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A B S T R A C T   

The objectives of this study were to predict the inflow and optimal operation of the Koka reservoir 
under the impact of climate change for the 2020s (2011–2040), 2050s (2041–2070), and 2080s 
(2071–2100) with respect to the reference period (1981–2010). The optimal elevation, storage, 
and hydropower capacity were modeled using the HEC-ResPRM, whereas the inflow to Koka 
reservoir was simulated using the calibrated SWAT model. Based on the result, the average annual 
inflow of the reference period was 139.675 Million Cubic Meter (MCM). However, from 2011 to 
2100 an increase of +4.179% to +11.694 is expected. The inflow analysis at different flow re-
gimes shows that the high flow may decline by (− 28.528%) to (− 22.856%) due to climate 
change. On the other hand, the low flow is projected to increase by (+78.407%) to (+90.401%) as 
compared to the low flow of the reference period. Therefore, the impact of climate change on the 
inflow to the Koka reservoir is positive. The study also indicates that the optimum values of 
elevation and storage capacity of the Koka reservoir during the reference period were 1590.771 m 
above mean sea level (a.m.s.l) and 1860.818 MCM, respectively. However, the optimum level and 
storage capacity are expected to change by (− 0.016%) to (− 0.039%) and (− 2.677%) to 
(+6.164%), respectively from 2020s to 2080s as compared with their corresponding values 
during the reference period. On the other hand, the optimum power capacity during the reference 
period was 16.489 MCM, while it will likely fluctuates between (− 0.948%) - (+0.386%) in the 
face of climate change. The study shows that the optimum elevation, storage, and power capacity 
were all higher than the corresponding observed values. However, the occurrence month of their 
peak value will likely shift due to climate change. The study can be used as a first-hand infor-
mation for the development of reservoir operation guidelines that can account for the uncertainty 
caused by the impacts of climate change.   

1. Introduction 

Climate change has altered the duration, intensity, form, and timing of precipitation and a consistent increase in temperature [1–3]. 
Consequently, hydrological conditions are strongly influenced by the changing climatic variables [4,5]. Because of this, widespread 
flooding, fires, power fluctuation and reductions are serious global issues [6]. According to previous studies, it is predicted that the 
entire planet will experience the negative net effects of climate change [2,3,7,8]. On the other hand, the available climate and water 
resources greatly influence the amount of storage, inflow, and electricity generated by reservoirs. Therefore, climate change is a key 
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driver that can influences reservoir operation [4,9]. 
The operation of reservoir requires numerous decision variables, constraints, and competitive objectives [10]. Decisions about 

reservoir operation would be more challenging due to the uncertainty of inflow caused by the impacts of climate change. According to 
Hamududu and Killingtveit [6], climate change has a marginally favorable impacts on the global hydropower potential. However, the 
impacts of climate change on hydropower potential are not uniform throughout the world. The majority of the findings indicated the 
negative impact of climate change on reservoir operation [11–13]. However, Fan et al. [9] proved the favorable impact of climate 
change on the future hydropower potential of China. The hydropower potential of East Africa is also predicted to gradually increase 
under the impact of climate change [6]. 

The three well-known methods for dealing with reservoir stochasticity are explicit stochastic optimization (ESO), implicit sto-
chastic optimization (ISO), and parameterization-simulation-optimization (SO). Both (parameterization-SO) and ISO can account the 
inflow uncertainties and provides rule curve in a more straightforward method than ESO [14]. Many researchers have successfully 
used the parameterization (SO) principle to develop reservoir rule curves under optimal reservoir operation [15]. The HEC-ResPRM is 
a simulation, and optimization model developed based on the parameterization SO technique. 

Hydropower is the major source of Energy in Ethiopia. The country has an installed power capacity of 45,000MW, which is the 
second largest in Africa. However, 83% of the population do not have access to electricity [16]. Therefore, expanding hydropower 
projects and electricity generation are two of the four pillars of Ethiopia’s Climate Resilience Green Economy (CRGE) [17,18]. 
Therefore, the Ethiopian government has planned to generate 22.14 Gigawatt (GW) of hydropower by the end of the 2030s [19]. 
According to the national master plan of the country, hydroelectric power will continue to be the largest energy source of the country 
due to its largest unexploited hydropower potential [20]. 

However, due to the influence of climate change, ensuring the consistency and reliability of power supply has become one of the 
most pressing issues [21]. On the other hand, the majority of reservoirs in Ethiopia are designed, maintained, and operated under the 
assumption of stationary historical climate data [10]. A study on the impact of climate change on hydroelectric power generation has 
received little attention, despite significant investment being made in hydropower projects. However, the water resources of Ethiopia 
are also highly vulnerable to inter-annual variability and climate change [1,2]. One of the observed adverse impacts of climate change 
on hydropower generation in Ethiopia was the prolonged and frequent blackouts from 2008 to 2010 throughout the country caused by 
an increase in power demand and a decrease in stream flow. 

