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Abstract
Proinflammatory cytokines target vascular endothelial cells during COVID-19 infections. In particular, the endothelial gly-
cocalyx (eGC), a proteoglycan-rich layer on top of endothelial cells, was identified as a vulnerable, vasoprotective structure 
during infections. Thus, eGC damage can be seen as a hallmark in the development of endothelial dysfunction and inflam-
matory processes. Using sera derived from patients suffering from COVID-19, we could demonstrate that the eGC became 
progressively worse in relation to disease severity (mild vs severe course) and in correlation to IL-6 levels. This could be 
prevented by administering low doses of spironolactone, a well-known and highly specific aldosterone receptor antagonist. 
Our results confirm that SARS-CoV-2 infections cause eGC damage and endothelial dysfunction and we outline the underly-
ing mechanisms and suggest potential therapeutic options.

Introduction

In addition to manifesting as an acute respiratory infection 
that may progress rapidly to acute respiratory distress syn-
drome (ARDS), it was recognized early on that SARS-CoV-2 
infections exhibit a strong systemic inflammatory process 
that may lead to endothelial dysfunction and cardiovascular 
disease [1, 2]. Clinically, COVID-19-dependent endothelial 
dysfunction might contribute to pulmonary edema, protein-
uria, and vascular inflammation and seems to be a central 

cause of multiorgan failure [3, 4]. Under healthy conditions, 
the vascular endothelium provides a crucial interface between 
blood and tissue. Due to this strategic position, it acts as a 
vasoprotective barrier in many different pathological condi-
tions [5]. In particular, the endothelial top surface layer, the 
endothelial glycocalyx (eGC)—a negatively charged brush-
like 0.5- to 1-µm-thick layer of membrane-bound, carbohy-
drate-rich molecules mostly comprising glycoproteins and 
proteoglycans—can be seen as a key player in vasoprotective 
function [6, 7]. Recently, Rovas and colleagues demonstrated 
that the thickness of the sublingual eGC, a robust and reli-
able marker for eGC integrity, was drastically decreased in 
COVID-19 patients compared to controls [8, 9], indicating 
shedding of the eGC. In this context, proinflammatory fac-
tors such as IL-1b, IL-6, TNF-a, MCP-1, and aldosterone are 
elevated in COVID-19 patients. Furthermore, the vascular 
leakage-inducing antagonist angiopoietin-2 and key mark-
ers for eGC shedding such as syndecan-1 and hyaluronic 
acid were significantly increased in COVID-19 patients [10, 
11]. Heparanase activity is also enhanced, which is known to 
degrade the eGC and contribute to the inflammatory environ-
ment of the endothelium [12]. From these data, the hypoth-
esis emerged that endothelial cells are activated and that the 
eGC is a highly vulnerable and crucial structure being spe-
cifically attacked during a SARS-CoV-2 infection and might 
determine the outcome of these patients.
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From this point of view, the possibility of a therapeutic 
approach focusing on vascular eGC should be considered for 
COVID-19 patients. Heparanase inhibitors, matrix metal-
loprotease (MMP) inhibitors, or antioxidants could be dis-
cussed here [13]. Indeed, aldosterone levels are increased 
in COVID-19 patients, a condition leading to inflammatory 
processes, endothelial dysfunction, and vascular damage 
[11, 14]. Thus, the cytosolic aldosterone receptor, the min-
eralocorticoid receptor (MR), would represent another very 
promising therapeutic target.

However, these clinical observations and whether SARS-
CoV-2 directly damages the endothelial surface are not fully 
understood yet. Here, by using the atomic force microscope [15] 
as a well-established nanoindentation tool [16, 17], we demon-
strated that the eGC of primary endothelial cells after incu-
bation with sera derived from COVID-19 patients with mild 
and severe symptoms is significantly damaged, which could be 
prevented by administering the MR antagonist spironolactone.

