundance 
mRNAs are also transported efficiently [96]. This landmark 
study thus demonstrates for the first time that a minimal 
complex consisting of a kinesin motor, an adaptor protein 
and an RBP, is sufficient for mediating RNP transport, shed-
ding light on the stoichiometry and transport properties of 
RNA transport complexes.

Dynein was also reported to play a role in neuronal RNA 
transport. For instance, huntingtin (HTT), an interactor of 
dynein and kinesin, mutations of which cause Huntington’s 
disease, was co-transported with beta actin mRNA in a 
microtubule-dependent manner in rat cortical neurons [98]. 
In situ hybridisation and immunocytochemistry experiments 
demonstrated that 40% of beta actin mRNA in dendrites 
co-localised with HTT. A fraction of these structures also 
co-distributed with components of the dynein transport 
machinery, including DHC, as well as KIF5A (Fig. 1c). In a 
more recent study, already briefly mentioned, dynein immu-
noprecipitation from mouse synaptosome extracts pulled-
down Rac1 and Map1b mRNAs together with the RBPs 
STAU1, FMRP and TDP-43. Knockdown of STAU1, but 
not FMRP or TDP-43, reduced the association of dynein to 
these mRNAs, showing that it was required for their interac-
tion [92]. Therefore, dynein plays a role in neuronal mRNA 
transport, but further investigation is needed to clarify the 
precise mechanism of motor-RNA interaction and the cross-
talk with other motor proteins.

Actin filaments are highly enriched at pre- and postsyn-
aptic regions in neurons, raising the possibility that myosin-
splay a role in synaptic RNA transport [12]. In an early 
study, immunoprecipitates of Pur-ɑ and FMRP from rat 
brain homogenates were found to contain myosin Va, hint-
ing at a potential interaction between RBPs and this motor 
protein [99]. These results were extended by another study 
which showed that human STAU associates with molecu-
lar motors from all three superfamilies, including myosins 
[100]. Moreover, TLS/FUS (translocated in liposarcoma/
fused in sarcoma), an RBP involved in familial amyotrophic 
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lateral sclerosis (ALS) [101], was found to bind myosin Va 
[102] and to translocate into dendritic spines. This shift can 
be disrupted by treatment with both actin- and microtubule-
destabilising drugs, showing that it is both microtubule- and 
actin-dependent [102]. Interestingly, the expression of a 
dominant-negative form of myosin Va and its downregu-
lation, suppressed the translocation of FUS into dendritic 
spines, causing its accumulation in dendritic shafts [102]. 
Since FUS was still transported into dendrites, myosin Va 
may be specifically involved in synaptic mRNP localisation 
(Fig. 1c). FUS was also found in the 1000S granule isolated 
by the Hirokawa team [93], therefore, one likely scenario 
that emerges is that FUS transport into dendrites is mediated 
via KIF5A, whilst its translocation into spines instead relies 
on myosin Va.

Collectively, these studies provide important insights as 
to which motors might be involved in mRNA transport in 
mammalian neurons, and confirm the identity of some of 
the motor complexes previously identified in lower organ-
isms, which have been summarised in Fig. 1. However, many 
questions still remain unanswered. Innovative approaches, 
such as proximity labelling followed by mass spectrom-
etry and RNA sequencing [103, 104] might shed light on 
how the binding of RNA transport granules to motors takes 
place in vivo and under which physiological conditions (e.g., 
synaptic stimulation or silencing), thus validating in vitro 
findings.

Crucially, an independent mRNA transport mechanism 
was recently discovered in the filamentous fungi and plant 
pathogen, Ustilago maydis, whereby RNA transport gran-
ules ‘hitchhike’ a ride on endosomes [105]. This concept is 
explored in the following sections.

