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Artificial intelligence-assisted retinal
imaging enables dense pixel sampling
from sparse measurements
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High resolution in vivo adaptive optics (AO) imaging has facilitated cellular level assessment of
microscopic cone photoreceptors. However, the necessity for dense pixel sampling for good pixel
resolution imposes a tradeoff with acquisition speed, leading to motion artifacts and extensive data
generation. We introduce an artificial intelligence (AI) assisted imaging framework utilizing residual in
residual transformer generative adversarial network (RRTGAN), anAImethod thatworks alongsideAO
imaging to restore the pixel resolution of sparsely sampled images, circumventing the need for dense
sampling. Our results show that RRTGAN can enable data-efficient imaging, restoring high-quality
images from just one-fourth of the data and closely matching ground truth images. Cone spacing
estimates across four participants alignedwell with histology at various retinal locations. These results
demonstrate AI assisted imaging’s potential to overcome pixel sampling and imaging speed tradeoff,
an important step toward improving the efficiency of routine AO imaging in the clinic.

Advances in biomedical optics have enabled cellular-level visualization of
the living human retina1–4. For point scanning imaging systems such as
confocal microscopes, there is a tradeoff between increasing the density of
pixel sampling for improved resolution vs. decreasing pixel sampling for
improved acquisition speed. In the case of ophthalmic imaging instruments
such as optical coherence tomography (OCT), dense sampling is essential to
ensure that the retina is captured at a pixel resolution sufficient for visua-
lizing the microscopic cellular structures. However, dense sampling
lengthens the time needed for each frame/volume to be acquired, which in
turn exacerbates motion artifacts and image distortions due to continuous
eye movements that occur during imaging.

Adaptive optics (AO) is a technology that can be used to sense and
correct optical aberrations in the eye, enabling high resolution in vivo
visualization of retinal cells5. The integration ofAOwithOCThas facilitated
cellular-level, three-dimensional visualization ofmicroscopic retinal cells6–8.
Higher imaging speed is desirable from adaptive optics optical coherence
tomography (AOOCT) systems to more rapidly acquire images and
minimize motion artifacts, but this is often at the expense of insufficient
pixel sampling depending on the cell being imaged. Although the intro-
duction of high speed swept source lasers such as Fourier domain mode-
locked (FDML) lasers9 have improved scan rates10,11, acquisition speed still
remains a challenge. This limitation is exacerbated by the small field of view
(FOV) inherent to AO systems (~0.5mm×~0.5mm), necessitating mul-
tiple overlapping acquisitions followed by image processing andmontaging
to visualize larger areas of the retina. Due to the increased pixel sampling

required to image smaller cells such as cone photoreceptors, large amounts
of data (on the order of terabytes) are typically generated during the
acquisition, which can be resource intensive and inefficient. An alternate
approach to increasing data efficiency and optimizing the imaging time is to
decrease the pixel sampling (i.e. sparsely sample the retina). However, this
may lead to sub-optimal image quality resulting from diminished pixel
resolution.

In recent years, artificial intelligence (AI) based image enhancement
methods have been applied to advanced optical microscopy techniques,
including the application of AI for image super resolution12–15,
reconstruction16, denoising17,18, and image translation19–21. Among the var-
ious AI methods, generative adversarial networks (GANs)22, which employ
two neural networks (generator and discriminator) in an adversarial fash-
ion, have been particularly effective for image enhancement in medical
images such as improving image quality23–25, denoising OCT images26,27,
color normalization and virtual staining in histopathology images28, and
image synthesis in radiology29. GANs are typically comprised of a con-
volutional neural network (CNN)30 to represent local characteristics of
images. However, this local processing does not take into consideration the
structural relationships across larger regions in the images. Increasingly,
transformer networks31 have received widespread attention in computer
vision due to their ability to capture global features in images15,32–34. We
hypothesize that the structural correlations present in the layered arrange-
ment of the retinal cells can be better represented using the non-local
attention mechanism offered by the transformer. Further, incorporating
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transformer into the GAN framework helps to ensure faithful restoration of
the retinal images that maintain structural consistency of the cells. In this
paper, we combine the merits of transformer into GAN to develop an AI-
assisted imaging framework where AI works alongside imaging to restore
pixel sampling from sub-optimally or sparsely sampled AOOCT images.