The Upper Awash watershed, the sub-watershed of Awash basin in Ethiopia, is also vulnerable to climate change. Recently, climate 
change has caused the watershed to experience frequent floods, droughts, and seasonal rainfall shifts [22]. The projected impact of 
climate change in the Upper Awash watershed also showed that it is expected to have a greater magnitude and direction than the 
influence already seen over the past three decades [22–25]. 

Few studies are done that showed the likely impact of climate change on the hydropower potential and hydroelectricity generation 
of Ethiopia. For instance, Bombelli et al. [21] investigated the impact of climate change on the hydroelectric power generating capacity 
of GERD and GIBE reservoirs. To simulate the ideal power production and the future hydrological balance, they used Poli-Hydro and 
Poli-Power models. According to the finding, the energy production of the GERD reservoir exhibited both a rising and a declining 
signal at the end of the 2050–2059 and 2090–2099 centuries, respectively, whereas the power capacity of the GIBE–III hydropower 
showed an increasing signal. Another study by Mirani et al. [18] revealed that the hydropower potential of Kessem reservoir in 
Ethiopia showed a declining trend under the influence of climate. Adera and Alfredsen [16] also investigated how the Tekeze hy-
dropower reservoir might perform under the influence of climate change. The inflow and power capacity were simulated using the 
HVB and nMAG models, respectively. The finding indicated that future energy production is likely to increase. Another study con-
ducted by Leta et al. (26) showed that Land Use/Land Cover (LU/LC) and climate change have marginally favorable impact on the 
optimal operation of Nash reservoir in Ethiopia. 

The impact of climate change on the water resources of Upper Awash watershed is indicated by Previous studies [22,25]. To the 
best knowledge of the authors, the hydropower capacity and optimal operation of Koka reservoir in the face of climate change is not 
studied yet. The rule curve developed by Halcrow [26] is extrapolated to compute the current monthly storage-elevation- area curve 
[27,28]. This rule curve was based on historical data without accounting for temporal fluctuations in hydro meteorological variables. 
Because of this, the Koka hydropower reservoir is typically used at less than its installed capacity. Therefore, it is crucial to quantify the 
expected consequences of climate change for the reservoir to operate optimally. 

Therefore, the objectives of this study are: (1) to predict the monthly inflow of the Upper Awash watershed in the face of climate 
change and (2) to investigate the likely impact of climate change on the optimal operation of the Koka reservoir. During the reference 
period, the inflow of the Koka reservoir was simulated using the observed climate and stream flow, whereas from 2011 to 2100, the 
monthly inflow of the Koka reservoir was simulated using the future climate data projected by the ensemble output of RCMs. The 
optimum elevation, storage, and hydropower capacity of the Koka reservoir was simulated using the inflow as input data in HEC- 
ResPRM. The novel finding of the study is the investigation of the impact of climate change on various flow regimes for Koka 
reservoir inflow. The study’s novel approach also includes the use of penalty functions and physical constraints to predict optimal 
reservoir operation. 

The finding of this study can assist decision-makers and dam operators in gaining a thorough understanding of choices for the Koka 
reservoir’s optimal operation. 
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2. Methodology 

2.1. Description of the study area 

The Upper Awash watershed is part of the Awash River basin which is located in the Northwest rift valley around the central part of 
Ethiopia. Geographically, the Upper Awash watershed is found between 37◦57′–39◦13′ E longitude and 8◦9′–9◦18′ N latitude. The 
watershed has a total area of 11, 500 km2. The elevation of the watershed ranges from 1587 m to 355 m a.m.s.l. The Koka reservoir is 
situated between 8◦ 18′′ and 8◦ 29′′ N latitude and 39◦ 00′′ to 39◦ 10′′ E longitude. The reservoir has a total storage capacity of 1850 
MCM and a useable storage capacity of 1650 MCM. The maximum and minimum operational levels of the reservoir are 1590.7 m, and 
1580.7 m a.m.s.l, respectively. The firm and installed capacities of the power plant are 43.2 Megawatt (MW) and 34.5 MW at working 
heads of 32 m and 40 m, respectively. Fig. 1 shows the location map of Upper Awash watershed and Koka reservoir. 

There are large mechanized and private irrigated agricultural farms in Upper Awash watershed [28,29]. The LU/LC data analysis 
indicates that 83.04% of the watershed was used for agriculture during the reference period of the study. As shown in Fig. 2 (a), the 
intensively and moderately cultivated portion of the watershed dominated the LU/LC of Upper Awash watershed. Based on the FAO 
soil classification system, the soil data analysis indicated that 45.686% of the watershed is covered by pellic vertisols, which is mainly 
distributed in the central highland, whereas the minimum portion of the watershed is covered by Orthic luvisols (0.562%). Fig. 2 shows 
the spatial distribution of soil and LU/LC types of the watershed. 