Hitchhiking onto endosomes 
as a mechanism of transport

To establish pathogenicity, U. maydis switches from a 
yeast-like morphology to growing unipolar hyphae, which 
allow this organism to invade the host plant epidermis. The 
hyphae are highly polarised and require directional trans-
port of organelles, proteins and mRNA granules down their 
length, to support their growth and establish their polarity 
[106, 107]. Similarly to mammalian cells, the intracellular 
transport of organelles in filamentous fungi also depends 
on motor proteins [108, 109]. It was generally assumed that 
organelles are transported in fungi by the direct recruitment 
of motor protein complexes to their membranes; however, a 
recent study challenges this view [110].

The Steinberg group discovered that peroxisomes and 
to a lesser extent, lipid droplets (LDs) and the endoplas-
mic reticulum (ER), ‘piggy-back’ onto endosomes for their 
long-distance transport in hyphae. Peroxisome motility is 

dependent on dynein, kinesin-3 and the integrity of micro-
tubules, whose plus ends point towards the hyphal tips. 
Upon simultaneous imaging of kinesin-3 and peroxisomes, 
the authors discovered that this motor protein takes a ‘lead’ 
during transport. As kinesin-3 transports endosomes in 
U.maydis, they investigated whether peroxisome transport 
is related to endosomal transport. When endosomes and per-
oxisomes were imaged in living hyphae, the authors found 
that these organelles co-traffic, with endosomes in the lead, 
suggesting that peroxisome motility might be tied to that 
of endosomes [110]. Indeed, when they disrupted endoso-
mal motility by deleting the endosome-specific motor adap-
tor, hok1, peroxisome transport was completely abolished. 
Restoring endosome motility also restored that of peroxi-
somes, further supporting the notion that peroxisomes hitch-
hike on endosomes via a novel mechanism. Similarly, the 
frequency of transport of LDs and most of ER’s was also 
abolished in hok1-null hyphae [110]. Interestingly, the PdxA 
protein was identified as a linker between endosomes and 
peroxisomes in Aspergillus nidulans, another filamentous 
fungus, where co-transport of peroxisomes and endosomes 
also occurs [111].

mRNA hitchhiking in filamentous fungi

The findings described above also extend to mRNA trans-
port, where several studies have unveiled a novel mecha-
nism whereby mRNAs hitchhike onto endosomes, exploit-
ing them for transport. Rrm4 is an RNA-binding protein in 
U. maydis that was shown to be essential for microtubule-
dependent transport of mRNAs [112]. For example, Rrm4-
mediated transport of the endochitinase cts1 mRNA to the 
hyphal growth cone is required for the secretion of Cts1 
protein, which is important for maintaining the integrity 
of the hyphal cell wall, thus demonstrating the functional 
relevance of mRNA transport in filamentous fungi [113]. 
Rrm4 was found to co-localise with endosomes, and the 
transport of Rrm4-associated mRNPs required functional 
endosomes [105] (Fig. 2a). The authors of this study used 
a strain of U. maydis carrying a temperature-sensitive yup1 
allele encoding the endosomal t-SNARE Yup1, which under 
restrictive conditions displays impaired endosomal dynam-
ics [105]. In this strain, Rrm4 shuttled normally at permis-
sive temperatures, but processive movement was hardly 
observed after switching to restrictive conditions, thus 
demonstrating the dependence of Rrm4-mediated mRNP 
transport on endosomes. In addition, endosomal mobility 
was found to be required for the homogeneous distribution 
of polysomes within hyphal cells [114]. More recent experi-
ments revealed that Rrm4 associates with endosomes via an 
intermediate protein, Upa1 [115]. Upa1 binds endosomes 
through a C-terminal FYVE zinc-finger domain (known 
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to bind phosphoinositides), and binds Rrm4 through other 
regions involved in protein–protein interactions. Upa1 
deletion mutants lack processive Rrm4 movement, display 
impaired mRNA localisation and defective hyphal growth 
[115]. Another protein, Upa2, was also found to be impor-
tant for RNA transport in hyphae. Its deletion causes a 50% 
reduction in the number of processively-moving mRNAs and 
causes defects in hyphal growth. This protein is thought to 
act as a scaffold stabilising the RNA granule complex during 
transport [116].

