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An ecogenomic analysis of the methanogenic microbial community in a laboratory-scale up-flow anaerobic sludge
blanket (UASB) reactor treating soy sauce-processing wastewater revealed a synergistic metabolic network. Granular sludge
samples were collected from the UASB reactor operated under psychrophilic (20°C) conditions with a COD removal
rate >75%. A 16S rRNA gene amplicon sequencing-based microbial community analysis classified the major microbial
taxa as Methanothrix, Methanobacterium, Pelotomaculaceae, Syntrophomonadaceae, Solidesulfovibrio, and members of the
phyla Synergistota and Bacteroidota. Draft genomes of dominant microbial populations were recovered by metagenomic
shotgun sequencing. Metagenomic- and metatranscriptomic-assisted metabolic reconstructions indicated that Synergistota-
and Bacteroidota-related organisms play major roles in the degradation of amino acids. A metagenomic bin of the
uncultured Bacteroidales 4484-276 clade encodes genes for proteins that may function in the catabolism of phenylalanine
and tyrosine under microaerobic conditions. Syntrophomonadaceae and Pelotomaculaceae oxidize fatty acid byproducts
presumably derived from the degradation of amino acids in syntrophic association with aceticlastic and hydrogenotrophic
methanogen populations. Solidesulfovibrio organisms are responsible for the reduction of sulfite and may support the
activity of hydrogenotrophic methanogens and other microbial populations by providing hydrogen and ammonia using
nitrogen fixation-related proteins. Overall, functionally diverse anaerobic organisms unite to form a metabolic network that
performs the complete degradation of amino acids in the psychrophilic methanogenic microbiota.
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Soy sauce is a fermented product of soybean that is
used as a seasoning for cooking (Lioe et al., 2010). In
Japan, there are more than 1,100 soy sauce-processing man‐
ufacturing plants and annual production is approximately
744 million liters (Soy Sauce Information Center, 2021,
https://www.soysauce.or.jp/). Soy sauce production incurs
the discharge of wastewater containing various amino acids
with high chemical oxygen demand (COD) concentrations
(~150,000 mg COD L–1) at psychrophilic temperatures (e.g.,
16 to 20°C) (Kuroda et al., 2017). To treat this high-strength
organic wastewater at a low temperature, an anaerobic treat‐
ment system, such as up-flow anaerobic sludge blanket
(UASB)- and expanded granular sludge bed (EGSB)-type
methanogenic bioreactors, is a promising technology due to
its high capacity to degrade concentrated substrates and low
energy requirements (Lettinga, 1995; Lettinga et al., 1999,
2001). Although growth and methane production activities
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are lower than those under mesophilic or thermophilic
conditions (Lettinga et al., 2001), previous studies using
anaerobic bioreactors operated under psychrophilic condi‐
tions showed good efficiency for the treatment of various
organic wastewater, including citric acid-processing waste‐
water (Collins et al., 2006), brewery wastewater (Xing et
al., 2009), synthetic fatty acid-based wastewater (Collins et
al., 2003; Gunnigle et al., 2015), dairy wastewater (McAteer
et al., 2020; Paulo et al., 2020), and low-strength sewage
wastewater (Keating et al., 2016, 2018; Petropoulos et al.,
2017; Ribera-Pi et al., 2020).

In the methanogenic wastewater treatment system, even
if temperature conditions vary between psychrophilic, mes‐
ophilic, and thermophilic, the three major trophic groups
basically form a synergistic microbial interaction to degrade
organic compounds in wastewater into methane and car‐
bon dioxide; fermenters degrade organic compounds (e.g.,
carbohydrates, proteins, amino acids, and lipids) to fatty
acids (e.g., propionate, butyrate, and acetate as volatile fatty
acids [VFA]; isovalerate, 2-methylbutyrate, and isobutyrate
as branched-chain fatty acids [BCFA]) and hydrogen; syn‐
trophic substrate oxidizers (syntrophs) degrade fatty acids
to acetate and hydrogen; and methanogenic archaea (metha‐
nogens) further utilize acetate and hydrogen with the pro‐
duction of methane and carbon dioxide (Schink and Stams,
2013). To date, major microbial constituents inhabiting psy‐
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chrophilic methanogenic bioreactors have been identified by
16S rRNA-targeting molecular approaches (Collins et al.,
2006; Xing et al., 2009; Gunnigle et al., 2015; Petropoulos
et al., 2017; Keating et al., 2018; Paulo et al., 2020;
Ribera-Pi et al., 2020). However, there is currently no infor‐
mation on the metabolic functions of the methanogenic
microbiota that proliferates in psychrophilic bioreactors
treating high-concentration organic wastewater. The meta‐
bolic strategies and interactions employed by microorgan‐
isms to accomplish anaerobic amino acid degradation under
psychrophilic conditions remain poorly understood. As tem‐
perature decreases, methanogens may consume hydrogen
to lower concentrations (Conrad and Wetter, 1990), poten‐
tially influencing how syntrophic organotrophy is accom‐
plished. Wastewater treatment bioreactors represent rare
amino acid-rich ecosystems that have sufficient metabolic
activity and biomass to allow omics-based investigations of
the above behavior.