The climate condition of the watershed is dominated by humid subtropical to semiarid. The rainfall data analysis from 1981 to 
2010 indicated that the annual rainfall of the watershed was 995.763 mm. Based on the seasonal rainfall distribution, 69.544% of 
rainfall occurred between July and September. The short rainy season (March to April) contributed 24.525% of the annual rainfall. The 
remaining amount of annual rainfall occurred during the driest season (October to January) of Ethiopia. As shown in Fig. 3, the 
maximum and minimum rainfall values were 227.671 mm and 7.996 mm, which were observed in August and December, respectively. 
The observed temperature data analysis also shows that the mean annual minimum and maximum temperature values of the 
watershed were 10.673 ◦C and 23.591 ◦C, respectively. 

2.2. Data collection and analysis 

Spatial data (LU/LC, soil, and DEM), hydro-meteorological data i. e rainfall, temperature, wind speed, relative humidity, sunshine 
hour, and stream flow, and physical and operational data of the Koka reservoir were the main data used for this study. The LU/LC, soil 
and stream flow data were obtained from the office of Ministry of Water, Irrigation, and Electricity of Ethiopia. A DEM with a reso-
lution of 12.5 m by 12.5 m was obtained from the Alaska Satellite Facility Service (http://www.vertex.daac.asf.alaska). The storage- 
area-elevation curve, monthly observed power from 2011 to 2021, turbine efficiency curve, the dimensions and different components 
of the reservoir were obtained from Ethiopian Electric Power Corporation, site observation and information collected from the project 
managers. 

Fig. 1. Location map of the Upper Awash watershed; a) Administrative Zone of Ethiopia and Awash River basin, b) Upper Awash Basin.  

S.S. Fanta et al.                                                                                                                                                                                                        

http://www.vertex.daac.asf.alaska


Heliyon 9 (2023) e16287

4

The monthly meteorological data from 1981 to 2010 was obtained from the office of National Meteorological Agency of Ethiopia. 
Each Hydrologic Response Unit (HRU) in SWAT model receives its climate information from the nearest climate station. Therefore, in 
addition to the quality and data availability the selection of meteorological stations, among the available stations, were based on their 
proportional distance from each other and the density of gauge distribution. Accordingly, nine meteorological stations having pro-
portional distance to each other was taken were selected (Table 1). Furthermore, to preserve the data quality, stations with more than 
10% of missing data were excluded based on the analysis of the climate data. 

The primary water sources of Koka reservoir are Mojo and Hombole rivers. However, the Mojo and Hombole gauging stations, 
which measure the stream flow of the respective rivers, are located at 42 km and 35 km away from the inlet of the Koka reservoir, 
respectively. There is no any other tributary, LU/LC change or diversion structures between the two stations and the inflow point of the 
Koka reservoir. Therefore, transferring the stream flow from the two gauges toward the inlet of Koka reservoir is not needed. However, 
areal scaling should be used to use the time series data form the two stations as inflow to Koka reservoir. Therefore, in order to estimate 
the inflow of the Koka reservoir from the two stations, Halcorw (27) developed a rainfall-area-runoff regression equation (Eq. (1)). 

Inflow= 1.065 ∗ QHombole + 1.18 ∗ QMojo (1) 

Fig. 2. Spatial distribution of LU/LC and soil type of the Upper Awash watershed; a) LU/LC type, b) Soil type.  

Fig. 3. Monthly distribution of rainfall, maximum and minimum temperature.  
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Where QHomoble and QMojo represents the monthly observed flow at Hombole and Mojo gauging stations, respectively. Hence, in this 
study, the observed inflow of the Koka reservoir for the reference period was calculated using Eq. (1). 

Currently, climate data simulated by GCMs and RCMs are the primary data sources for future studies on climate change impacts and 
adaptation [30]. However, GCMs have their own limitation regarding the model formulation, spatial and numerical resolution, initial 
assumptions, and local topographic effect. According to Doulabian et al. [31], local scale climate and hydrologic process are not well 
represented by GCMs due to their low resolution. To capture the details of the hydrologic process at local scale, RCMs are dynamically 
downscaled from GCMs at a resolution (from 25 km to 50 km) [32]. Topography and local scale features needed to assess the local 
climate conditions at the watershed scale are better represented in RCMs due to their high spatial resolution. However, RCMs also have 
their own uncertainty in reproducing climate projections due to the limitations inherited from GCMs [33]. As a result, no single RCM is 
considered the best and can accurately replicate climate projections. Using the multimodal ensemble output, according to Faramarzi 
et al. [33]; Reda et al. [34] and Dibaba et al. [35], can minimize the uncertainty of climate projection. Therefore, in this study, the 
climate data from 2011 to 2100 was obtained from the multimodal ensemble output of DMI-HIRHAM5, KNMI-RACMO22T, 
CLMcom-CCLM4-8-17, RCA4, REMO2009, and CanRCM4 under the RCP4.5 and RCP8.5 forcing scenarios. The first four RCMs are 
forced by ICHEC-EC-EARTH, whereas the last RCM (CanRCM4) is forced by CCCma.CCCma-CanESM2. According to previous studies 
conducted in the different climatic zones of Ethiopia [19,25,36,37], the performance of the selected RCMs is adequate and acceptable. 