For AO retinal imaging, sparse sampling is not typically preferred as it
could result in the inability to resolve cells. In this paper, we demonstrate that
with the help of AI, the pixel sampling of the sparsely sampled images can be
restored to the level of the densely sampled images,making sparse sampling a
viable option for more efficient imaging. Our AI method effectively restores
pixel sampling from only 1/4th of the acquired data while ensuring reliable
visualization of the retinal cells. Overall, the AI-assisted AOOCT imaging
strategy circumvents the tradeoff between image degradation due to reduced
pixel sampling and acquisition time, overcomes speed limitations of imaging
systemsdue tohardware, andopensup thepossibility for analternate strategy
to enhance and accelerate imaging for point-scanning optical systems.

Results
AI-assisted imaging achieves dense pixel resolution with only a
fraction of the data
The overall goal is to integrate AI into the AOOCT imaging framework,
where instead of performing dense sampling of the retina to visualize the
cells (Fig. 1a), we explore the possibility of performing sparse sampling with
only 1/4th of the data required for dense sampling and then use AI to
improve the visualization of the poorly sampled cells (Fig. 1b). Our AI
algorithm, residual in residual transformer GAN (RRTGAN), incorporates
amodified generator based on transformers that are connected in a residual
fashion to effectively model the correlations of the different retinal layers
captured using the AOOCT to restore the visualization of the individual
photoreceptor cells (Supplementary Fig. 1, Supplementary Methods).

The sparsely sampled images showed a pixelated appearance of the
cone photoreceptor cells (Fig. 2a, f). RRTGANwas successful in improving
the pixel resolution and enhancing the visualization of cells from sparsely
sampled AOOCT volumes (Fig. 2) acquired from study participants
(Supplementary Table 1). RRTGAN enhanced and ground truth (densely
sampled) cone photoreceptor images showed similarity in cellular structure
of the cones (SupplementaryVideo1).RRTGANalsoperformedbetter than
other competitiveAI frameworks (ESRGANandSwinIR) (Fig. 2).Qualitative
visual comparison of the images showed clearer and sharper visualization of

cones using RRTGAN compared to ESRGAN14 and SwinIR15. This is likely
due to the self-attentionmechanismof thedense transformer blocks enabling
the learning of non-local features and the skip connections bypassing
abundant low frequency information, allowing the generator to focus on
learning high frequency information and aiding in accurate restoration of the
structure and shape of the cones in the enhanced images.

Quantitative comparison among the methods using objective
image quality assessment metrics (peak signal to noise ratio (PSNR),
deep image structure and texture similarity (DISTS)35, and learned
perceptual image patch similarity (LPIPS)36) further corroborated our
findings on the performance of RRTGAN (Supplementary Fig. 2)
across study participants (Supplementary Table 1). For all three
metrics, the improvement in RRTGAN performance was statistically
significant (p < 0.05). RRTGAN images exhibited the highest PSNR
indicating better pixel level similarity with the optimally sampled
ground truth images. There was an average reduction of 29% in DISTS
and 31% in LPIPS for RRTGAN compared to other networks, indi-
cating better perceptual similarity of RRTGAN enhanced and ground
truth images. Likewise, RRTGANalso demonstrated the lowest Fréchet
Inception Distance (FID)37 score of 85.8 compared to ESRGAN (104.4)
and SwinIR (127.8) indicating that the enhanced images were more
similar to the ground truth images compared to other methods.
Overall, our results indicate that RRTGAN outperformed existing AI
methods and could successfully enhance the visualization of the cone
photoreceptors from sparsely sampled AOOCT.

AI restores theshapeof thecones fromsparselysampled images
Having demonstrated the efficacy of RRTGAN, we also wanted to evaluate
the structural integrity of cones in the enhanced images.Visual inspectionof
the sparsely sampled imagesdisplayedapixelated appearance (Fig. 3a) of the
cones. Itwas interesting toobserve that the individual cone cells didnothave
pixelation in all AI-enhanced images (Fig. 3b–d). Line intensity profiles
through the images showed square peaks at the locations of the cones in the
sparsely sampled images (Fig. 3f), confirming that the individual cone cells
appear pixilated due to reduced pixel sampling. Sharper peaks corre-
sponding to the cones were observed for the cones in the AI-enhanced and
ground truth images (Fig. 3g–j).

