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As a tool of qualitative representation, conditional preference network (CP-net) has recently become a hot research topic in the
field of artificial intelligence. The semantics of CP-nets does not restrict the generation of cycles, but the existence of the cycles
would affect the property of CP-nets such as satisfaction and consistency. This paper attempts to use the feedback set problem
theory including feedback vertex set (FVS) and feedback arc set (FAS) to cut cycles in CP-nets. Because of great time complexity
of the problem in general, this paper defines a class of the parent vertices in a ring CP-nets firstly and then gives corresponding
algorithm, respectively, based on FVS and FAS. Finally, the experiment shows that the running time and the expressive ability of
the two methods are compared.

1. Introduction

The evil of graph exists in cycles [1–3]. Several famous
problems in computer science just like satisfiability, knapsack,
and graph three-colorability problem are all related to cycles.
With the awkward cycles, the above-mentioned questions are
difficult to deal with.

Due to the importance of the problem, it has been
extensively studied, although the problem was proven to
be NP-complete for general graphs. Moreover, many graph
problems are polynomially solvable if restricted to instances
of acyclicity or even low cyclicity.

Generally, deleting cycles is considered as feedback set
problem applied in many fields, such as circuit testing and
deadlock resolution. Analyzingmanufacturing processes and
computational biology is used to delete cycles. Some differ-
ent exact and approximate algorithms have been proposed
incipiently based on Branch-Prune and linear program-
ming. Measure-and-Conquer techniques and local search
approaches have also been employed as usual method.

Feedback set [4, 5] includes feedback vertex set (FVS) and
feedback arc set (FAS) or feedback edge set problems, which
are classical NP problems. For different situations which can

be undirected or directed graph, equal or unequal weighted
graph, proper approaches have been proposed, but there is no
uniform method in all cases.

A conditional preference network [1], abbreviated as a
CP-net, is a simple and intuitive tool of graph model [6],
which can represent preferences of agent, so do learning
and aggregation and suits for describing qualitative multi-
attribute decision-making preference with dependencies. It
can be converted into a weighted directed graph under usual
conditions. Since it is a graphmodel, there always exist cycles.
That will produce an effect on consistency of CP-nets where
one single decision value does not appearmore than one time
in an arbitrary order sequence or satisfiability where there
exists some preference dominant ranking for each decision
value in the decision space. Moreover, the above-mentioned
algorithms of FVS and FAS are not applicable because CP-
nets are not general graph model [6, 7].

For cutting the cycles of CP-nets, two methods are
presented based on feedback vertex set (FVS) and feedback
arc set (FAS).The following are themain contributions of this
paper.

(1) As a FAS problem, based on context of attribute prior-
ity, parent of vertex with cycles is defined with formalization
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firstly. Arcs (edges) ofCP-nets are deleted by the relation; then
an algorithm is presented [8, 9].

(2) As a FVS problem, based on the context of attribute
relation, concept of relation reduction is given. Vertices of
CP-nets are deleted by the through relation reduction; then
another algorithm is proposed [10].

The rest of the paper is constructed as follows. In
Section 2, some related works are presented. In Section 3,
we present the main and basic definitions used throughout
the paper. In Sections 4 and 5, FAS and FVS are proposed
to deal with cycle of CP-nets, respectively. Section 6 presents
the results of experiments. Finally, Section 7 summarizes the
work and present studies in the future work.

2. Related Work

In [11], Brafman and Domshlak tackle the complexity of
determining whether one outcome is preferred to another
outcome (dominance testing) which is known for tree-
structured networks only; moreover, little is known about
the consistency of cyclic CP-nets. In this paper they show
how the complexity of dominance testing depends on the
structure of the CP-net. In particular they provide a new
polynomial time algorithm for polytrees. In addition, they
show a class of cyclic CP-nets that is never consistent, while
showing other classes on which consistency can be tested for
efficiently.

The cyclic networks part of Domshlak in [1] proves that
the consistency of cyclic CP-nets is not guaranteed and
depends on the actual nature of the CPTs. This article holds
that cyclic CP-nets usefulness requires further analysis. One
can argue that it is possible to cluster the variables to preserve
acyclicity. And it shows that further investigation of cyclic
CP-nets, as well as a characterization of the different classes of
utility functions that can be represented by cyclic and acyclic
networks, remains of interest.

In [12], Liu et al. utilize treewidth which can decrease the
solving complexity to solve some reasoning tasks on induced
graphs, such as the dominance queries on the CP-nets in the
future. And they present an efficient algorithm for computing
the treewidth of induced graphs of CP-nets. It is revealed that
by experiment the treewidth of induced graphs of CP-nets is
much smaller with regard to the number of vertices.