Methods

Human samples, demographics, and baseline 
characteristics

Blood samples of COVID-19 patients were collected from 
patients of the University Hospital Schleswig–Holstein 
Lübeck in cooperation with the Department of Infectious 
Diseases and Microbiology and the University Heart Center. 
COVID-19 patients were grouped into those with a milder 
course of disease and admitted to a general ward or with a 
severe course requiring intensive care and admitted to the 
intensive care unit. All sera were collected according to 
the Declaration of Helsinki and after approval of the local 

ethics committee (patients with a mild course of COVID-19: 
Az 13–003; patients with severe course of COVID-19: Az 
19–019/A, University of Lübeck). All patients gave written 
informed consent. Sera were collected from female and male 
patients aged 30–78 years (mean ± SE: 58 ± 2.7 years, see 
Table 1) within 3 days of hospital admission. Serum was 
centrifuged at 2000 g and then stored at − 80 °C. Nonhospi-
talized, healthy, age- and gender-matched volunteers without 
comorbidities served as controls (hereafter termed “con-
trol”). These blood samples were collected at the University 
of Luebeck in cooperation with the Department of Cardi-
ology and Angiology of the “Sana Kliniken Lübeck” hos-
pital, Germany, following the Declaration of Helsinki and 
approved by the Local Ethics Committee (Case: 19–310).

IL‑6 quantification

IL-6 concentration (ng/L) was determined according 
to routine diagnostic testing at the University Hospital 
Schleswig–Holstein Lübeck. The accredited laboratory used 
an electrochemiluminescent immunoassay (ECLIA) to quan-
tify IL-6 levels with a reference range of < 7.

Cell culture

Primary human umbilical vein endothelial cells (HUVECs) 
were isolated (approved by the local ethical committee (Case: 
18–325) and cultured as described previously [18, 19]. Cells 
were culture in HUVEC culture medium (Gibco Medium 
199 + fetal calf serum 10% (Gibco, Carlsbad, CA) + peni-
cillin/streptomycin 1% (Gibco, Carlsbad, CA; 100 U/ml; 
100 mg/ml) + heparin 5000 U/ml (Biochrom, Schaffhausen, 
Switzerland) + large vessel endothelia supplement 1% (Gibco, 
Carlsbad, CA, USA). Cell culture flask were coated with 0.5% 

Table 1   Demographics of 
control group, and C19 patient 
(mild and severe course)

Controls were pooled for measurements.

Controls Mild course Severe course

Control 
number

Gender Age Patient 
number

Gender Age Patient 
number

Gender Age

1 m 81 21 m 45 14 m 56
2 m 75 22 m 47 15 m 62
3 m 50 23 m 52 16 w 56
4 m 82 24 m 70 17 m 64
5 m 46 29 m 71 23 w 58
6 m 47 42 w 30 32 w 47
7 w 53 46 w 51 33 m 66
8 w 62 47 m 64 36 w 78
9 m 49 49 w 43 37 m 70
10 w 61 52 m 70
11 w 66 58 w 73
12 w 66 59 m 44
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gelatin (1 h before seeding, Sigma-Aldrich, St. Louis, MO, 
USA) and cultivated at 37 °C, 21% O2 and 5% CO2. For AFM 
experiments, HUVECs were cultivated on fibronectin-coated 
glass coverslips to confluence for at least 4 days under stand-
ard cell culture conditions and stimulated with 10% COVID-
19 sera or sera from a healthy donor group for 24 h before the 
experiment. The cells were co-treated with the MR antagonist 
spironolactone (100 nM) in parallel to COVID-19 sera treat-
ment and compared to solvent control (0.1% ethanol).

Nanoindentation measurements

The atomic force microscope (AFM, Nanowizard4 from JPK 
BioAFM Business, Berlin, Germany) was used to deter-
mine the nanomechanical properties of the eGC (here: eGC 
height) based on the nanoindentation technique as described 
previously [20]. Briefly, a laser beam was aligned on the 
backside of a gold-coated triangular cantilever (Novascan 
Technologies, Boone, NC, USA) with a mounted spherical 
tip (10 µm diameter) and a defined, nominal spring constant 
of 10 pN/nm. The cantilever indents the endothelial cell sur-
face with a loading force of 0.5 nN. The reflection of a laser 
beam is used to quantify the cantilever deflection. The height 
of the eGC can be calculated by knowing the cantilever 
force, the piezo displacement, and the deflection sensitivity. 
The resulting force-distance curves were analyzed using the 
Protein Unfolding and Nano-Indentation Analysis Software 
PUNIAS 3D version 1.0 release 2.2 (http://​punias.​voila.​net).