Usingnormalizedhistograms tomeasure thedirectionality of the edges
(Methods, EdgeDirectionality) in the sparsely sampled images also revealed

Fig. 1 | Artificial intelligence (AI) assisted imaging uses sparse sampling to
recover cone visualization in the human retina. aAOOCT imagingbasedondensely
sampling provides high quality images of the cone photoreceptor cells at the expense of
large data sizes and long imaging time. bAI-assisted AOOCT imaging sparsely samples

the retina and uses AI to restore the pixel resolution of the photoreceptor cells. Incor-
porating AI into the imaging framework overcomes the tradeoff between pixel sampling
and acquisition time, enabling data and time efficient imaging of the retina. The bright
dots in the retinal images are individual cone photoreceptor cells. Scale bar: 50 µm.
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a higher concentration at the vertical directions, further confirming the
presence of sharp edges (Fig. 3k). On the contrary, the AI enhanced and the
densely sampled ground truth images had edges uniformly distributed
across different angles, corroborating the smoother appearance of the cones
seen in the AI enhanced images (Fig. 3l–o). Computing the variance in the
edge direction from the normalized histogram showed less variance for the
AI methods compared to the sparsely sampled images (Supplementary
Table 2). These results reinforce our observation demonstrating the

potential of AI for removing sharp edges and restoring the smooth shape of
the microscopic photoreceptor cells.

RRTGAN preserves cell spacing and contrast comparable to
densely sampled images
In addition to demonstrating the efficacy of RRTGAN in improving both
the visualization and circular shape of cones, we also objectively evaluated
how well RRTGAN preserves the spatial distribution of the cones in the

Fig. 2 | Residual in residual transformer generative adversarial network
(RRTGAN) restores the pixel resolution of sparsely sampled images to match
dense sampling. a, f Sparsely sampled images of the cone photoreceptors from two
participants (P1 and P2) having a pixelated appearance due to reduced pixel reso-
lution. Pixel resolution of the cones enhanced by AI using (b, g) enhanced super-

resolution generative adversarial network (ESRGAN), c, h SwinIR, and
d, i RRTGAN (ours). e, j Ground truth densely sampled images for visual com-
parison. The bright dots in the images represent the individual cone cells. The yellow
arrows show cells that are more distinguishable in RRTGAN compared to the
sparsely sampled, ESRGAN, and SwinIR images. Scale bar: 50 µm.

Fig. 3 | Artificial intelligence (AI) restores shape of the cones from sparsely
sampled images. Pixelated appearance of the cones visualized in a sparsely sampled
images. The cells have smooth edges in b enhanced super resolution generative
adversarial network (ESRGAN), c SwinIR, d residual in residual transformer gen-
erative adversarial network (RRTGAN), and e ground truth images. f–j Line
intensity profile of the images across the magenta line in (a–e) shows square peaks
for the sparsely sampled image and sharp pointy peaks for the AI-enhanced and

ground truth images. k Normalized histogram for the sparsely sampled image
exhibits edges concentrated in fixed directions corresponding to the sharp edges,
reflecting presence of square pixels and hence the pixelated appearance. l–o The
normalized histogram of edges in the AI-enhanced and the ground truth images
have edges distributed across all angles indicating the cones in these images no
longer have sharp corners from the sparse sampling. Scale bar: 50 µm.
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images. Examination of the radially averaged power spectral density showed
a peak indicating the fundamental spatial frequency (representative of cell
spacing) associatedwith the spatial arrangementof the cones in the images38.
The peaks for the ground truth densely sampled and AI images were con-
sistent (Fig. 4a and Supplementary Table 3), indicating high fidelity of the
RRTGAN enhancement.