3. Preliminaries

In this section, some basic concepts of CP-nets are presented.

Definition 1 (CP-net). A conditional preference network (CP-
net) is a graph model <V, A, T>, in which

(i) a set of variables makes up the vertices in the network,
(ii) a set of directed arcs connects pairs of vertices,
(iii) each vertex has a conditional preference table that

qualifies the effects the parents have on the vertex.
The CP-net may be directed acyclic or directed cyclic

graph [13]; i.e., it may exist with directed cycles, which is
distinguished with classic Bayesian network [14, 15].

Cl Co

ClC ≻ ClB
ClC: CoB ≻ CoC

ClB: CoC ≻ CoB

Figure 1: A CP-net of auto configuration.

Example 2 (auto configuration). For a car configuration, we
focus on two attributes which are Cl (Class) and Co(Color),
where Cl has no parents and Co’s parent is Cl. Assume the
following conditional preferences:

𝐶𝑙
𝐶
≻ 𝐶𝑙
𝐵

𝐶𝑙𝐶: 𝐶𝑜𝐵 ≻ 𝐶𝑜𝐶

𝐶𝑙
𝐵
: 𝐶𝑜
𝐶
≻ 𝐶𝑜
𝐵

(1)

The table is sufficient to order all the outcomes com-
pletely:

𝐶𝑙
𝐶
𝐶𝑜
𝐵
≻ 𝐶𝑙
𝐶
𝐶𝑜
𝐶
≻ 𝐶𝑙
𝐵
𝐶𝑜
𝐶
≻ 𝐶𝑙
𝐵
𝐶𝑜
𝐵 (2)

The example can be described by the CP-net in Figure 1.
What calls for special attention is that we can get the

preferred outcome on the basis of the conditional attributes it
violates.The𝐶𝑙

𝐶
𝐶𝑜
𝐵
outcome violates none of the preference

constraints. The 𝐶𝑙
𝐶
𝐶𝑜
𝐶
outcome violates the conditional

preference of Co. The 𝐶𝑙
𝐵
𝐶𝑜
𝐶
outcome infringes the pref-

erence of Cl. The 𝐶𝑙
𝐵
𝐶𝑜
𝐵

outcome violates both. From
the above, we know the semantics of CP-nets implies that
violating one child attribute has higher priority than violating
the parent attributes [16].

Definition 3 (dominant). In the decision space of a CP-net,
oi ⪰ oj denotes that outcome oi is equally dominant or more
dominant compared with oj; if o ⪰ oj and oj �⪰ oi, we say oi ≻
oj to denote that outcome oi is strictly more dominant than
oj [1].

Another preference order relation is indifferent to oi and
oj if oi ⪰ oj and oj ⪰ oi.

In this paper, we take strictly dominant relation as domi-
nant because no weakly dominant relation is considered.

Definition 4 (consistency). For CP-net N, oi is an arbitrary
outcome in the outcome spaceΩ, if no cycle sequence exists;
that is, for some outcome, it does not appear more than one
time in the arbitrary sequence; it is called consistent. For
example, if there exists a sequence like o1 ≻ oi >≻ oj ≻ o1,
this CP-net does not satisfy consistency.

The consistency of CP-nets is closely related to the
structure. Any CP-net with acyclic structure is consistent but
not always as the cyclic CP-nets [8].

We distinguish between consistent and inconsistent cycle
CP-nets by examples. Figure 2 shows examples of consistent
and inconsistent cyclic CP-net over binary variables. If the
CPTs for this network are specified as in Figure 2(a), then the
CP-net is consistent. However, if the CPTs are specified as in
Figure 2(c), then the CP-net is inconsistent.
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B

(a) (b)

(c) (d)

(e)

a1: b1≻b2

a2: b2≻b1

b1: a1≻a2

b2: a2≻a1

a1: b1≻b2

a2: b2≻b1

b1: a2≻a1

b2: a1≻a2

a1b1

a1b2

a2b1

a2b2

a1b1

a1b2

a2b1

a2b2

Figure 2: Examples of consistent and inconsistent cyclic CP-net over binary variables.

This paper deals with the problem of inconsistency in the
formation of cyclic CP-nets and transforms the inconsistency
problem into the consistency problem.

Definition 5 (satisfiability). For a CP-net N, if there exists a
preference ordering that satisfies all ceteris paribus preference
assertions imposed by the CPTs, it is called satisfiability.