We herein attempted to clarify the diversity and
metabolic functions of dominant microorganisms in an
UASB-type methanogenic bioreactor treating synthetic soy
sauce-processing wastewater operated at a psychrophilic
temperature (20°C) using an ecogenomic approach with
a 16S rRNA gene amplicon, shotgun metagenomic, and
metatranscriptomic sequence dataset. Ecogenomics reveals
the microorganisms involved in the decomposition of each
amino acid, those that may utilize fatty acid byproducts in
association with methanogens, and those that may have the
ability to support the entire microbial interaction, thereby
contributing towards a more detailed understanding of meth‐
anogenic amino acid degradation under psychrophilic condi‐
tions.

Materials and Methods

Reactor operation
The specifications and operation conditions of an UASB-type

anaerobic bioreactor were previously described (Kuroda et al.,
2017). Briefly, a lab-scale UASB reactor (working volume of
7.0 L, H×L×W; 0.7×0.1×0.1 m) was operated at 20°C using a
water jacket (Fig. S1). Reactors were operated under different
hydraulic retention time (HRT) and volumetric COD loading rates
ranging between 6 and 8.6 days and between 3.6 and 24 kg COD
m–3 d–1, respectively (Table S1 and Fig. S2). Seed sludge samples
were taken from an UASB reactor treating synthetic soy sauce
wastewater at 35°C. The reactor was fed with synthetic wastewater
that mimicked the composition of wastewater discharged from a
soy sauce-processing factory (Table S2). Synthetic wastewater was
prepared by the dilution of soy sauce (Koikuchi shoyu, Kikkoman)
with tap water. Trace elements of CoCl2·6H2O (0.17 mg L–1) and
NiCl2·6H2O (0.04 mg L–1) were added to synthetic wastewater.

Analytical methods
Dichromate chemical oxygen demand (CODCr), nitrate, and

nitrite were analyzed by a DR3900 spectrophotometer using the
COD2 HR kit, NITRA Ver kit, and NITRI Ver3 kit, respectively
(Hach). Sulfite and sodium sulfite were analyzed using the Sulfite
Test Kit Model SU-5 (Hach). Ammonia and amino acid concentra‐
tions were measured by the ACQUITY UPLC H-Class system
using the AccQ•Tag Ultra kit according to the manufacturer’s
instructions (Waters).

Granule sludge sampling and DNA/RNA extraction
Sludge samples were collected in triplicate from the middle of

the reactor (Port 3, Fig. S1) after 905 days of operation at the
maximum COD loading rate (6,000 mg COD L–1, Table S1). Sam‐
ples were stored at –80°C prior to use for DNA/RNA extraction.
After centrifugation (8,500×g, 3 min), precipitated sludge samples
were collected and stored in a –80°C freezer until DNA extraction.
Total DNA and RNA were separately extracted from sludge sam‐
ples using the FastDNA SPIN Kit for Soil kit (MP Biomedicals)
and acid-phenol/beads-beating extraction method (Uyeno et al.,
2004), respectively.

16S rRNA gene-based microbial community profiling
PCR and amplicon sequencing were performed as previously

described (Kuroda et al., 2015, 2016). Briefly, the PCR amplifica‐
tion of 16S rRNA genes was performed with the universal primer
set Univ515F/Univ806R. The PCR reaction mixture (20 μL) con‐
tained 2.0 μL of template DNA (10 ng μL–1), 0.5 μM of forward
and reverse primers, and 10 μL of the Premix Ex Taq Hot Start
Version (TaKaRa Bio). PCR was conducted using a thermal cycler
(Veriti200, Applied Biosystems) with the following conditions:
initial denaturation at 94°C for 3 min, denaturation at 94°C for
45 s, annealing at 50°C for 60 s, elongation at 72°C for 90 s, and
a final extension at 72°C for 10 min. The number of PCR cycles
was 25. The purification of PCR products was conducted using a
QIAquick PCR purification kit (QIAGEN) following the manufac‐
turer’s protocol. Amplicon sequencing was performed on MiSeq
with the MiSeq Reagent v2 kit (Illumina).

Raw 16S rRNA gene reads were processed and trimmed with
QIIME 1.9.1 (Caporaso et al., 2010) using sequence length
(≥150 nt) and quality score (≥25) cut-offs. Screened sequence data
were grouped into operational taxonomic units (OTUs) with the
UCLUST algorithm using a 97% sequence identity cut-off (Edgar,
2010). Chimeric sequences for each OTU were removed using
ChimeraSlayer (Haas et al., 2011). Taxonomy was assigned using
classify-sklearn retained on SILVA database version 138 (Yilmaz
et al., 2014).

Metagenomic shotgun sequencing, assembly, and binning
Libraries were prepared with the Nextera XT Library Prep kit

(Illumina) with a genomic DNA fragment size ranging between
200 and 1,000 bp. Prepared libraries were sequenced on MiSeq
with the MiSeq Reagent v3 kit (Illumina), generating paired-end
reads up to 300 bp each, at FASMAC. Assembly and binning
were performed as previously described (Nobu et al., 2015, 2016).
Briefly, the reads obtained were trimmed using Trimmomatic
v0.33 (Bolger et al., 2014); digitally normalized and partitioned
using the khmer package (Pell et al., 2012); and assembled using
SPAdes v.3.5.0 (Bankevich et al., 2012). The assembled contigs
were binned using MetaBAT (Kang et al., 2015) and MaxBin 2.0
(Wu et al., 2014, 2016) with manual curation to eliminate conta‐
minated contigs based on rRNA genes as phylogenetic markers.
Short contigs (<1,000 bp) were removed. Genes were predicted
using Prodigal v2.5 (Hyatt et al., 2010) and annotated using
KEGG (Ogata et al., 1999), BLAST KOALA (Altschul et al.,
1990; Kanehisa et al., 2016), IMG/M (Markowitz et al., 2014),
and Prokka (Seemann, 2014). The phylogeny and taxonomy of
each bin were estimated using PhyloPhlAn software (Segata et al.,
2013) and GTDBtk v1.4.1 (GTDB release95; default parameters)
(Parks et al., 2018), respectively.