Furthermore, theheight of the local peakof the radially averagedpower
spectral density provided an objective way to quantify the cellular contrast.
Compared to the sparsely sampled cones, ESRGAN and SwinIR enhanced
images, the RRTGAN enhanced images have the highest peak height,
indicating the best cellular contrast and visualization of the cells (Table 1).
The peak height of RRTGAN and the ground truth images are remarkably
close, which agrees with our earlier results, indicating the improved visua-
lization offered by RRTGAN. These results demonstrate RRTGAN’s
effectiveness in boosting cellular contrast in addition to providing structural
and perceptual similarity.

The cell spacing estimated using the circumferentially averaged power
spectral density for RRTGAN-enhanced images across all participants were
within the expected ranges when compared with previously published
normative data (Fig. 4b), confirming that RRTGAN did not by create or
delete additional cells. These results demonstrate the possibility of using AI
to restore pixel sampling from insufficiently sampled data, which could
enable AOOCT to more efficiently visualize cells from different retinal
locations in the living human eye.

AI-assisted imaging generalizes across the retina
Cone distribution across the retina varies significantly, with the highest
density concentrated near the fovea, gradually decreasing as the distance
from the fovea increases39. Additionally, cone cells are also much smaller
near the fovea and progressively increase in size with increasing distance
from fovea. Having trained and validated the performance of RRTGAN on
images collected approximately 1mm from the fovea, we now evaluate its
effectiveness on images from retinal locations that were never seen by
RRTGAN during training. We tested the performance of RRTGAN at
retinal locations 0.8mm, 1.4mm, 1.8mm, and 2.5mm temporal to the
fovea, and found that RRTGAN successfully recovered the cone cellular
structures at all the four locations (Fig. 5). Objective quantification further
confirmed the similarity of RRTGAN-enhanced and the ground-truth
images (Supplementary Table 4). This result demonstrates that RRTGAN
can generalize across different imaging locations and can faithfully recover
the cellular structures for never seen cells of different sizes.

Having demonstrated the generalizability of RRTGANacross different
retinal locations featuring a range of cell sizes, we also verified the

consistency of the cells by imaging two contiguous retinal locations with
overlapping regions. Consistency of cells across regions is essential for
stitching together individual images with smaller FOV in order to investi-
gate changes to the retina occurring over wider retinal regions. Two
RRTGAN-enhanced images obtained fromcontiguous locationswith~50%
overlap showed that the cells in the overlapping areas are consistent in both
images, verifying that theAI-enhanced images preserve the spatial locations
of the cones (SupplementaryVideo 2). By extending this approach across 23
overlapping retinal locations, this feat allowed us to apply RRTGAN to a
much larger retinal region spanning across 3mm temporal to the fovea
(Fig. 6). This shows that theAI-enhanced images can be successfully used to
build large montages to visualize larger areas of the retina.

Finally, thus far, we showed the RRTGAN effectively enhanced the
cone photoreceptor layer (also referred to as the ellipsoid zone layer or the
inner segment/outer segment (IS/OS) junction), which is only a portion of
the overall 3D AOOCT volume. Since RRTGAN operates on the cross-
sectional 2DAOOCT images (B-scans), it naturally operates across all of the
neighboring layers that are in focus on the outer retinal AOOCT volumes.
We found that RRTGAN was also successful in restoring the S cone layer40

(cones sensitive to short wavelength light) as well as the cone outer segment
tips (COST) layer of the retina (Fig. 7). In addition to enhancing the cone
photoreceptors, sinceRRTGANenhances data across the entireAOOCTB-
scan, it was also effective in restoring the visualization of neighboring layers
(Supplementary Fig. 3). This result shows an advantage of the RRTGAN
training using cross-sectional 2D AOOCT images (i.e. OCT B-scans),
extending its benefits across multiple 3D layers that can be reconstructed to
obtain multiple rotated 2D views of the tissue (i.e. OCT en face view).

Discussion
We demonstrated that RRTGAN successfully restored the pixel sam-
pling from sparsely sampled AOOCT images. The resulting RRTGAN-
enhanced images enabled both the visualization of cone photoreceptor
cells across the retina as well as the quantification of structural metrics
such as cell-to-cell spacing despite using only one fourth of the imaging
data. The enhanced images also successfully restored the 3D cone
structure and enabled efficient visualization of the IS/OS junction and
COST layers. Because RRTGAN is trained on cross-sectional B-scans
rather than en face photoreceptor images, it also enables improved
visualization of neighboring layers, including the retinal pigment epi-
thelium (RPE) and choroidal vessels. This approach is also more data
efficient as it can be applied to 2D slices and generalized across a 3D
volume, enabling more rapid cellular-scale 3D imaging of the eye in a
clinical setting.