2.3. SWAT model description and setup 

The SWAT model is a semi-distributed and continuous time-based hydrological model used to simulate the hydrological processes 
and water quality at various watershed scales [38–41]. Due to its user-friendly interface, open-source code and extensive regional 
adaptation, capability, and computational efficiency, the SWAT model is successfully applied for continuous simulations of flow, soil 
erosion, sediment yield, water quality and nutrient transport in different types of watersheds, irrespective of their size, complexity and 
climatic condition [5,19]. In this study, the main reasons for choosing the SWAT model are (1) The spatial and non-spatial data 
required by the model are available at the desired resolution (2) The model and its manual are non-commercial. (3) The performance of 
the model for surface runoff simulation in different watersheds of Ethiopia is appreciated and recommended [5,19,42–44]. (4) The 
continuous time-based properties of the SWAT model can allow runoff prediction at user defined temporal resolution. 

The different hydrological components in the SWAT model are computed using water balance equations, whereas, surface runoff 
and peak discharge of the watershed are computed by the modified Soil Conservation Service Curve Number (SCS–CN) and modified 
rational method, respectively which are available in Arnold [45]. The SCS-CN equation simulates the surface runoff using LU/LC, soil, 
slope, antecedent moisture condition and climate of the watershed at the HRU level. There is no conclusive guideline regarding the 
number of HRUs for a given watershed. However, according to Arnold et al. (46), physiographic characteristics (Soil, LU/LC, slope, and 
moisture condition) should be considered during the spatial discretization of the watershed. Accordingly, considering the spatial 
variation of physiographic characteristics, the Upper Awash watershed was divided into 41 sub-basins and 195 HRUs. 

Sensitivity analysis, model calibration and validation were performed using the Sequential Uncertainty FItting version 2 (SUFI 2) in 
the SWAT-CUP 2012 program [45]. Sensitivity analysis was conducted to determine the most influential watershed parameters for 
surface runoff. The most influential watershed parameter is determined based on the level of agreement between the simulated and 
observed runoff at different Parameter optimization trial. However, a random selection of parameters and fixing their initial value 
from the allowable range provided by the SWAT model may not allow us to obtain the required level of agreement between the 
simulated and observed runoff at a minimum number of iterations [46]. Therefore, previous literatures [17,22,40] were reviewed to 
determine the type of parameters and their initial values used for the SWAT model calibration. 

The result of sensitivity analysis showed that The CNII is the most sensitive parameter for surface runoff in the Upper Awash 
watershed. This is because most runoff causative factors (LU/LC, topography, and soil) are lumped by a single curve number value. 
Hence, a minor change of its initial value can bring a significant change on surface runoff. Furthermore, surface runoff lag time 
(SURLAG) also depends on the curve number, the longest flow path of the river, and basin slope of the basin. Hence, the sensitivity of 
SURLAG also demonstrates that the basin slope is the major cause of surface runoff. The sensitivity analysis of this finding is also in 
accordance with the finding of Mekonnen et al. [17]; Dibaba et al. [19]; Amin and Nuru [47]. Table 2 shows the most sensitive, fitted, 
minimum, and maximum values of the selected parameters. The degree of sensitivity was measured by t-stat and p-value. Accordingly, 
a parameter having a high t-value and the low p-value is sensitive. 

Table 1 
Summary of the selected meteorological stations.  

I.D. Name Lat (Deg) Long (Deg) Elevation (m) 

1 Addis Abeba 9.01891 38.7475 2355 
2 Bulbula 7.72 38.6525 1606 
3 Boneya 8.48 38.39 2879 
4 Ginchi 9.01667 38.1333 2492 
5 Hombole 8.368167 38.78 1860 
6 KokaDam 8.471 39.157 1661 
7 Sebeta 8.93 38.63 2213 
8 Sendafa 9.152167 39.0215 2482 
9 Tulubolo 8.658 38.211 2310  

S.S. Fanta et al.                                                                                                                                                                                                        
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The model performance was evaluated using 17 years (from 1981 to 1998), and 12 years (from 1999 to 2010) of stream flow data 
during the model calibration and validation phases, respectively. The widely used objective functions i. e the modified Coefficient of 
Determination (bR2), the Nash and Sutclif Efficiency (NSE), the Percent Bias (PBIAS (%), the Kling–Gupta efficiency (KGE), and the 
ratio of root-mean-square error to the standard deviation of the data (RSR) were used to measure the performance of the SWAT model 
for the monthly runoff simulation of Upper Awash watershed. The equations, descriptions, and their acceptable range of objective 
functions are available in Moriasi et al. [48]; Verma et al. [49], and Bekele et al. [50]. 