Fluorescence staining

After 24 h stimulation with control/COVID-19 sera, eGC 
was stained by applying 2  µg/mL wheat germ aggluti-
nin (WGA; conjugate Alexa-fluor-488; Thermo Fisher; 
Waltham, MA, USA) for 60 min in the dark (RT). Specimens 
were fixed with 4% fresh paraformaldehyde (PFA, 4 °C) for 
30 min on ice. After washing the cells, the stained coverslips 
were mounted with Dako mounting medium (Dako, Carpin-
teria, CA, USA) with 1.5 µg/mL Hoechst (Sigma Aldrich, St. 
Louis, MO, USA) for nuclei staining. Fluorescence images 
were taken with a Keyence-BZ9000 fluorescence micro-
scope (Keyence Corporation, Osaka, Japan). Fluorescence 
intensity was quantified using ImageJ software (Version 
1.52a; National Institute of Health, USA).

Statistical analysis

GraphPad PRISM (Version 7, GraphPad Software Inc., CA, 
USA) and IBM SPSS Statistics for Windows (IBM Corp. 
Released 2020, Version 27.0., NY, USA) were used to ana-
lyze the data and prepare the figures. Differences between 
experimental groups were analyzed using Student’s t-test 
for parametric values or (in case of three or more groups) 

assessed by using one-way ANOVA (analysis of variance) 
with Bonferroni’s correction for multiple comparison fol-
lowed by post hoc Tukey’s multiple comparisons test for par-
ametric values or the Kruskal–Wallis test by ranks followed 
Dunn’s multiple comparison for nonparametric values. For 
linear regression, Pearson (r) correlations were used. Dif-
ferences were considered statistically significant when p 
values were < 0.05 (*p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001). Each experiment was repeated individu-
ally at least 3 times (N ≥ 3, independent HUVEC culture 
and stimulation) and each time with at least 1–3 technical 
replicates. The “n”-number summarized all replicates of this 
series (n ≥ 3–5). The N/n numbers are indicated in the figure 
legends.

Results

COVID‑19 sera damage eGC structure

Confluent HUVEC monolayers were treated with 10% 
COVID-19 (C19) patient sera for 24 h and eGC height was 
quantified by using the nanoindentation AFM technique. 
Incubation with mild COVID-19 sera already decreased 
the eGC height in the range of − 41.1 to − 63.0% compared 
to control-treated HUVECs (see Fig. 1A). Treatment with 
severe COVID-19 sera augmented this effect, reducing the 
eGC height in the range of − 48.7 to − 67.2% compared to 
healthy controls (see Fig. 1B). After treatment with severe 
COVID-19 sera eGC damage was markedly stronger than 
after treatment with mild COVID-19 sera (see Fig. 1C; C19 
mild overall mean 109.4 ± 3.4 nm vs. C19 severe overall 
mean 68.6 ± 3.2 nm, p < 0.001).

Levels of the proinflammatory cytokine IL-6 were ana-
lyzed in COVID-19 blood samples derived from patients 
with either mild or severe courses of disease (see Fig. 1D). 
IL-6 levels in samples derived from patients with severe 
COVID-19 course of disease were higher than from patients 
with mild symptoms (C19 mild: 34.3 ± 7.9 ng/L, C19 severe: 
128.3 ± 51.5 ng/L, healthy reference: 7 ng/µL). Of note, 
patient IL-6 levels associated positively with eGC height 
(Pearson correlation: r = − 0.579, p = 0.024).

Spironolactone treatment attenuates 
COVID‑19‑induced eGC damage

Endothelial cells were treated with pooled sera from 
COVID-19 patients (mild courses) with or without coin-
cubation with the MR antagonist spironolactone. Within 
the control group (sera from healthy donors), spironolac-
tone treatment did not affect eGC height (control + sol-
vent: 134.0 ± 4.7 nm vs. control + Spiro: 127.1 ± 4.1 nm). 
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However, stimulation with pooled COVID-19 sera reduced 
the eGC height compared to control conditions by 46% 
(see Fig. 2A). Cotreatment with spironolactone strongly 
attenuates this effect, significantly improving eGC height 
within the mild COVID-19-treated group (C19 pool + sol-
vent: 73.1 ± 1.9 nm vs C19 pool + Spiro: 102.2 ± 3.5 nm, 
p < 0.001).