Fig. 4 | Cone cell spacing of the artificial intelligence (AI) enhanced images are
comparable to the ground truth densely sampled images. a Circumferentially
averaged power spectral density (PSD) of the sparsely sampled (SS), AI-enhanced
and ground truth images of participant P3 imaged at 1.3 mm temporal to the fovea.
The visible peak corresponding to cone cell spacing is observed in all the images. The
inset shows a zoomed version of the peak with the vertical black line indicating the
location of the fundamental spatial frequency associated with the cells. The height of

the peak indicates the cellular contrast. b Comparison of cone spacing estimated
from residual in residual transformer generative adversarial network (RRTGAN)
enhanced images with previously published histology data39. Symbols in black
indicate cell spacing estimated from RRTGAN-enhanced images for four partici-
pants (P1, P2, P3, and P4) at different retinal locations. Cone spacing replotted from
histology39 shown in gray.
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The success of RRTGAN can be attributed to the self-attention
mechanism of transformers in effectively learning global correlations from
the retinal layers of the AOOCT images together with the ability of the GAN
to restore cellular structures. The improvement of RRTGAN over the CNN
based ESRGAN14 indicated that the restoration benefitted from non-local
self-similarity modeling offered by the transformers. RRTGAN also gener-
ated superior results compared to the state-of-the-art SwinIR framework.
This could be attributed to the residual in residual connections in RRTGAN
that aided in improving theflowof gradients through thenetwork. In termsof
computational complexity, RRTGAN also has fewer parameters than ESR-
GAN(SupplementaryTable 5). Itwas interesting that although trainedon2D
cross-sectional image slices instead of 3D AOOCT volumes, RRTGAN was
still able to preserve the 3D structure of the cells for visualization. This further
illustrates the consistency of the network in independently enhancing
neighboring B scans (one at a time) in amanner that still results in a seamless
transition when viewing cells that are split across neighboring B scans.

Our validation confirmed that the RRTGAN-enhanced images
accurately preserved the cellular structure, which is crucial for assessing
retinal health, particularly for performingmorphometric measurements
from the cells. This integration of AI into the AOOCT image acquisition
process represents an approach, diverging from the traditional post-
acquisition applications of AI. RRTGAN working alongside AOOCT
imaging guarantees data efficiency as the images with 75% fewer samples
can be restored to match the ones acquired with 100% sampling. Our
AOOCT system can quickly generate terabytes of data across a typical
imaging session (3D volumes from 20 to 25 locations per eye, with ~50
GB for 85 volumes acquired at each location). With RRTGAN, the
requirement of dense sampling can be relaxed and thereby substantially
reducing the data size. Further, the time saving achieved by acquiring
less data also allows imaging at more retinal locations in the same
amount of imaging time, particularly advantageous in a clinical setting
where reducing the time spent per patient is important. This also results
in substantial savings in the computational time needed to post-process
AOOCT volumes to correct for eye motion27. Given the success of
RRTGAN in enhancing the visualization of cone cells, we anticipate that
such an approach can potentially be translated to other speed-
constrained imaging applications such as AOOCT angiography41,
which requires multiple scans of the same location in quick succession.

In conclusion, we introduced an AI-based RRTGAN framework to
improve the visualization of cells from sparsely sampled, rapidly acquired,
lowpixel resolution images. By adopting anAI-assisted imaging strategy24,27,
wedemonstrated the capabilityofAInot only in improving the visualization
of cells and reducing the time needed to acquire images, but also providing
an opportunity to image at higher speeds as hardware solutions improve.

Table 1 | Comparison of cellular contrast of the different
methods

Image Peak height (a. u.)