Metatranscriptomic sequencing and mapping
Ribosomal RNA was removed from extracted total RNA by

Ribo-Zero Magnetic Kit Bacteria (Illumina). Libraries were pre‐
pared with the KAPA RNA HyperPrep Kit (Thermo Fisher
Scientific). Prepared libraries were sequenced on NextSeq 500
(Illumina), generating paired-end reads up to 75 bp each, at
the Bioengineering Lab. The reads obtained were trimmed using
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Sickle v1.33 (Joshi and Fass, 2011); mapped using bowtie2
(Langmead and Salzberg, 2012); converted from SAM to BAM
formats using Samtools v1.5 (Li et al., 2009); and RPKM were
counted using featureCounts v1.5.3 (Liao et al., 2014).

Nucleotide sequence accession numbers
The sequence data obtained in the present study

have been deposited under DDBJ/EMBL/GenBank accession
no. DRA012164.

Results and Discussion

Reactor operation
The operational performance of the UASB reactor

treating synthetic soy sauce-processing wastewater is shown
in Table S1 and Fig. S2. Influent synthetic soy sauce waste‐
water contained VFA, amino acids, and sulfite (Table S2).
The reactor was continuously operated for more than 1,000
days. After the start-up period (Phase 1), the removal effi‐
ciencies of COD and VFA were consistently maintained at
60–93%. Granular sludge samples were collected in tripli‐
cate for technical replicates after 905 days of operation, at
which point operation achieved the maximum COD loading
rate (6,000 mg COD L–1) and a ≥75% soluble COD removal
rate, suggesting that major organic compounds in the waste‐
water were mostly degraded.

Major microbial constituents and their draft genomes
An overview of the 16S rRNA gene amplicon, shot‐

gun metagenomic, and metatranscriptomic sequencing of
sludge samples taken from the UASB reactor treating
soy sauce wastewater is shown in Table S3. 16S rRNA
gene-based microbial community profiling indicated that
the OTUs classified as Firmicutes (28.6%), Synergistota
(14.2%), Bacteroidota (12.1%), Halobacteriota (14.6%),
and Methanobacteriota (15.5%) predominated in the reac‐
tor (Fig. S3 and Table S4). These dominant microbial
populations were previously observed in psychrophilic
methanogenic bioreactors treating various types of organic
wastewater (Collins et al., 2003, 2006; Xing et al.,
2009; Gunnigle et al., 2015; Keating et al., 2016, 2018;
Petropoulos et al., 2017; McAteer et al., 2020; Paulo et al.,
2020; Ribera-Pi et al., 2020).

We successfully obtained 24 high quality (i.e., >80%
completeness) draft genomes of major microbial taxa
from shotgun metagenomic sequence data (Table S5); i.e.,
Syntrophomonadaceae (bin23), unclassified Firmicutes_B
clade (bin36), Pelotomaculaceae (bin7), Ruminococcaceae
(bin28), and Lutisporaceae (bin46) for Firmicutes;
Aminobacteriaceae (bin48), Pyramidobacter (bin67),
Synergistaceae (bin11m), and Thermovirgaceae (bin39)
for Synergistota; Petrimonas (bin12), Mangrovibacterium
(bin31m), and uncultured Bacteroidales clades (bin11,
bin17, and bin44) for Bacteroidota; Methanothrix
(bin1), Methanosarcina (bin13), and Methanospirillum
(bin29m) for Halobacteriota; and Methanobacterium
(bin3) for Methanobacteriota. Draft genomes asso‐
ciated with Desulfobacterota (Solidesulfovibrio bin8
and Syntrophorhabdaceae bin22), Chloroflexota
(Anaerolineaceae bin27), Spirochaetota (Treponematales

bin28m), Thermotogota (Mesotoga bin20), and
Actinobacteriota (Propionibacteriaceae bin9) were also
recovered from the metagenomic sequence pool. The phylo‐
genetic relationship of the metagenomic bins and previously
isolated representatives is shown in Fig. 1.

Transcript levels of annotated genes encoded in each
bin are shown in Supplemental Table S5–S30. Among
these bins, aceticlastic (Methanothrix bin1), hydrogeno‐
trophic (Methanobacterium bin3 and Methanospirillum
bin29m), and methylotrophic (Methanosarcina bin13)
methanogens showed relatively high RNA expression lev‐
els in methanogenesis-related protein complexes, such as
methyl-coenzyme M reductase (Mcr), tetrahydromethanop‐
terin S-methyltransferase (Mtr), CoB--CoM heterodisulfide
reductase (Hdr), coenzyme F420-reducing hydrogenase,
and formate dehydrogenase (Table S7–S10), indicating
stable methanogenic bioconversion. Within the domain
Bacteria, Synergistota-related bins (bin11m, bin48, and
bin67), Solidesulfovibrio bin8, Pelotomaculaceae bin7, and
Syntrophomonadaceae bin23 recorded relatively high tran‐
script levels. They have been suggested to play a role in
amino acid degradation (Bhandari and Gupta, 2012), sul‐
fite reduction (Baffert et al., 2019), syntrophic propionate
oxidation (Hidalgo-Ahumada et al., 2018), and syntrophic
butyrate oxidation (Sieber et al., 2010; Narihiro et al.,
2016), respectively, which were inferred from the major
components of soy sauce wastewater (Table S1). The poten‐
tial metabolic functions of dominant bacteria are shown
in Fig. 1. Details with a special emphasis on the degrada‐
tion of amino acids are described in the following sections
according to metagenome- and metatranscriptome-informed
metabolic reconstruction (Fig. 2, Table S11–S30).