2.4. HEC-ResPRM description and setup 

HEC-ResPRM is an integration of the simulation (HEC-ResSim) and optimization (HEC-PRM) models used to study a single or multi- 
objective reservoir operation [14]. The HEC-PRM is a generalized program intended to perform the deterministic network flow 
optimization of reservoir operation [15]. Penalty function is crucial to study the optimal operation of reservoir. Reservoir operation 
that deviates from the target value should be penalized. Hence, the penalty function associates a penalty or reward for inflow, stor-
age/elevation, and outflow. It is possible to address the multi-objective nature of reservoir operation by allowing any number of 
penalty functions [51]. Accordingly, the objective of reservoir optimization is to bring the system operation closer to the target 
operation. The HEC-ResPRM uses the primal network simplex method to find the minimum-cost path, assigned with minimum penalty 
function in the network [10]. Then, it solves the optimization problem using network flow programming (Eq. (2) to Eq. (4), which is a 
special form of linear programming algorithm in HEC-ResPRM to simulate the optimal solution of flow, storage, release, and hy-
dropower [52]. 

In this study, an arc represents a reach of stream between two physically adjacent nodes. The node represents the junction of two or 
more networked arc, the starting point of inflow and outflow of the Koka reservoir. ll and ul are the minimum and maximum monthly 
inflow to the Koka reservoir. 

Minimize :
∑

l ∈ A clql (2)  

Subject to :
∑

j ∈ οiqj −
∑

k ∈ Iiqk = 0; for all i ∈ N (3)  

ll ≤ ql ≤ ul; for all l ∈ A (4)  

Where A denotes a set of all arcs in the network, c1 is a weighting factor assigned for along arc “l”, ql is the flow along arc “l”, Oi denotes 
a sets of all arcs that originates from node “i”, Ii denotes the inflow arc, ll and ul are the lower and upper bound on flow along arc “l”, N 
is set of all nodes in the network, qk is a multiplier (gain) for arc “l”. 

The mathematical expression for storage, release, and excess spill constraints for this study are given in Eqs. (5)–(7), respectively. 
However, the optimum storage at the end of each month is calculated using the water balance equation (Eq. (8)) in HEC-ResPRM under 
constraints and penalty functions as input boundary conditions. 

Constraints on Storage 

Smin ≤ St ≤ Smax,∀t = 1 to T (5)   

Release constraint 

Table 2 
Values of optimum surface runoff parameters of the Upper Awash watershed.  

Parameter short 
name 

Description t-Stat P- 
Value 

Fitted 
Value 

Minimum 
value 

Maximum 
value 

R: CN2.mgt SCS runoff curve number 4.041 0.000 0.129 − 0.053 0.313 
R: SURLAG.bsn Surface runoff lag time 1.660 0.098 7.446 1.443 20.384 
V: ALPHA_BF.gw Base flow alpha factor 1.081 0.280 0.178 0.046 0.299 
R: CH_N2.rte Manning’s "n" value for the main channel 0.303 0.762 0.008 0.007 0.009 
A: SOL_K.sol Saturated hydraulic conductivity − 0.127 0.899 0.794 0.768 0.874 
R: CH_K2.rte Effective hydraulic conductivity in main channel alluvium − 0.634 0.527 5.363 4.248 5.392 
A:SOL_Z(..).sol Depth from soil surface to bottom of layer. − 0.691 0.490 17.961 14.785 24.073 
V: GWQMN.gw Threshold depth of water in the shallow aquifer required for 

return flow to occur (mm) 
− 1.010 0.313 0.765 0.707 0.787 

R: SOL_AWC.sol Available water capacity of the soil layer. − 1.361 0.174 − 0.022 − 0.054 − 0.018 
V: GW_DELAY.gw Groundwater delay (days). − 1.491 0.137 44.241 38.474 46.869 

The identifier code behind the short name of each parameter indicates the type of change to be applied to the initial value of the parameter. (R) 
indicates multiplying the initial value by the fitted value then add or subtract the final value from the initial value, (V) indicates the direct 
replacement of the optimum parameter’s value by the initial value of the parameter, (A) denotes adding the optimum and initial parameter’s value. 