Sparse sampling 0.06 ± 0.03

ESRGAN 0.09 ± 0.03

SwinIR 0.09 ± 0.03

RRTGAN (ours) 0.12 ± 0.02

Dense sampling 0.11 ± 0.06

Fig. 5 | Residual in residual transformer generative adversarial network
(RRTGAN) and the ground truth densely sampled images have similar appear-
ance of the cones for experimental data at different retinal locations. Sparsely
sampled, RRTGAN enhanced, and ground truth images are similar across all retinal

locations (0.8, 1.4, 1.9, and 2.5 mm temporal to the fovea). Images are shown from
participant P1 (not used for model training). RRTGAN is able to effectively enhance
images with varying cell size and spacing across different retinal locations and
restores images to resemble cells seen in ground truth images. Scale bar: 50 µm.
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Addressing both the technical limitations of AOOCT systems and the
practical burden on patients and clinicians is essential for broader clinical
adoption.Ourfindingshighlight the transformativepotential ofAI in retinal
imaging and contribute meaningfully to the first step towards translation of
AOOCT into routine ophthalmic practice.

Methods
Adaptive optics optical coherence tomography instrument
A custom built swept-source AOOCT instrument (Supplementary Fig. 4)
was used, based on an FDML light source42 with central wavelength of
1060 nm and bandwidth of 77 nm (NG-FDML-1060-750-8B-FA, Optores,
Munich, Germany) combined with a wavefront sensor (WFS) beacon at
940 nm (SLD-mCS-481-HP2-PM, Superlum, Carrigtwohill, Co. Cork,

Ireland). Lightwas raster scanned in thehorizontal directionusing a3.3 kHz
resonant scanner (SC-30, Electro-Optical Products Corp, Fresh Meadows,
NY, USA) and in the vertical direction using a tip-tilt scanner (S-334, PI-
USA, Auburn, MA, USA). Wavefront correction was performed using a
deformable mirror (DM97, Alpao, Montbonnot, France).

Adaptive optics optical coherence tomography imaging of
human participants
Participants with no history or signs of ocular disease were recruited for this
study. All participants underwent a comprehensive ophthalmic assessment.
In total, four eyes from four healthy participants (age: 42.8 ± 13.0 years)
from the National Eye Institute Eye Clinic (National Institutes of Health,
Bethesda, Maryland, USA) were imaged using the custom-built AOOCT

Fig. 6 | Residual in residual transformer generative adversarial network
(RRTGAN) enables efficient large-scale visualization of cone photoreceptors
across the retina. The image shows the visualization of the cone photoreceptors
using the RRTGAN-enhanced images. The montage is constructed by stitching

together more than 20 overlapping images from the right eye of participant P1. The
yellow squares (a–e) indicate regions that have been further zoomed for better
visualization at retinal locations a 2.6, b 2.1, c 1.7, d 1.2, and e 0.8 mm temporal to
the fovea.

Fig. 7 | Residual in residual transformer generative adversarial network
(RRTGAN) restores the 3D structure of cones. a, e, i Cross-sectional adaptive
optics optical coherence tomography (AOOCT) B-scans of the sparsely sampled,
RRTGAN-enhanced, and ground truth densely sampled retina of participant P4 at
1.2 mm temporal to the fovea. bTop-down view of the inner segment/outer segment

(IS/OS) junction that appear as bright dots are hard to distinguish visually in the
sparsely sampled images and have better visualization in (f) RRTGAN enhanced and
(j) ground truth densely sampled images. Similar observations are seen for (c, g, k)
S-cones and (d, h, l) cone outer segment tips. The arrows in (i) highlight the IS/OS
junction, S-cones, and COST layers of the retina in the B-scan. Scale bar: 50 µm.
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retinal imaging system. Eyes were dilated with 2.5% phenylephrine
hydrochloride (Akorn Inc.) and 1% tropicamide (Sandoz, A Novartis
Division). This studywas approved by the Institutional Review Board of the
National Institutes of Health (NCT02317328). Research procedures
adhered to the tenets of the Declaration of Helsinki. Written, informed
consent was obtained from all participants after the nature of the research
and possible consequences of the study were explained.