An additional role for endosomes as mRNA translation 
platforms for septin cdc3 mRNA was recently identified 
[107]. The Feldbrügge group demonstrated that the dis-
tribution of septin Cdc3 to the hyphal growth cone and 
septa is lost in Rrm4-null cells. Live imaging of fluores-
cently tagged cdc3 mRNA and Cdc3 protein showed that 
they localise to shuttling endosomes, and further muta-
tional studies revealed that the association of Cdc3 protein 

with endosomes is Rrm4-dependent (Fig. 2a). Ribosomal 
proteins and another septin family member, Cdc12, were 
also recruited to Rrm4-positive shuttling endosomes 
[107]. A follow-up study revealed that all four septin 
mRNAs and proteins are found on endosomes, again in 
an Rrm4-dependent manner [117]. Interestingly, Cdc3 
and Cdc12 proteins were targeted to the same subcellular 
locations and their co-localisation was strongly reduced 
in the absence of Rrm4. Altogether, these findings sug-
gest that endosomes are acting as translation hubs for 
septin mRNAs, whereby the close spatial association of 
newly synthesised septins on endosomes facilitates their 
co-assembly into heterooligomeric complexes, and their 
subsequent delivery to target locations [107]. In this case, 
mRNA transport seems to drive not only asymmetric local-
isation of mRNAs to support site-specific protein synthe-
sis, but may also play additional roles, such as enabling 
the efficient assembly of protein complexes in situ. Such 

Fig. 2  Organelle hitchhiking as a mechanism of mRNA granule 
transport. a Schematic showing the machinery involved in the trans-
port of cdc3 mRNA in U. maydis. All four septin mRNAs and the 
corresponding proteins have also been shown to localise to shuttling 
endosomes, but they have been omitted for clarity. Pab1 stands for 
poly-A binding protein. Diagram of RNA granule is adapted from 

[116]. b Endosomal/lysosomal hitchhiking in neurons. ANXA11 acts 
as a tether between RNA granules and LAMP1-positive organelles by 
exploiting a phase-separation mechanism only partially understood. 
G3BP1 is one of the components of these transported RNA granules. 
See main text for additional details
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a hypothesis might explain why mRNAs undergo bidirec-
tional shuttling in axons [118].

From these studies, it emerges that endosomes act as a 
general platform for intracellular transport in filamentous 
fungi, enabling the transport of proteins, lipids, mRNPs 
and various organelles over long distances [108]. A deeper 
look through the budding yeast literature suggests that 
ASH1 mRNA might also be hitchhiking onto membrane-
bound organelles for transport, and that heterooligomeric 
complexes are also assembled co-translationally but it is not 
clear whether such translation is related to endosomes or 
other membrane-bound organelles [119, 120].

Efforts investigating whether this mechanism of mRNA 
transport and translation extends to higher eukaryotes 
have only just started, with a number of recently published 
papers demonstrating associations of mRNA transcripts with 
endolysosomal compartments in neurons and their potential 
co-trafficking [91, 121].

mRNA hitchhiking in neurons

Recently, the Ward team set out to investigate whether 
mRNA granules are transported by hitchhiking onto motile 
organelles [91]. To this end, they heat-shocked human bone 
osteosarcoma U2OS cells expressing mCherry-G3BP1, 
inducing the formation of stress granules. G3BP1 is an RBP 
involved in the formation of RNA stress granules [122]. By 
simultaneously tracking the movement of several organelles 
and G3BP1-labelled structures, the authors discovered that 
stress granules co-trafficked with LAMP1-positive late-
endosomes/lysosomes (Fig. 2b). Correlative light-electron 
microscopy imaging further demonstrated that stress gran-
ules were not engulfed by endolysosomes, but were juxta-
posed to their delimiting membrane. In cultured primary rat 
cortical neurons, which constitutively transport RNPs within 
their axons, beta actin mRNA labelled with the MS2/MCP 
system [123] co-trafficked with LAMP1-positive lysosomes, 
validating the results obtained in U2OS cells.