S.S. Fanta et al.                                                                                                                                                                                                        
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Rmin ≤Rt ≤ Rmax, ∀t = 1 to T (6)   

Spill constraint 

Spt=
{

St + Qt − Rt − Smax, if St + Qt − Rt > Smax
0 if St + Qt − Rt ≤ maxS

}

∀t= 1 to T (7)   

Water balance equation in a reservoir 

St+1 = St + Qt − Qout − Qloss∀t = 1 to T (8)  

Where Smin and Smax denote the initial and maximum reservoir storage capacity, St, denotes the optimized storage capacity of the Koka 
reservoir throughout the operation period, T, Rmin and Rmax represents the minimum, and maximum allowable release, Rt denotes the 
optimized release during the operation period t, Qt, Qout, and Qloss denotes the inflow (during the operation period, t), outflow and 
volume of water lost in the form of evaporation, respectively. 

The monthly evapotranspiration in this study was computed using the modified FAO penman -Monteith equation available in Allen 
et al. [53]. Then, the evaporation at the maximum area of the Koka reservoir was computed by using Eq. (9). 

Vloss =Et ∗ A (9)  

Where Vloss, Et and A represent the volume of water lost by evaporation from the Koka reservoir (m3), the evapotranspiration (mm), 
and the area of the reservoir. The volume of water lost by evaporation was computed at the maximum area of the reservoir. 

The monthly irrigation water demand was computed using Cropwat8.1 software using irrigation area, soil, climate, and crop in-
formation. As shown in Table 3, the sum of minimum and maximum environmental and irrigation flow requirements is 11.650 MCM 
and 114.482 MCM, respectively. Therefore, the optimum release should be between these upper and lower values throughout the 
reservoir operation period. The current irrigated area in the Upper Awash watershed is 30,000 ha. However, detail studies regarding 
the future expansion of the irrigation area, irrigation infrastructures, and economic feasibility are not available. Accordingly, the 
estimated environmental and crop water demand for the reference period was not changed throughout study period. 

3. Results and discussion 

3.1. SWAT model calibration and validation result 

The monthly average observed and simulated runoff values during the calibration and validation periods were 145.47 m3/s 
(148.16 m3/s) and 72.14 m3/s (67.570 m3/s), respectively, while the standard deviation values were 202.220 m3/s (224.860 m3/s) 
and 98.090 m3/s (108.440 m3/s), respectively. The result shows that the average and standard deviation values of the simulated flow 
agreed with their corresponding values of the observed flow. Hence, the monthly simulated runoff during dry and rainy periods was 
complimentary to the observed flow. On the other hand, mean annual rainfall values during the calibration and validation periods 
were 1066.332 mm and 889.071 mm, respectively. Accordingly, the acceptable values of statistical tests of error functions showed that 
the percentage of rainfall appearing as surface runoff is quite reasonable. Therefore, magnitude and pattern of the simulated surface 
runoff were consistent with the temporal magnitude and distribution of rainfall. The summary statistics of the model performance are 
shown in Table 4. According to Moriasis et al. [48] and Pechlivanidis et al. [54], the values of a statistical test of error functions are 
within the acceptable range. 

Table 3 
The long-term monthly average environmental, irrigation requirement and evaporation of the Upper Awash watershed.  

Month Environmental flow (MCM) Flow for irrigation (MCM) Evaporation (MCM) 

Jan 2.542 43.630 32.267 
Feb 2.532 42.946 28.167 
Mar 2.592 36.645 36.833 
Apr 2.592 44.404 28.367 
May 2.552 44.444 38.867 
Jun 1.292 10.358 41.567 
Jul 1.892 12.461 30.967 
Aug 1.592 13.586 17.033 
Sep 2.592 30.475 38.400 
Oct 2.592 87.327 53.800 
Nov 2.592 111.890 35.300 
Dec 2.572 95.739 35.967  
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The visual evaluation of the observed and simulated monthly runoff hydrographs (Fig. 4) also reveals that the signal and pattern of 
the simulated runoff closely matches with the observed runoff. Thus, a graphical and statistical evaluation of the observed and 
simulated runoff demonstrated the suitability of the SWAT model for the monthly runoff simulation of the Upper Awash watershed. 
The probable reasons for the good performance of the SWAT model could be (1) the initial watershed parameters for the SWAT model 
were obtained from previously calibrated hydrological models [17,22,25,29,47] in the Upper Awash watershed and on the entire 
Awash basin. (2) The SCS-CN method has been proved to perform better in Agricultural watersheds. In this regard, 83.040% of the 
Upper Awash watershed was used for agriculture from 1981 to 2010. 

However, there was a slight difference between the simulated and observed runoff values during the calibration and validation 
periods. The significant deviation of the simulated runoff from the observed runoff was toward the higher extreme values (Fig. 4). 
During the calibration and validation periods, the observed peak discharge values were 1441 m3/s and 542.041 m3/s, respectively. 
However, the simulated peak discharge values during the calibration and validation periods were underestimated by − 19.084% and 
− 20.836%, respectively. Hence, the peak discharge was not well simulated by the model as compared to the average runoff. This is a 
typical weakness for most hydrological models which may be related to an underlying assumption used in developing the model. For 
instance, Adera and Alfredsen [16]; Abdulahi et al. [25], and Heyi and Dinka [29]stated that the HVB model caused a significant 
difference between the simulated and observed upper extreme values and the model had better performed in predicting the 
medium-range flow. According to Kannan [55] and Halwatura and Najim [56], the effectiveness of the SCS-CN method was experi-
mentally tested in a small agricultural watershed in the mid-western United States. In addition, the method neglects the effect of 
rainfall duration and intensity on surface runoff generation. Therefore, applying the method directly may result in a significant error, 
particularly for the upper extreme flows. On the other hand, Kannan [55] proved that the SCS-CN method still outperforms the Green 
and Ampt in predicting the peak flow. 