Metabolic capacities of dominant organisms

Glutamine, glutamic acid, asparagine, aspartic acid,
and alanine

Many microbial constituents utilized Glu/Gln, Asp/Asn,
and Ala and produced pyruvate, fumarate, oxaloacetate,
and 2-oxoglutarate, which were then used in the citric
acid cycle. Gln was generated from Glu and 2-oxoglutarate
by glutamate synthase using NAD(P)H as an electron
donor. Glutamate dehydrogenase catalyzed the production
of 2-oxoglutarate from Gln. Asp was converted to Asn
by asparaginase, and aspartate transaminase catalyzed the
conversion of Asn to oxaloacetate via an amino-group
transfer reaction using 2-oxoglutarate as the substrate and
glutamate as the byproduct. Fumarate was produced from
Asn by a two-step reaction catalyzed by adenylosuccinate
synthetase and adenylosuccinate lyase. Ala may be con‐
verted to pyruvate by NADH-dependent alanine dehydro‐
genase. Glutamate-pyruvate aminotransferase also catalyzed
the conversion of Ala to pyruvate via an amino-group trans‐
fer reaction via a similar mechanism to aspartate transami‐
nase.

Serine, glycine, threonine, and cysteine
Many bacterial bins harbor a l-serine dehydratase gene

cluster that is responsible for the conversion of Ser to
pyruvate and NH3 and a serine hydroxymethyltransfer‐
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Fig. 1. Phylogenetic affiliation and metabolic functions of major microbial constituents in a psychrophilic up-flow anaerobic sludge blanket
(UASB) reactor treating synthetic soy sauce wastewater. A distance matrix tree was constructed based on the amino acid sequences of 400
conserved proteins using PhyloPhlAn software. Boldface in the tree indicates the bins obtained in the present study. The averaged RNA expression
level (RPKM in triplicate) of each bin is shown as a grayscale heatmap. The metabolic functions of each bin are shown as follows: closed
circle, the bin has a complete gene set for each function, and corresponding RNAs were expressed; gray circle, the bin has a partial gene
set for each function, and corresponding RNAs were expressed; open circle, although the bin has a complete or partial gene set for each
function, corresponding RNAs were not expressed. Amino acids are shown as common three-letter abbreviations according to the International
Union of Pure and Applied Chemistry (IUPAC). Other abbreviations: Sec, bacterial secretion system; Pyr, pyruvate; GCS, glycine cleavage
system; GRD, glycine reductase; Put, putrescine; Spe, spermidine; SAM, S-adenosyl-l-methionine; Pot, ABC-type polyamine transporter; OpuA,
osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine; LIV, branched-chain amino acid
transport system; Fum, fumarate; Prop, propionate; BCFA, branched-chain fatty acid; Cyt, cytochrome; Nif, nitrogen fixation complex; ETF,
electron transfer flavoprotein; Fix, ETF-oxidizing hydrogenase complex; Fe-S red, Fe-S reductase; Hdr-Flox, heterodisulphide reductase-flavin
oxidoreductase complex, Rnf, Rhodobacter nitrogen fixation complex; Eb hyd, electron-bifurcating hydrogenase; Fd hyd, ferredoxin-dependent
[NiFe]-hydrogenase; Hya, NADH/quinone-dependent [NiFe]-hydrogenase; Ech, energy-conserving hydrogenase; Mvh, methyl-viologen-reducing
hydrogenase; Hox, bidirectional soluble hydrogenase; Eb fdh, electron-bifurcating formate dehydrogenase; Fdo, formate dehydrogenase O.

ase gene for the reversible conversion of Ser and Gly
with the co-factor tetrahydrofolate (THF). Gly is further
degraded through the glycine cleavage system (GCS) or
Stickland reaction with a glycine reductase (GRD) com‐
plex. Solidesulfovibrio bin8, Aminobacteriaceae bin48,
Lutisporaceae bin46, and Propionibacteriaceae bin9 pos‐
sess a gene set for GCS (i.e., glycine dehydrogenase,
aminomethyltransferase, dihydrolipoyl dehydrogenase, and
glycine cleavage system H protein) that catalyzes Gly to
NH3 and CO2. The draft genomes of four Synergistota
bins and Lutisporaceae bin46 encode a GRD gene cluster
(GrdABC) for the conversion of Gly to acetate with the cou‐
pled oxidation reaction of some amino acids (e.g., Ala). The
partial selenoprotein biosynthetic gene cluster selABCD (l-
seryl-tRNA[Sec] selenium transferase, selA; selenocysteine-
specific elongation factor, selB; tRNA-Sec, selC selenide,
water dikinase, selD) was detected in these GRD-encoded
bins because the GrdA subunit contains selenocysteine.
Gly was also derived from Thr by l-threonine aldolase
found in some of the bacterial bins. Thr may be converted
to 2-oxobutanoate and NH3 by threonine ammonia-lyase
encoded in the genomes of Bacteroidota, Synergistota, and

Propionibacteriaceae, and propionate is then produced via
the fermentative degradation of 2-oxobutanoate.