Nanoindentation measurements were verified by eGC 
fluorescence staining with WGA (see Fig. 2B). Within the 
control group, spironolactone showed a slightly increased 
fluorescence signal compared to control conditions 
(Δ + 10.0 ± 2.1% compared to control, p < 0.05, see Fig. 2C). 
WGA staining confirmed COVID-19-induced eGC deterio-
ration by reduced WGA fluorescence intensity in COVID-19 

Fig. 1   COVID-19 (C19) sera treatment damages the endothelial gly-
cocalyx (eGC). A Endothelial cells were incubated with 10% sera 
from C19 patients with mild symptoms (patients 21–59) for 24  h. 
Analysis of the eGC by atomic force microscopy showed eGC dam-
age with a reduced eGC height in a range of 81.6  nm to 130.1  nm 
compared to 220.7 nm of the control group (N = 3, n = 5–6; **** (all 
patients) p < 0.0001 vs. control). B Sera from a second patient cohort 
with severe SARS-CoV-2 infection and mandatory intensive care 
(patients 14–37) were incubated with endothelial cells for 24 h. Here, 
eGC height was further damaged, reducing eGC height in a range of 

57.7 nm to 90.1 nm compared to 175.6 nm under control conditions 
(N = 3, n = 3–5; ** (all patients) p < 0.01 vs. control). C Average eGC 
height of control, C19 mild, and C19 severe are shown. C19 treat-
ment leads to a reduction in eGC height by 48.9 and 60.8% compared 
to control in C19 mild and C19 severe, respectively (N = 3, n = 9–12, 
****p < 0.0001). D IL-6 levels in mild and severe C19 patients were 
analyzed. In C19 patients, IL-6 increases compared to the healthy 
control reference level (7  ng/L). IL-6 was significantly higher in 
severe than in mild C19 samples
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sera-treated cells (Δ − 18.6 ± 1.9% compared to control, 
p < 0.001). Coincubation of COVID-19 sera and spironolac-
tone abolished changes in WGA fluorescence intensity com-
pared to both the control and the pooled COVID-19 group.

Discussion

In addition to pulmonary and cardiac effects, the vascu-
lature is affected in COVID-19. This endothelial damage 
is multifactorial and complex, caused both directly by the 
SARS-CoV-2 virus and indirectly as a result of a systemic 
inflammatory cytokine storm [21, 22].

By using the AFM as nanosensor, our cell culture data 
suggests that in COVID-19, the endothelial surface is 
attacked and the eGC deteriorates in relation to disease 
severity (mild vs severe course) and in correlation to the 
IL-6 level. This deterioration could be prevented by adminis-
tering low doses of spironolactone, a well-known and highly 
specific MR antagonist.

Early in the pandemic, the vascular endothelium was 
recognized as a crucial target of SARS-CoV-2 infections, 
including the notable progression of endothelial dysfunc-
tion, which persists at least over a period of 6 months [23]. 
Caused by circulating inflammatory mediators, the endothe-
lial cells undergo a transition from a quiescent, functional to 
an activated, dysfunctional state, altogether making COVID-
19 an endothelial disease [24]. For many years now, the 

eGC has been known to be a vulnerable structure on top 
of endothelial cells and a key regulator of endothelial cell 
homeostasis, tissue edema, and inflammatory processes [25]. 
Damage and deterioration of the eGC induce the develop-
ment of endothelial dysfunction and cardiovascular patholo-
gies [6].

Now, it has become clear that in SARS-CoV-2 infections 
especially the eGC is being attacked by proinflammatory 
cytokines, leading to shedding-related deterioration and loss 
of the vasoprotective function of the eGC [3, 13]. In agree-
ment with these findings, the eGC damage in our patient 
cohort could be positively correlated to IL-6 levels.