Table 4 
Optimum values of objective functions during the calibration and validation periods.  

Objective functions Calibration period Validation period 

bR2 0.671 0.840 
NSE 0.820 0.840 
PBIAS (%) 1.817 − 6.642 
KGE 0.860 0.860 
RSR 0.420 0.400 
PEP (%) 19.084 20.836 
MAE (m3/s) 2.692 4.493 
Mean_sim (Mean_obs) (m3/s) 145.470 (148.160) 72.140 (67.570) 
StdDev_sim (StdDev_obs) (m3/s) 202.220 (224.860) 98.090 (108.440)  

Fig. 4. Monthly simulated and observed hydrographs of the Upper Awash watershed for the calibration (a) and validation (b) periods.  
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3.2. Analysis of the monthly inflow of koka reservoir 

The monthly inflow into the Koka reservoir was simulated throughout the study period using the calibrated and validated SWAT 
model. According to the study, the simulated monthly inflow to Koka reservoir showed upward trend. The result shows that the inflow 
into the reservoir in the 2020s under the RCP4.5 scenario is projected to decrease by − 28.707% compared to the simulated inflow 
during the reference period. However, the monthly inflow to Koka reservoir could increase by 4.635% under the RCP8.5 scenario. In 
the 2050s and 2080s the mean annual monthly inflow to the reservoir will likely increase by +5.672% (+5.764%) and +4.011% 
(+10.470%) under the RCP4.5 and RCP8.5 scenarios, respectively. The maximum increment will likely to occur during the 2080s 
under the RCP8.5 scenario. The result indicates that the Koka reservoir inflow is projected to increase in the 2050s and 2080s 
compared to the inflow of the reference period. This conclusion is consistent with those made by Adera and Alfredsen [16]; Dibaba 
et al. [19] and Abdulahi et al. [25]. During the reference period, the annual average inflow of Koka reservoir was 139.675 MCM. 
However, the inflow analysis under the two scenarios from 2011 to 2100 showed that the minimum annual inflow was 99.578 MCM 
during the 2020s, and the maximum annual inflow was 156.008 MCM during the 2080s under the RCP8.5 scenario. Hence, the 
simulated inflow under the RCP4.5 scenario showed a diminishing signal. The result also showed that the temporal variability of 
inflow of the Koka reservoir variability will most likely decrease in future periods. The maximum standard deviation of the inflow, as 
shown in Table 5, was during the reference period (164.669 MCM). On the other hand, the inflow fluctuation was less in the 2020s and 
2050s periods. 

Fig. 5 shows the 30-year average inflow of Koka reservoir during the reference, the 2020s, 2050s, and 2080s periods. The graph 
indicates that the highest monthly inflow will likely occur from June through November. Hence, during the reference period, the 
June–November inflow was higher than the monthly inflow during 2020s, 2050s and 2080s. Accordingly, the maximum inflow to the 
Koka reservoir was 519.767MCM, which was computed during the reference period in August. Ethiopia experiences its wettest season 
from June to November. The analysis of the observed rainfall data indicated that maximum rainfall was observed in August. 
Consequently, the monthly distribution of inflow follows the seasonal dynamics and pattern of rainfall. The inflow from December to 
May, which belongs to the winter and autumn season of Ethiopia, was minimum throughout the study period. Fig. 5 shows that 
compared to the inflow of the reference period, the magnitude and temporal dynamics of the inflow in the 2020s, 2050s, and 2080s are 
similar. Therefore, considering the magnitude and pattern of the inflow, the effect of climate change on the inflow to the Koka reservoir 
is optimistic. This doesn’t entirely imply that there is no negative impact on the inflow to the reservoir. For instance, during the 
reference period, the inflow into the Koka reservoir from January to August was higher than the inflow of the reservoir in the 2020s, 
2050s, and 2080s. On the other hand, the average monthly observed inflow was less than the inflow predicted by the output of the 
climate model from August to September during the reference period. With the exception of the inflow during the 2020s under the 
RCP4.5 scenario, the peak inflow has shifted from August during the reference period to September during the 2020s, 2050s, and 
2080s periods. The result is also consistent with the findings of Abera et al. [10]; Adera and Alfredsen [16], and Leta et al. [52]. 
Therefore, climate change on the Koka reservoir will most likely increases the magnitude of the inflow and shift its temporal 
distribution. 