But, acyclicity is not ensured by the semantics of CP-nets
model, and acyclicity of the network automatically confers
several important properties just like being satisfiable and
consistency, while for cyclic CP-nets the situation is much
more sophisticated. For example, for a binary-valued CP-net
with three attributes, an acyclic one is showed on the left and
the cyclic one is showed on the right in Figure 3. The cyclic
CP-net is not inconsistent with omitted complicated reason.
It also shows that the consistency of cyclic CP-nets is not
guaranteed [2, 8].

We introduce the treewidth in graph theory to definite
CP-nets with simple cycles. Treewidth is commonly used
as a parameter in the complexity analysis of graph algorithms;
many well-studied graph problems also have bounded
treewidth.

Definition 6 (tree decomposition). Given a graph G = (V, E),
a tree decomposition is a pair (X,T), whereX={𝑋

1
, ..., 𝑋
𝑛
} is a

set of subsets ofV, and T is a tree whose nodes are the subsets
Xi, satisfying the following properties:

(1) Each graph vertex is associated with at least one tree
node.

(2) For two vertices of the connection in the graph, there
is a subset Xi that contains them.

(3) If X
1
and X

2
both contain a vertex v, then all nodes X

3

of the tree in the path between X
1
and X

2
contain v as well.

Definition 7 (treewidth). The treewidth is the size of its largest
set Xi minus one, that is, max𝑋𝑖∈𝑉|𝑋𝑖| − 1. The treewidth of
a graph G is the minimum width of tree decomposition of
G.

The treewidth tw(G) of a graph G is the minimum width
among all possible tree decomposition ofG.The width of tree
decomposition is the size of its largest set minus one.

Definition 8 (CP-nets with simple cycles). A CP-net can be
tree decomposed with treewidth bounded [14, 15] by constant
k; it is a CP-net with simple cycles.

If a CP-net is a tree structure, the parent of a vertex is the
vertex connected to it on the path to the root; every vertex
except the root has a unique parent. A child of a vertex v is a
vertex of which v is the parent.

But in the cyclic graph the parent is trouble. We take
CP-nets with simple cycles into consideration in this paper.
Several conditions need be considered.

Definition 9 (parent of vertex in a cycle). When a vertex
satisfies the following conditions, it is called a parent vertex
in a cycle.
(1) The vertex does not connect with its lower level

vertices apart from the cycle.



4 Computational Intelligence and Neuroscience

U

WV

U V W

u :  ≻ 

u :  ≻ 

u :  ≻ 

u :  ≻ 

 : w ≻ w

 : w ≻ w

 : w ≻ w

 : w ≻ w

u ≻ u

w : u ≻ u

w : u ≻ u

Figure 3: An acyclic CP-net and a cyclic CP-net with three same attributes.

(2)Thevertex connects with its high level vertices directly
apart from the cycle.
(3) If the vertex satisfies (1) or (2), an arbitrary parent

vertex is chosen.

In Figure 4, (a), (b), (c), and (d) are four types of parent.
U or V is a random parent in (a);U is parent of V in (b);U is
parent of V in (c); U or V orW is an arbitrary parent in (d).

From the reason of CP-nets of Boutilier [1], the following
property is given.

Property 10. Parents have a larger positive impact on prefer-
ence than that which children have.

That is, the nodes will have more impact when they are at
higher level in a network, although we cannot compare two
(or more) lower level impacts to impacts of one single parent
constraint.

Algorithm 1 is based on the important property. FAS and
FVS are presented in the following with cutting the cycles of
CP-nets [15, 16].

4. Cutting Cycles by FAS

In this section, breadth-first search and depth-first search
(DFS) are compared together and an algorithm of improved
breadth-first search is presented.

Definition 11 (FAS). For a CP-netN=<V,A, T> and a positive
integer k, there exists a subset 𝑋 ⊆ 𝑉with |𝑋| ≤ 𝑘 such that
N with the arcs from X deleted is cycle-free [13].

In an undirected graph, FAS problem can be transformed
into spanning tree of the graph and the arcs out of tree form
the FAS.The time complexity of FAS isO(nlogn) because it is
same as the spanning tree [10, 13].

In a directed graph, FAS is reduced to minimum capacity
multicut problem in circular networks and its time complex-
ity is 𝑂(𝑙𝑜𝑔2|𝑋|) [13, 14].

In the following, two searchways of depth-first search and
breadth-first search in the graph theory are applied in FAS.

Depth-first search (DFS) traverses the tree vertices along
the depth of the tree, as far as the search tree branch. When
all of the vertices have already been explored, the search will
go back to find the starting vertex. Then choose an arbitrary

undiscovered vertex as a source vertex and repeat the above
process; the whole process will be redone until all vertices
have been visited so far [15, 16].