Serine o-acetyltransferase and cysteine synthase are
responsible for the conversion of Ser to Cys. Furthermore,
l-cysteine:2-oxoglutarate aminotransferase may catalyze
Cys and 2-oxoglutarate to 3-mercaptopyruvate and Glu,
and 3-mercaptopyruvate may then be transformed to pyru‐
vate by 3-mercaptopyruvate sulfurtransferase with reduced
thioredoxin. Solidesulfovibrio bin8, Propionibacteriaceae
bin9, Treponematales bin28m, Syntrophorhabdaceae bin22,
and Pelotomaculaceae bin7 possess these Ser/Cys utiliza‐
tion enzymes.

Lysine, branched-chain amino acids (BCAA), and
fatty acids

The Lys fermentation pathway comprises five enzymes:
l-lysine-2,3-aminomutase, β-l-lysine-5,6-aminomutase, 3,5-
diaminohexanoate dehydrogenase, 3-keto-5-aminohexanoate
cleavage enzyme, and 3-aminobutyryl-CoA ammonia lyase.
Through this pathway, Lys was fermented to crotonyl-
CoA, and may then be further degraded to acetate
via the β-oxidation pathway. Among these enzymes,
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Fig. 2. Proposed scheme for the methanogenic degradation of amino acids in a psychrophilic up-flow anaerobic sludge blanket (UASB) reactor
treating synthetic soy sauce wastewater. In each pathway, representative microbial population(s) are shown as a number in a panel. “Many”
indicates that more than 7 representative populations have the corresponding metabolic capacities. Amino acids are shown as a common three-
letter abbreviation according to the International Union of Pure and Applied Chemistry (IUPAC). Other abbreviations: PRPP, 5-phospho-alpha-d-
ribose 1-diphosphate; THF, tetrahydrofolate; 5-MTHF, 5-methyltetrahydrofolate TRDred, reduced thioredoxin; TRDoxi, oxidized thioredoxin;
Fum, fumarate; Pyr, pyruvate; Oxa, oxaloacetate.

3,5-diaminohexanoate dehydrogenase requires NAD+ as
a co-factor. Metagenomic bins of Petrimonas bin12,
Bacteroidales UBA5261 bin44, and Anaerolineaceae bin27
contain a complete gene set for Lys fermentation, implying
their involvement in Lys degradation and butyrate produc‐
tion in this reactor.

Four bins of Synergistota organisms encode BCAA ami‐
notransferase and ferredoxin (Fd)-dependent branched-chain
oxo-acid reductase for the degradation of Leu, Ile, and
Val to correspond to BCFA: isovalerate, 2-methylbutyrate,
and isobutyrate, respectively. The gene cassette for the
BCAA transporter (LivFGHKM) was also found in these
Synergistota metagenomes. They have no ability to oxi‐
dize BCFA due to the lack of 2-methylbutyryl-CoA
dehydrogenase, 3-methylbutyryl-CoA dehydrogenase, or
isobutyryl-CoA mutase. Multiple active homologs of acyl-
CoA dehydrogenase and a gene cassette of isobutyryl-
CoA mutase were instead found in Syntrophomonadaceae
bin23. In addition, other key enzymes for β-oxidation
(i.e., enoyl-CoA hydratase, 3-hydroxybutyryl-CoA dehy‐
drogenase, acetyl-CoA acetyltransferase, phosphotransace‐
tylase, and acetate kinase), the electron transfer flavoprotein
(ETF)-oxidizing hydrogenase complex (FixABCX), the het‐
erodisulphide reductase-flavin oxidoreductase (Hdr-Flox)

complex, Rhodobacter nitrogen fixation (Rnf) complex,
hydrogenases, and formate dehydrogenases were found in
Syntrophomonadaceae organisms (Table S11), which are
in accordance with the genomic traits of Syntrophomonas
strains (Sieber et al., 2010; Narihiro et al., 2016), suggesting
its role in the syntrophic oxidation of BCFA and butyrate.