Data for training and validating the artificial intelligencemethods
AOOCT volumes from four eyes of four participants were acquired at 12.7
volumesper secondwith 512 × 512A-scan sampling across 1.5 degreesfield
of view. Volumes were acquired from 5 to 23 retinal locations ranging from
0 to 3mm temporal to the fovea. At each location, 45–85 volumes were
acquired. Following image acquisition, the volumes were digitally flattened
to correct for axial eyemotion based on the outer retinal layers. The volumes
were cropped at the edges to remove image portionswith scanner distortion
artifacts near the turnaround points of the scanner, resulting in final size of
512 × 400 × 378 pixels.

To train theAImethods,AOOCTB-scanswere extracted fromvolumes
of three participants at locations 0.8–1.2mm.The region of interest (40 × 400
pixels) was cropped from the B-scans to form densely sampled ground truth
images. These images were then down-sampled by a factor of 4 in the lateral
direction to obtain sparsely sampled images (40 × 100 pixels). More than
10,000 densely/sparsely sampled image pairs were used for training.

To test themodel, a leave one subject out based validation scheme was
adopted. During testing, each B-scan of the volume is enhanced using AI
(80 × 100 pixels; note the cropping is different than during training). TheAI
enhanced volumes were then registered to correct for eye motion artifacts
and averaged to visualize the cones. The proposedRRTGANmodelwas also
tested on a participant that had never been seen during the training process
to validate the generalizability of the method.

Validation metrics
Objective image quality assessment. Four image quality assessment
metricswere used in this study: peak signal to noise ratio (PSNR), deep image
structure and texture similarity (DISTS)35, learned perceptual image patch
similarity (LPIPS)36, and Fréchet Inception Distance (FID)37. PSNR is a
simple and widely used measure of the quality of the enhanced and the
corresponding ground truth images. It computes the distortion bymeasuring
pixel differences between the enhanced and the ground truth images, with
higher values indicatingbetter quality.DISTSandLPIPS extract deep features
to assess the image quality of the AI-enhanced images. DISTS measures the
textural and structural similarity between enhanced and ground truth images
using deep features extracted from five layers of the VGG16 network. LPIPS
quantifies human perceptual similarity between enhanced and ground truth
images by computing the L2 distance between unit-normalized and scaled
features extracted from multiple layers of the VGG network. FID evaluates
theAI frameworks by assessing the quality of the generated images compared
to the ground truths. A lower FID score guarantees better quality of the
generated images.

Cell spacing and contrast measurement. Cell spacing and contrast was
quantified to assess the efficacy of RRTGAN for cone photoreceptor
enhancement. Cell spacing was estimated using the circumferentially aver-
aged power spectrum38 of each image region of interest. The peak spatial
frequency of the spectrum (i.e., the cone photoreceptor fundamental fre-
quency) is an estimate of cell spacing.To convert frompixels to µm, aparaxial
ray trace on a three-surfaced simplifiedmodel eye43 is used after replacing the
axial length, corneal curvature, and anterior chamber depth with measure-
ments of these values obtained from each participant (IOLMaster, Carl Zeiss
Meditec)44. Cellular contrast was approximated by measuring the height of
the local peak in the circumferentially averaged power spectrum.

Edge directionality. Edge directionality of the images was measured to
assess the degree of pixelation in the images. It was calculated by first

obtaining the edges of the individual cone cells. At the location of the
edges, their direction was computed as arctan

Gy

Gx
, where Gy and Gx were

the vertical and horizontal edges, respectively. Histograms of the direc-
tions were used to visualize the distribution of edge directionalities.
Higher magnitudes at 90 and 270 degrees in the histogram were indi-
cative of presence of sharp edges and are useful to detect when cones
exhibited a pixelated appearance. Uniformly distributed edges across all
angles indicated smooth edges of the cones.

Statistical analysis
Statistical analysiswas performedusing a one-tailed pairedStudent’s t test to
determine if there was statistically significant improvement in cell visuali-
zation between the sparsely sampled and the AI enhanced images. The test
was applied to the objective image qualitymetrics (peak signal to noise ratio
(PSNR), deep image structure and texture similarity (DISTS), and learned
perceptual image patch similarity (LPIPS)) for both image sets for all four
participants (N = 4).

Data availability
All data is included in the manuscript and/or supporting information.

Code availability
The PyTorch implementation of RRTGAN is publicly available at https://
github.com/NIH-NEI/RRTGAN.
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