To elucidate the mechanism underlying the interaction 
between lysosomes and mRNA granules, they employed 
ascorbate peroxidase (APEX) proximity labelling proteom-
ics using LAMP1 as a bait in non-heat shocked neurons 
derived from human induced pluripotent stem cells. This 
LAMP1 interactome was cross-referenced with a separate 
APEX study that used G3BP1 as a bait, to identify pro-
teins interacting with both lysosomes and G3BP1-positive 
RNA stress granules. Through this approach, annexin A11 
(ANXA11), a member of the annexin superfamily of scaf-
folding proteins, was identified [91].

Follow-up imaging studies showed that ANXA11 is 
recruited to stress granules in U2OS cells, and that it is 
co-trafficked with LAMP1-positive organelles in primary 
mammalian neurons and in vivo in zebrafish axons [91]. 

Additionally, ANXA11 was sufficient to induce binding of 
purified RNA granule cores to liposomes in the presence of 
calcium. Further characterisation of ANXA11′s biophysi-
cal properties showed that it contains a highly disordered 
N-terminal domain facilitating phase-separation in vitro and 
in U2OS cells. Furthermore, ANXA11 binds in a calcium-
dependent manner negatively-charged phosphatidylinositol 
lipids, which are enriched in the membrane of late endo-
some/lysosome [91]. These properties provide the basis 
on how ANXA11 may act as a tether between RNA gran-
ules and LAMP1-positive organelles (Fig. 2b). Supporting 
these findings, knockdown of ANXA11 in primary neurons 
reduces the co-transport of LAMP1-positive late endosome/
lysosomes and beta actin mRNA, as well as the number of 
beta actin transcripts at growth cones.

Interestingly, ALS-causing mutations in ANXA11 sig-
nificantly reduce its association with LAMP1-positive com-
partments in primary neurons, and alter its phase-separation 
properties, promoting the formation of more stable and 
possibly aggregation-prone RNA granules [91]. However, 
the effect of these mutations was less striking in zebrafish 
neurons in vivo. A likely explanation of this finding is that 
ANXA11 is just one of the many tethers linking mRNA 
granules and LAMP1-positive compartments in zebrafish, 
since it only contributed a small percentage to the overall 
transport of other types of mRNA granules (e.g., contain-
ing the RBP caprin) in this model system [91]. As such, 
ANXA11-mediated hitchhiking is unlikely to be the only 
mechanism mediating mRNA transport in neurons. None-
theless, this study demonstrated that RNA hitchhiking is a 
physiological strategy for axonal mRNA transport and that 
this process might be impaired in ALS.

Independently, the Holt group investigated a similar pro-
cess in Xenopus retinal ganglion cell (RGC) axons [121]. 
Using a fluorescently tagged uridine-5′-triphosphate, they 
labelled all newly synthesized RNAs in RGC axons and 
found that RNAs were often associated with endocytic com-
partments containing the small GTPases Rab5a or Rab7a. 
They found that 20–30% of the RNAs that colocalised with 
endosomes displayed bidirectional transport, and that a 
number of ribosomal proteins and RBPs (including Fragile 
X-related, which is in the same family as FMRP [124]) were 
also associated with endosomes [121], thus suggesting that 
these organelles could act as mRNA translation hubs. They 
pulse-labelled RGCs with a low concentration of puromycin, 
which mimics tRNA and incorporates into the C-terminus 
of newly-synthesised peptides, forming puromycylated 
peptides that are then released from ribosomes. This allows 
nascent protein synthesis to be visualised using anti-puro-
mycin antibodies. These authors found puromycin signals 
associated with Rab7a-positive endosomes, which decreased 
if Rab7a was mutated or upon pharmacological disruption 
of endosomal maturation. Therefore, endosomes may act 
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as translation hubs for mRNAs, a physiological function 
that could be evolutionarily conserved as it is in line with 
septin cdc3 translation on endosomes in U. maydis [107, 
117]. However, RNA transport kinetics were not altered by 
the expression of dominant-negative or constitutively active 
GTPase mutants of Rab5a or Rab7a, arguing that endosomal 
hitchhiking may not be essential for mRNA transport.