Breadth-first search (BFS) [17, 18] is limited to essentially
two operations: (a) visit and check a vertex of a graph; (b) gain
access to visit the vertices that neighbor the currently visited
vertex. The BFS starts from the root vertex and checks all the
neighboring vertices.Then for each of those neighbor vertices
in turn, it checks their neighbor vertices which are unvisited,
and so on. If the vertices are ergodic, the process is completed.

Theorem 12. The BFS is more reasonable than the DFS in
breaking the cycles of CP-nets [19, 20].

Proof. From the properties and definition, the parent pref-
erences have higher priority than the child preferences. The
DFS starts from one parent to the children and then from
another to the other children [21]. The BFS starts from one
parent to another until every parent is visited and then visits
the children. From the above process, the deleted vertices by
BFS were children and the ones by DFS may be parents. So
the BFS is more reasonable than the DFS.

For the length of all arcs are equal in CP-nets [22, 23],
breadth-first search algorithm is the optimal solution, that is,
the first solution it finds from the root of a certain minimum
number of arcs; but for general figure [24] BFS does not
necessarily return optimal solution. But this does not fit in the
case of this paper. In this paper, an Improved BFS Algorithm
of CP-nets is presented as in Algorithm 1.

Example 13. An example of cutting cycles is given by Algo-
rithm 1.

In the cycle CP-nets, the vertex does not connect with
its lower level vertices apart from the cycle, or the vertex
connects with its high level vertices directly apart from the
cycle; we can use it as the vertex of a candidate’s parents.
That is, for any node S∈D, satisfy the following conditions:
(1) ∀ Son (S)∈D, (2) ∃ parent (S)∉D, so S can be the vertex of
candidate parents. In Figure 5, for the node U, ∀ Son (U)∈D,
∃ parent (U)∉D. Add the nodes U to the candidate queue Q;
for the node V, ∀ Son (V)∉D, ∃ parent (V)∈D. The nodes V
do not add to the candidate queue. And we can finally get
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(b)

U V
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(c)

U V
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(d)

Figure 4: An acyclic CP-net and a cyclic CP-net with three same attributes.

Improved BFS Algorithm of CP-nets
Input: A CP-net N
Output: A acyclic CP-net N’
Ring node set D∈N
Node S∈D
Initial queue Q
For every D
Q=NULL
IF D!=NULL

For S∈D
IF Son(S)∈D&&Parent(S)∈D

Q.inesrt(S)
End IF

End for
X=Rand()%sizeof(Q)
(Parent(Q[X])∈D)=NULL
IF Q==NULL

For S∈D
IF exist Parent(S)∉D

Q.inesrt(S)
End IF

End for
Y=Rand()%sizeof(Q)
(Parent(Q[Y])∈D)=NULL

End if
End if
End for

Algorithm 1: Improved BFS Algorithm of CP-nets.

U

XY

WV

Figure 5: A cycle CP-net of 5 attributes in Example 13.

candidate queueQ = {𝑈,𝑊}. Because of size of (Q)>1, Rand()
function is used to randomly select a node in Q to get nodes
U. So the node U is the parents vertex of the cycle. And the
edges between U and Y should be removed. Finally, cutting
the cycle is successful.

Theorem 14. Improved BFS Algorithm of CP-nets is a suffi-
cient condition for cutting the cycles of CP-nets.

Proof. Breadth-first search algorithm is complete.Thismeans
that, regardless of the type of graphics, as long as the target is
present, it will be found by BFS.

5. Cutting Cycles by FVS

Definition 15 (FVS). For aCP-netN=<V,A,T> and a positive
integer k, there exists a subset 𝑋 ⊆ 𝑉with |𝑋| ≤ 𝑘 such that
N with the vertices from X deleted is cycle-free.

For general directed graphs, even with a method to
convert FAS and FVS mutually in polynomial timing com-
plexity put forward, the complexity of FVS is same as FAS
[13].

The graph 𝐺[𝑉 − 𝑋] that remains after removing X from
G is an induced forest. Thus, finding a minimum feedback
vertex set in a graph is equivalent to finding a maximum
induced forest. For an induced directed acyclic graph in
the case of directed graphs, it is equivalent to finding the
maximum one.

Definition 16 (weighted vertex of a CP-net). Given a CP-net
N= <V, A, T> where each vertex associates weight (V)=c, the
minimum FVS problem is to find a min-weigh vertex.

From Definition 5, we know that parent vertex is more
weighted than the child one. So the main work is to find and
delete a less weighted vertex in a cycle.