Propionate may be produced by the degradation of 2-
methylbutyrate from Ile as well as the degradation of 2-
oxobutanoate from Thr, and propionate is then oxidized
to acetate via the methylmaronyl-CoA pathway encoded
by Pelotomaculaceae bin7. Pelotomaculaceae organisms
encode Hdr-Flox, FixABCX, ETF-linked acyl-CoA dehy‐
drogenase, hydrogenases, and formate dehydrogenases
(Table S13). Among these energy-conserving systems, the
activities of cytoplasmic and membrane-bound formate
dehydrogenases were higher than those of hydrogenases.
Formate-dominated interspecies electron transfer was dem‐
onstrated in our previous ecogenomic studies using a co-
culture of Pelotomaculum strains with hydrogenotrophic
methanogen (Hidalgo-Ahumada et al., 2018), a lab-scale
propionate-fed chemostat (Chen et al., 2020), and full-scale
anaerobic digesters (Nobu et al., 2020). In addition to
hydrogen/formate-mediated interspecies electron transfer,
direct interspecies electron transfer (DIET) employing con‐
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ductive pili (e-pili) has been investigated (Summers et al.,
2010). Pelotomaculaceae bin7 possesses a pilus assembly
gene cassette with PilA, which meets the criteria for the
e-pili protein (SOY3_bin007_00676, Fig. S4) (Holmes et
al., 2017; Walker et al., 2018); however, the transcript level
of this cassette is low. In a previous study, the effects of
granular-activated carbon (GAC) on pilA gene expression
in a psychrophilic (20°C) UASB reactor treating munic‐
ipal sewage was estimated using a RT-qPCR approach
(Zhang et al., 2020). The findings obtained confirmed that
the addition of GAC up-regulated pilA gene expression,
while the expression levels of pilA were 36-fold lower in
non-GAC-amended UASB granular sludge. Therefore, we
presume that Pelotomaculaceae bin7 in our psychrophilic
UASB reactor has the potential for an e-pili-mediated DIET
reaction; however, the transcription level without mediator
material is not high. Therefore, the genomic features of
Pelotomaculaceae bin7 indicate its versatile syntrophic life‐
style for propionate oxidation in the reactor.

Tryptophan and histidine
The draft genomes of Lutisporaceae bin46,

Aminobacteriaceae bin48, Thermovirgaceae bin39, and
five Bacteroidota bins harbored tryptophanase, which
may catalyze Try to indole, pyruvate, and NH3. Some
of these bins possess the ability to convert indole to 5-
phospho-alpha-d-ribose 1-diphosphate (PRPP) and anthra‐
nilate (2-aminobenzoate). PRPP is a common compound
for nucleotide metabolism. Indole and anthranilate are
important intermediates for the biosynthesis of alkaloid
compounds. Although the absolute abundance and ecophy‐
siological role of indole and its derivatives in methano‐
genic ecosystems, including our UASB reactor, remain
unknown, previous studies reported that these compounds
are associated with bacterial signaling in Escherichia coli
and Ralstonia solanacearum (Pinero-Fernandez et al., 2011;
Song et al., 2020). PRPP may be further converted to
His through a 10-step reaction employing ATP, Glu, and
NAD+. His may be converted to Glu via a four-step
reaction employing histidine ammonia-lyase, urocanate
hydratase, imidazolonepropionase, and glutamate formimi‐
doyltransferase by organisms associated with Synergistota,
Lutisporaceae, Mesotoga, Bacteroidota, Treponematales,
and Anaerolineaceae.

Arginine, methionine, proline, and ornithine
Solidesulfovibrio, Thermovirgaceae, and Treponematales

bins harbor two NAD(P)H-dependent enzymes,
pyrroline-5-carboxylate reductase and l-glutamate gamma-
semialdehyde dehydrogenase, to produce the anapler‐
otic amino acid Glu from Pro. Ornithine, which is a
non-proteinogenic amino acid, may be generated from
Glu via a three-step reaction using glutamate 5-kinase,
glutamate-5-semialdehyde dehydrogenase, and ornithine
aminotransferase, which are encoded within Treponematales
bin28m. Three bins of Synergistota organisms (bin48,
bin67, and bin39) possess ornithine cyclodeaminase,
which catalyzes Pro to Orn. Orn may be converted
to putrescine by ornithine decarboxylase encoded in
Aminobacteriaceae bin48 and Treponematales bin28m.

Putrescine was also produced from Arg by arginine
decarboxylase and agmatinase, which are encoded within
Thermovirgaceae bin39 and unclassified Firmicutes_B
bin36. Four draft genomes (Aminobacteriaceae bin48,
Synergistaceae bin11m, Treponematales bin28m, and
unclassified Firmicutes_B bin36) encode spermidine syn‐
thase, which may catalyze putrescine with S-adenosyl-l-
methionine (SAM) to spermidine. Most of the metagenomic
draft genomes harbor S-adenosylmethionine synthase to
produce SAM from Met. Several organisms possess a gene
cassette encoding potential ABC-type polyamine transporter
subunits (Pot). Spermidine is a polyamine that is involved in
the anaerobic growth of E. coli (Chattopadhyay et al., 2009)
and Anaerovibrio lipolytica (Hirao et al., 2000), the micro‐
aerobic growth of Borrelia burgdorferi (Bontemps-Gallo et
al., 2018), biofilm formation by Yersinia pestis (Patel et
al., 2006) and Bacillus subtilis (Burrell et al., 2010), and
other physiological functions (Michael, 2018). Zhu et al.
(2015) reported that spermidine promoted gene expression
and the replacement of damaged proteins in cyanobacteria
under cold stress conditions. Some psychrophilic bacteria
were shown to accumulate spermidine as a predominant
polyamine within their cells (Margesin et al., 2012; Zhang
et al., 2012; Dahal et al., 2019; Kumar et al., 2020). These
findings imply that spermidine acts as a supportive agent for
microbial metabolic activities in methanogenic microbiota
in our UASB reactor operated under psychrophilic condi‐
tions. Further studies employing a community-level exome‐
tabolome approach (Kell et al., 2005; Douglas, 2020) are
needed to clarify this assumption.