Interestingly, Rab7a-positive endosomes were found to 
often pause when they encounter mitochondria, forming 
apparent contacts with them that persist for over 2 min [121]. 
Quantitatively, around 35% of Rab7a-positive endosomes 
were in close proximity to mitochondria, of which 80% car-
ried mRNA, and 76% carried a significant puromycin signal 
[121]. Therefore, endosomes may be facilitating mitochon-
drial protein synthesis, an important finding which was fur-
ther substantiated by the discovery that mutations in Rab7a 
underlying the axonal neuropathy Charcot-Marie-Tooth 
disease type 2B (CMT2B), disrupt mRNA translation on 
endosomes, causing a parallel impairment of mitochon-
drial function [121]. As such, these findings raise important 
questions about the potential pathological consequences of 
endosomal hitchhiking deficits and their relevance in neu-
rodegenerative disorders.

Consistently with the observation that ANXA11-medi-
ated RNA hitchhiking underlies only a small proportion of 
RNA transport in zebrafish axons [91], endosomal hitch-
hiking in RGC axons does not seem to be strictly required 
to traffic RNA granules [121]. In light of these findings, it 
would be important to extend the co-trafficking assays used 
in these studies to ascertain which organelles mediate RNA 
hitchhiking in neurons and whether this is affected by spe-
cific conditions, such as cellular stress. Nevertheless, these 
pioneering studies strongly indicate that RNA hitchhiking 
occurs in axons and that this process might represent an evo-
lutionary conserved mechanism enabling directional mRNA 
transport and localisation.

A potential unifying pathomechanism 
for neurodegenerative disorders

Defects in RNA processing such as translation, splicing and 
transport have been documented in several neurodegenera-
tive disorders such as, ALS, frontotemporal dementia (FTD) 
and Huntington’s disease [125, 126]. A prominent feature of 
such disorders is the formation of nuclear and cytoplasmic 
RNP aggregates; for instance, TDP-43 aggregates are com-
monly observed in ALS and FTD regardless of the underly-
ing genetic cause [125, 127, 128]. These aggregates could 
further impair RNA processing by sequestering RNAs and 
RBPs, thus preventing them from carrying out their func-
tions. Aggregates are thought to arise from alterations in 
the assembly, disassembly and/or clearance of endogenous 
RNA granules, such as stress granules [122, 125]. As their 

name suggests, stress granules are liquid–liquid phase-sep-
arated RNA granules that accumulate in neurons exposed 
to environmental stress. These granules isolate cytoplasmic 
mRNAs mostly in a translationally silent state and contain 
RBPs such as the translational repressors FMRP and G3BP1, 
and proteins involved in proteostasis, such as chaperones for 
protein folding and autophagy factors [129, 130].

Genetic studies have revealed that mutations in many of 
the RBPs found in stress granules are linked to neurological 
disorders; it is indeed possible that such mutations might 
alter the phase-separation properties of stress granules in a 
manner that increases their propensity to form even in the 
absence of stress, or making them more stable, or resistant 
to degradation [125]. This might facilitate the transition of 
stress granules from phase-separated, soluble RNA granules 
into insoluble and potentially toxic, amyloid-like aggregates, 
which in turn may impair many neuronal processes, and 
trigger apoptosis [125]. These changes in mRNA dynamics 
are currently investigated as pathogenic mediators of ALS 
and FTD, since mutations in several RBPs were found to be 
genetically associated with these disorders [127], as well as, 
in Fragile X syndrome which is caused by loss-of-function 
mutations in FMRP [131]. In addition to changes in stress 
granule dynamics, mouse models of ALS also demonstrated 
that mislocalisation of RBPs and changes in their splicing 
activities are sufficient to cause motor neuron degeneration, 
without nuclear depletion and cytoplasmic aggregation, such 
as in the humanised mouse model of FUS-ALS [132] and a 
TDP-43 gain-of-function ALS model [133]. Therefore, the 
homeostatic control of RNA metabolism is crucial for neu-
ronal health.