In traditional attributes reduction, if we compare o1=
a1b1c1d1e1 and o2=a2b2c2d2e2, we can compare a1b1c1d1 and
a2b2c2d2 if E is decided by D. But we do not compare them
because E is dependent only but not decided by D, and we
may compare a1b1c1e1 and a2b2c2e2 if D is less weighted.

In the

Property 17 (a deleted vertex). A vertex in a cycle is deleted
when it satisfies the following conditions in the Figure 4:

(1) The weight of the vertex is minimal in the cycle.
(2)The vertex does not connect with other vertices out of

the cycle because of CPT.
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A heuristic approach to FVS
Input: A CP-net N
Output: A acyclic CP-net N’
Ring node set D∈N
Initial queue Q
For every D∈N
Q=NULL
IF D!=NULL

For S∈D
weight(S)=numSon(S)-numParent(S)
Q.inesrt(S)

End for
minWeight=min(weight(Q))
For i=1:Q.length

IF Q[i].weight==min(weight(Q))
P.insert(Q[i])

End IF
End FOR
IF P.length==1

Delete P[i]
Else IF ∀son(S) ∈D&&∀parent(S) ∈D

Delete S
Else X=Rand()%sizeof(P)

Delete P[X]
End IF

End IF
End FOR
output a CP-net N’
End

Algorithm 2: A heuristic approach to FVS.

(3) When (1) and (2) have met together, (2) is considered
at first.

In Figure 4, (a), (b), (c), and (d) are four types of deleted
vertex.U orV is an arbitrary deleted vertex in (a);U is deleted
because (2) of Property 17 in (b); V or W is an arbitrary
deleted vertex in (c);U, V, orW is an arbitrary deleted vertex
in (d).

See Algorithm 2.

Example 18. It is an example of cutting cycles by Algorithm 2.

As shown in Figure 6, according to weight(S)=num-
Son(S)-numParent(S) in Algorithm 2, the weights of each
node can be obtained as follows: weight(U)=0, weight(V)=0,
weight(W)=-1, weight(X)=1, and weight(Y)=-1. The mini-
mum value of weight is obtained by the min() function. In
this example, minWeight=-1. All nodes satisfying the weight
equal to -1 are added to P, getting P={𝑊, 𝑌}. According to
Property 17, first delete vertices that are not connected to
other vertices outside the cycle. In P, the node W is not
connected with the outer node, so the nodeW is deleted.

Based onAlgorithms 1 and 2, we give experiment to show
the result of cutting cycles.

U

Y X

WV

Figure 6: A cycle CP-net of 5 attributes in Example 18.

Figure 7: The expression of the CP-net after FAS and FVS.

6. Experiments and Discussions

In order to evaluate the ability of our algorithms to deal
with large volumes of data, we performed a set of experi-
mental tests on synthetic data. We apply the random CP-
nets generation algorithm in [25] to generate the CP-nets of
the specified number of attributes. In this process, because
our article is based on the structure of CP-nets, we only
generate CP-nets structure without generating CPT. The
experiment was carried out by the CP-nets of different
structures. Our algorithms were implemented in Matlab and
all the experiments were performed on aWindows 7machine
with 3.40 GHz clocked processor and 12 GB RAM.

Figure 7 shows expression of CP-nets [26, 27]. We can
conclude that the FAS havemore strong expressive capability.

Figure 8 shows time consumption comparison of FAS to
FVS, which contains only one cycle and different number of
vertices in the cycle [28, 29]. Figure 9 shows time consump-
tion comparison of FAS to FVS, in which each cycle has three
vertices and the number of cycles is different.
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Figure 8: Time consumption of the FAS (a) and FVS (b) of one cycle.
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Figure 9: Time consumption of the FAS (a) and FVS (b) of different cycle.

7. Conclusions and Future Work

Based on the theory of feedback vertex set and feedback
arc set, this paper proposes a solution to the problem of
cycles in CP-nets [30]. In particular, the definition of the
parent vertices in the cycles of CP-nets greatly reduces the
time complexity. Experiments show that the running time
of the two methods is indifferent, but the expression ability

is greatly different, and the feedback vertex set method has
a great destruction to the completeness of CP-nets which
is consistent with the theory proposed in the article. For
the sake of simplification, we have not discussed the case of
multiple values. But the cutting cycles problemofmultivalued
CP-nets also focuses on structure, not CPT. So this method is
applicable to multivalued CP-nets, but we have not discussed
this in depth in this paper; we will further study this issue in
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future research. Except for that, the use of heuristic methods
[31, 32] to deal with cycles in a larger scale CP-net is very
attractive.
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