From these data, it can be postulated that in COVID-19 
patients increased levels of aldosterone [11] activate the 
NF-κB signaling pathway via the MR [26, 27], which acti-
vates the expression of pro-inflammatory cytokines such 
as TNFα and IL-6 [26]. This induces heparanase expres-
sion and subsequent degradation of the endothelial glyco-
calyx [28, 29] and could explain the mechanisms underly-
ing the development of endothelial dysfunction under such 
conditions.

Recently, the eGC was found to be strongly involved in 
the attachment of viral spike-protein to the endothelial sur-
face. Under healthy conditions, the eGC shields the spike-
protein interaction with ACE2 receptors at the endothelial 
surface, whereas the ACE2 receptors are exposed after 
COVID-19-mediated eGC deterioration, which enables the 
binding of viral structures and subsequent infection of the 

Fig. 2   Treatment with spironolactone attenuates COVID-19 (C19)-
induced endothelial glycocalyx (eGC) damage. A Sera from COVID-
19 patients (mild course) were pooled and used for 24 h stimulation 
(10%) on endothelial cells. Treatment with C19 sera damaged the 
eGC and reduced height by 46% compared to treatment with healthy 
control sera. Coincubation with spironolactone strongly dimin-
ished the detrimental COVID-19 effect on eGC height within the 
C19-treated group (N = 3, n = 4–8; ****p < 0.0001). B Exemplary 

WGA stainings of HUVECs treated with 10% control or C19 sera 
with and without additional spironolactone incubation (100  nM). C 
WGA stainings were used to validate atomic force microscope meas-
urements. Reduced eGC height in C19-treated cells was confirmed 
by decreased WGA fluorescence intensity compared to the control 
group. Spironolactone treatment strongly attenuated this effect (N = 3, 
n = 3–4, *p < 0.05, ****p < 0.0001)
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cell [17]. In our study cohort, we could confirm that the 
eGC is severely damaged. Of note, the level of eGC damage 
depends on the severity of the disease course: sera derived 
from patients with mild symptoms reduced the eGC by 
approximately 49%, whereas sera from patients with severe 
symptoms reduced the height of the eGC by > 60%. This 
underscores clinical observations showing correlations 
between disease severity and syndecan-1 levels [30, 31].

To curb the effects of the COVID-19 pandemic, it is 
still imperative to find new therapeutic approaches. In this 
study, we demonstrated that by inhibiting the aldosterone 
receptor with low doses of spironolactone, COVID-19-in-
duced damage of the eGC could be prevented.

Our in vitro data confirm these clinical observations. 
Aldosterone levels are increased in COVID-19 patients 
and the renin–angiotensin–aldosterone system (RAAS) 
can induce and modulate proinflammatory responses [11, 
14]. Thus, it could play a key role in the pathophysiology 
of COVID-19.

Vicenzi et al. demonstrated that, in COVID-19 patients, 
treatment with the MR antagonist canrenone had an overall 
positive impact on all-cause mortality and clinical improve-
ment, most probably via a direct anti-inflammatory effect 
[32]. In another study, it could be shown that SARS-CoV-
2-induced endothelial injury was abrogated by the MR 
antagonist spironolactone, an FDA-approved drug [33].

The idea that MR antagonists have beneficial effects on 
the cardiovascular system emerged first nearly 20 years 
ago, when Pitt et al. demonstrated a reduced mortality and 
morbidity among patients with severe heart failure [34, 35]. 
Since then, hypotheses about the underlying mechanism of 
MR-dependent endothelial function and dysfunction, includ-
ing effects on the eGC, have been developed [36].

In conclusion, we could demonstrate that proinflamma-
tory mediators damage the eGC of COVID-19 patients in a 
severity-dependent manner: MR antagonist treatment could 
prevent this damage. We have identified (i) new mechanisms 
underlying COVID-19-mediated endothelial dysfunction and 
(ii) present a strategy for low-cost and effective medication 
to attenuate COVID-19 symptoms and to prevent cardio-
vascular damage. Importantly, this could also be beneficial 
for developing and emerging countries and independent of 
variations and mutations of the virus.
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