Axonal transport dyshomeostasis is another feature seen 
in most, if not all, neurodegenerative disorders, including 
hereditary spastic paraplegias (HSPs), Huntington’s dis-
ease and ALS [134, 135]. While it is not completely clear 
whether these axonal transport deficits represent a cause or 
consequence of the underlying pathology [18, 135], their 
early appearance prior to symptom onset in animal mod-
els of neurodegeneration suggests they are likely to play a 
causative role in the pathogenesis of these disorders [135]. 
For instance, mutations in KIF1A cause a range of pheno-
types including HSP and CMT, whereas its loss in humans 
and mice disrupts neurotrophic signalling in sensory neu-
rons leading to sensory neuropathy [135]. More recently, 
mutations in KIF5A have been linked to ALS through 
genome-wide analysis [136]. Additionally, mutations in the 
retrograde transport machinery have also been linked to neu-
rodegenerative disorders as in the case of dynactin, whose 
mutations were found to cause distal hereditary motor neu-
ropathy type 7 [135]. Moreover, it is becoming increasingly 
recognised that axonal mRNA transport is also disrupted 
in neurodegenerative disorders. For example, TDP43-asso-
ciated RNA granules traffic bidirectionally in neurons [92, 
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137]. However, their motility is significantly impaired in 
neurons made from human induced pluripotent stem cells 
derived from patients carrying ALS-associated TDP-43 
mutations [137].

Despite decades of research into the mechanisms causing 
neurodegeneration, a major gap in our understanding lies 
in how axonal transport deficits are tied to the concomi-
tant transcriptional and translational changes taking place 
during the progression of neurodegenerative disorders. The 
aforementioned findings by the Ward and Holt groups [91, 
121] that mutations linked to ALS and CMT2B disrupt the 
coupling of mRNAs to endosomes and their translation on 
these organelles, may finally enable us to bridge together 
these two fields of research. These findings raise the pos-
sibility that disrupted organelle transport simultaneously 
impairs axonal and dendritic RNA transport and translation 
[138]. RNA and RBP concentration and location are criti-
cal factors for the regulation of RNA dynamics, including 
phase-separation [4, 139]. Therefore, we could envisage a 
likely scenario whereby RNA transport deficits mislocalise 
RNA granules and alter the RNA and RBP levels in the 
somatodendritic and axonal compartments, in a manner 
that impairs RNA processing and/or promotes the forma-
tion of RNA granules, such as stress granules and P-bodies. 
Abnormal granule formation could in turn sequester RBPs 
in the cytoplasm, potentially preventing them from carry-
ing out their physiological functions elsewhere, for example 
in the nucleus, as has been proposed for TDP-43 in ALS 
[140]. Additionally, a decline in RNA transport to axons and 
dendrites would disrupt homeostasis of the distal neuronal 
translatome and proteome, which coupled with impaired 
organelle transport, would further exacerbate neuronal dam-
age. In this novel pathological framework, mRNA dynamics 
and organelle transport regulation are tightly coupled, offer-
ing new ways of interpreting previous findings, and paving 
the way for new potential therapeutic interventions acting 
simultaneously on both aspects of this fascinating transport 
and localisation pathway [138].

Future perspectives

The findings by the Holt and Ward groups provide strong 
evidence that hitchhiking on endolysosomal organelles could 
be an evolutionarily conserved mRNA transport mechanism, 
with intriguing roles in homeostatic regulation of the nerv-
ous system. Their findings are bolstered by discoveries that 
micro-RNAs and some components of the mRNA degrada-
tion machinery seem to be transported by late endosomes/
lysosomes in dendrites and axons, and that they often stall 
next to mitochondria at axonal branch points [141–143].