Phenylalanine and tyrosine
Although the degradation pathway of Phe and Tyr

has not yet been elucidated in detail in a methanogenic
environment, a bin of uncultured Bacteroidales 4484-276
(bin11) encodes some genes for the aerobic utilization
of Phe and Tyr. Phe is degraded to fumarate and acetoa‐
cetate by a six-step reaction catalyzed by phenylalanine
4-hydroxylase, l-tyrosine:2-oxoglutarate aminotransferase,
4-hydroxyphenylpyruvate dioxygenase, homogentisate 1,2-
dioxygenase, maleylacetoacetate isomerase, and fumaryla‐
cetoacetase (Arias-Barrau et al., 2004). Despite rigorous
explorations of the gene repertory of all metagenomic
sequence data retrieved from UASB granular sludge sam‐
ples, we did not identify any maleylacetoacetate isomerase
gene with significant amino acid similarity to previously
reported genes. We found the active RNA expression of a
gene encoding the putative isomerase/cyclase-like domain-
containing protein (SOY3_bin011_02647) along with a
flavin reductase gene (SOY3_bin011_02648), which are
adjacent to the genes for homogentisate 1,2-dioxygenase
(SOY3_bin011_02651), 4-hydroxyphenylpyruvate dioxy‐
genase (SOY3_bin011_02650), and fumarylacetoacetase
(SOY3_bin011_02649) (Fig. 3). The amino acid
sequence of the protein SOY3_bin011_02647 showed
relatively low identity (~40%) with the proteins of
tyrosine-utilizing Bacteroidota isolates, which possess a
gene cassette encoding phenylalanine 4-hydroxylase, 4-
hydroxyphenylpyruvate dioxygenase, homogentisate 1,2-
dioxygenase, and fumarylacetoacetase (Weon et al.,
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Fig. 3. Comparison of gene cassettes associated with the bioconversion of 4-hydroxyphenylpyruvate to acetoacetate/fumarate found in
uncultured Bacteroidales 4484-276 bin11, previously reported metagenomic contigs derived from probable microaerobic ecosystems (Eberhardt
et al., 2020; Dalcin Martins et al., 2021), and aerobic Bacteroidota isolates (Weon et al., 2008; Ahn et al., 2014; Huang et al., 2017). An
uncultured Bacteroidales 4484-276 bin11-associated cassette encodes homogentisate 1,2-dioxygenase, 4-hydroxyphenylpyruvate dioxygenase,
fumarylacetoacetase, flavin reductase-like domain protein, and putative isomerase/cyclase-like domain protein. Phenylalanine 4-hydroxylase is
also shown. Abbreviated locus tags are shown (e.g., ‘SOY3_bin011_02651’ as ‘02651’ in the row of Bacteroidales 4484-276 bin11). Numbers
in gene boxes indicate amino acid sequence identity (%) to the corresponding gene of uncultured Bacteroidales 4484-276 bin11. The contigs
INTA.CYC.103 contig-100_794 (37,009 bp), INTA.CYC.150 contig-100_1629 (24,086 bp), and MAG18 bacteroidetes_4_contig_1115253
(29,273 bp) were originally named as Candidatus Falkowbacteria bacterium (accession no. SABQ01000012), Clostridia bacterium
(SABY01000055), and Bacteroidales bacterium (JACZJL010000162), respectively, in the NCBI database. We checked the phylogenetic
assignment of these contigs by a blastp search (Altschul et al., 1990) for some functionally important enzymes; i.e., RNA polymerase (locus
tag: EOM75_02175), DNA repair protein (EOM75_02190), and chromosomal replication initiator protein (EOM75_02085) for INTA.CYC.103
contig-100_794; RNA polymerase (EOM83_09135), DNA repair protein (EOM83_09120), and aminotransferase (EOM83_09145) for
INTA.CYC.150 contig-100_1629; 5′/3′-nucleotidase (IH598_15930), transketolase (IH598_15890), and catalase (IH598_15870) for MAG18
bacteroidetes_4_contig_1115253. Since all enzymes are closely related to Bacteroidota organisms, we temporarily concluded that these contigs
may be derived from Bacteroidota-related microorganisms.

2008; Ahn et al., 2014; Huang et al., 2017). By
expanding to the public environmental metagenomic data‐
base, three similar gene clusters consisting of homologs
of putative isomerase/cyclase-like domain-containing pro‐
teins, flavin reductase, homogentisate 1,2-dioxygenase,
4-hydroxyphenylpyruvate dioxygenase, and fumarylacetoa‐
cetase, were found in contigs associated with Bacteroidota
populations inhabiting ecosystems at low oxygen lev‐
els (Eberhardt et al., 2020; Dalcin Martins et al.,
2021) (Fig. 3). Among these enzymes, phenylalanine 4-
hydroxylase, 4-hydroxyphenylpyruvate dioxygenase, and
homogentisate 1,2-dioxygenase require molecular oxygen
for reactions to proceed. In our previous ecogenomic study,
we revealed that bacterial populations in an anaerobic

digester decomposing excess sludge derived from a munic‐
ipal sewage treatment process survived microaerobic con‐
ditions by employing cytochrome bd oxidase, which is
a terminal oxidase for aerobic respiration (Nobu et al.,
2020). Uncultured Bacteroidales 4484-276 bin11 as well
as Syntrophomonadaceae bin23, Solidesulfovibrio bin8,
Propionibacteriaceae bin9, and other Bacteroidota bins
encode a cytochrome bd oxidase complex that utilizes
nanomolar-level oxygen as an electron acceptor to promote
oxygen-dependent respiration. Although the exact function
of the putative isomerase/cyclase-like domain-containing
protein remains unclear, uncultured Bacteroidales 4484-276
bin11 organisms may be responsible for the degradation of
Phe and Tyr in the UASB reactor.
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Sulfite reduction and possible nitrogen fixation
Soy sauce-processing wastewater contains a high con‐