These studies raise other intriguing questions about 
potential interplay between such non-canonical roles of 

endosomes with their more established functions in regulat-
ing growth factor signalling. A subset of endosomes known 
as signalling endosomes, travel back to the cell body from 
axon terminals carrying neurotrophic factors and their acti-
vated receptors, a process that modulates gene expression 
affecting neuronal survival and branching [144, 145]. A 
recent study performed in non-neuronal cell types showed 
that endosomes carry mRNAs encoding proteins involved in 
regulating endosomal fusion and trafficking, such as EEA1 
[146]. EEA1 transcripts are bound on early endosomes 
by several proteins, one of which is CSRP1, a transcrip-
tional regulator that represses EEA1 endosomal transla-
tion. Although EEA1-positive endosomes are largely lack-
ing in axons [147], such findings raise the possibility that 
endosomes may be able to regulate their own composition 
locally and independently of the cell body, allowing them 
to rapidly modulate growth factor signalling in a spatiotem-
poral-specific manner. Endolysosomal hitchhiking is thus 
increasingly becoming a relevant mechanism for directional 
RNA transport and for local regulation of mRNA process-
ing, for example in translation and degradation, with wider 
implications on the health of the nervous system that need 
future investigation.

Many questions and gaps are left to be answered in the 
field of RNA hitchhiking. For instance, which organelles/
states are involved in mRNA hitchhiking and how do the 
dynamic contact sites forming between organelles contribute 
to this process? Additionally, we ought to characterise the 
components that mediate hitchhiking of RNA granules onto 
different organelles, such as understanding which linker pro-
teins and RBPs are involved. Moreover, it is unclear whether 
certain transcripts are especially trafficked by this mecha-
nism of transport and what specific roles this might play in 
regulating homeostasis within the distal neuronal compart-
ments. It is also important to ask whether this mechanism of 
transport contributes in a precise manner to neurodegenera-
tive diseases.

A large body of evidence shows that mRNA granules are 
transported by direct binding to motor proteins. Therefore, 
another important question that arises is how this mode of 
transport integrates with organelle-based mRNA hitchhik-
ing. To date, there have been no studies investigating how 
these two mechanisms act as parallel routes for mRNA 
transport. They may, for instance, carry different mRNA 
cargoes to distinct subcellular locations, or perhaps they may 
carry overlapping sets of transcripts, but are preferentially 
deployed during specific cellular states, such as stress. These 
distinct transport mechanisms may also transport mRNAs to 
different compartments within neurons, for example, direct 
motor-mRNP interactions could be used for dendritic/short-
distance transport of mRNA granules, whilst mRNA hitch-
hiking could be employed for long-distance transport down 
the axon. Further studies are urgently needed to test these 
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hypotheses and explore whether such mechanisms are com-
plementary or mutually exclusive.

Concluding remarks

mRNA transport is a conserved phenomenon that is essential 
for the correct development and functioning of many organ-
isms across the evolutionary landscape. Major strides have 
been made in our understanding of mRNA transport from 
studies in animal models and tissues investigating seemingly 
unrelated processes. However, despite the vast knowledge 
acquired so far in mRNA transport dynamics, a new and 
evolutionary conserved pathway of mRNA transport via 
organelle hitchhiking has now emerged. Endolysosomal 
hitchhiking may be acting as a parsimonious mechanism 
for conserving cellular energy by tying the transport of orga-
nelles and mRNAs to one “carrier” system. This mechanism 
might also be playing important roles in grouping specific 
mRNAs together for efficient targeting to certain organelles, 
such as the mitochondria. Whatever maybe the case, there 
are many exciting questions that are waiting to be addressed, 
perhaps ushering a new era of axonal transport research.
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