centration of sodium sulfite (Table S2). Among the
major bacterial constituents, only Solidesulfovibrio bin8
encodes the complete gene set for sulfate/sulfite reduc‐
tion comprising sulfate adenylyltransferase (sat), adenylyl-
sulfate reductase (aprAB), the dissimilatory sulfite reductase
catalytic subunit (dsrABCD), and membrane-bound sul‐
fite reductase-associated electron transfer protein subu‐
nit (dsrMKJOP) with relatively high transcript levels.
According to its genome information, this Solidesulfovibrio-
related organism may utilize Gly, Ser, Cys, Pro, Thr,
Asp/Asn, and Glu/Gln, but does not oxidize fatty acids
(e.g., propionate and butyrate). The feature of amino
acid utilization is in partial agreement with the ability
of previously known amino acid-utilizing Solidesulfovibrio
(formerly known as Desulfovibrio) spp. isolated from anae‐
robic wastewater treatment systems (Baena et al., 1998;
Hernandez-Eugenio et al., 2000) and a natural psychrophilic
environment (Pecheritsyna et al., 2012). The presence of
a Desulfovibrionaceae-related population was previously
reported in the 16S rRNA-based microbial community
profiling of psychrophilic anaerobic bioreactor ecosystems
(McKeown et al., 2009; Keating et al., 2016, 2018;
McAteer et al., 2020; Ribera-Pi et al., 2020); however,
their ecophysiological function has yet to be clarified.
Sulfate-reducing bacteria and methanogenic archaea com‐
pete for a carbon source and/or H2 in an anaerobic bioreac‐
tor treating sulfate-/sulfite-rich wastewater (Raskin et al.,
1996; Omil et al., 1998; Lu et al., 2017; Wu et al., 2018).
Through a genome analysis of Solidesulfovibrio bin8, we
found the Hdr-Flox complex, an energy-conserving hydro‐
genase (Ech), membrane-bound cytochrome, and carbon
monoxide oxidation (Coo)-hydrogenase with carbon mon‐
oxide dehydrogenase, which may catalyze the reversible
conversion between CO and CO2, flavoredoxin, and NADH
dehydrogenase, all of which are responsible for acquiring
ATP coupling with sulfate/sulfite reduction, in members of
Desulfovibrionaceae (Chen et al., 1993; Voordouw, 2002;
Meyer et al., 2014; Hadj-Said et al., 2015). A nitrogenase-
like gene cluster was detected in the genome along with
molybdate and ammonia transporters (Table S25). Previ‐
ous microbial genome analyses indicated that nitrogen
fixation-related proteins (Nif) are distributed in functionally
diverse microorganisms including fermentative bacteria,
syntrophic substrate oxidizers, methanogenic archaea, and
sulfate-reducing bacteria (Dos Santos et al., 2012; Narihiro
et al., 2016). The transcript levels of nitrogenase-like gene
clusters were abundant in Solidesulfovibrio bin8 (Table
S25) as well as in the methanogenic archaea (Methanothrix
bin1, Methanobacterium bin3, Methanospirillum bin29m,
and Methanosarcina bin13) (Table S7–10). We speculated
that nitrogen fixation in some syntrophs having Nif-related
genes may serve as a mechanism to tolerate acidification
by providing hydrogen and ammonia for partner hydrogeno‐
trophic methanogens to survive under hydrogen/ammonia-
limited conditions (Narihiro et al., 2016). Sayavedra et al.
(2021) recently reported that the sulfate-reducing bacterium
Desulfovibrio diazotrophicus strain QI0027 isolated from

the human gut exhibited nitrogen fixation activity. These
findings suggest that Desulfovibrionaceae organisms inter‐
act with other trophic populations in the UASB reactor
by providing hydrogen and ammonia, particularly under
psychrophilic conditions in which the growth rate and
metabolic activity of methanogens are lower than those
under mesophilic and thermophilic conditions (Lettinga et
al., 2001).

In summary, microbial metabolic functions associated
with the methanogenic degradation of amino acids
in a psychrophilic UASB reactor treating soy sauce-
processing wastewater were investigated using an ecoge‐
nomic approach. The results obtained demonstrated that
members of Bacteroidota, Synergistota, Treponematales,
and Propionibacteriaceae were the major active populations
for the anaerobic fermentative degradation of amino acids.
Exceptionally, Phe and Tyr were degraded by the unique
enzymes encoded in the uncultured Bacteroidota-related
organism that may function under microaerobic conditions.
Fatty acids resulting from the degradation of the BCAA,
Lys and Thr were further oxidized by Pelotomaculaceae-
and Syntrophomonadaceae-related bacteria in syntrophic
association with partner hydrogenotrophic methanogens.
Solidesulfovibrio organisms play a major role in the reduc‐
tion of sulfite, which is abundant in soy sauce wastewater,
and may support the activity of hydrogenotrophic methano‐
gens and other microbial populations by providing hydro‐
gen and ammonia via the Nif-like complex. We consider
the maintenance of this sophisticated metabolic network of
functionally diverse microbes to be essential for the meth‐
anogenic wastewater treatment process under low tempera‐
ture conditions.
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