The impact of climate change is also different on different flow ranges. In order to select and implement local specific water 
resource management scenarios for a particular flow type, it is crucial to quantify the rate of change and signal of climate change at 
different flow regimes. Accordingly, the relative change and signal of flow due to climate change at different flow range was inves-
tigated using flow duration curve. To quantify the impact of climate change on different flow regimes, the flow was divided into 
various flow regimes using the probability of exceedance, which can be computed from the flow frequency. Emiru et al. [22] studied 
the impact of climate change on Upper Awash stream flow at low flow (Q90) and high flow (Q5). Accordingly, it is not ambiguous to 
identify the low flow and high flow from the flow duration curve. However, detail flow classification helps to ensure a smooth 
transition across different flow categories. The classification of flow between the upper and lower flow range is slightly different by 
different scholars. In this study, the widely known and accepted classification adopted by Kwakye [57] was used to classify the flow of 
the Upper Awash watershed into high flow (Q0-Q9.722), wet condition (Q10-Q39.722), mid-range flow (Q40-Q59.722), dry period 
condition (Q60-Q89.722), and low flow (Q90-Q100) based on their exceedance probability. 

According to the analysis, the mean annual flow for the reference period with a 0–10% probability of exceedance was equalled or 
exceeded 225.724 m3/s. However, a constant decrease was confirmed by the high flow in the 2020s, 2050s, and 2080s. Hence, the high 
flow in the future revealed a negative signal. Under the RCP8.5 scenario, the maximum and minimum relative changes were − 28.528% 
and − 22.856% with respect to the reference period’s high flow, respectively. These changes are likely to occur in the 2020s and 2050s. 

In contrast to the high flow, the wet condition, the mid-range, dry period condition, and the low flow showed a constant increasing 

Table 5 
Monthly inflow to the Koka reservoir throughout the study period.  

Study period Mean (MCM) Standard Deviation (MCM) Minimum (MCM) Maximum (MCM) 

Reference (1981–2010) 139.675 164.669 6.013 519.767 
RCP4.5 (2011–2040) 99.578 115.070 3.910 367.727 
RCP8.5 (2011–2040) 146.463 149.075 2.497 406.285 
RCP4.5 (2041–2070) 148.073 149.224 2.608 392.381 
RCP8.5 (2041–2070) 148.219 148.562 2.717 388.934 
RCP4.5 (2071–2100) 145.512 146.147 3.546 386.893 
RCP8.5 (2071–2100) 156.008 159.566 4.966 422.218  
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signal throughout the study period. However, aside from the low flow, every flow category in the 2020s under the RCP4.5 scenario 
showed a negative signal. This can be because of many uncertainties associated with assumptions made in the scenario, inadequate 
conceptualization of the climate and hydrological model, and uncertainty related to the physical properties of the watershed. However, 
the relative change and signal that the RCP8.5 scenario comply with are more consistent throughout the entire study period. As a 
result, the outlier of the flow signal and the relative change caused by the RCP4.5 scenario have no impact on the finding of this study. 

The increase in low flow over subsequent periods is the most encouraging result of the study. During the reference period, the 
average value of high flow with an exceedance probability of 0–10% was 0.033 m3/s. However, the relative change of the average low 
flow values during the 2020s, 2050s, and 2080s were, +80.098% (+89.510%), +82.138% (+78.407%), and +90.401% (+89.617%) 
under the RCP4.5 and RCP8.5 scenarios, respectively compared to their corresponding values during the reference period. The 
maximum future low flows that equalled or exceeded 0–10% of the time were 0.344 m3/s and 0.318 m3/s were also under the two 
forcing scenarios respectively. 

Fig. 5. Monthly average inflow of the Koka reservoir (1981–2100).  

Fig. 6. Flow duration curve (a) and the relative change of flow at different flow regimes of the Koka reservoir (b).  
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Out of all the flow regimes, the relative increase in low flow is the one with the highest likely increment for the future period. Thus, 
the study has proved that the main impact of climate change is to shift the high flow into low flow. Consequently, the high flow is 
predicted to decrease under the influence of climate change. Conversely, the low flow is expected to increase. Furthermore, the inter- 
annual and monthly inflow showed little fluctuation due to the increasing signal of low flow. Based on the finding, the standard 
deviation of the monthly inflow during the 2080s was less than that of the reference period. This signifies that there will be less 
variation in inflow during the future periods than the inflow during the reference period. 

Quantifying the impact of climate change on the inflow at different flow categories is used to modify the reservoir rule curve. In 
order to maximize the frequency of reservoir rule curve, little inflow variation is crucial. This helps to reduce the level of uncertainty in 
reservoir operation. Fig. 6 (a) revealed that the high flow during the reference period was lower than the flow with an exceedance 
probability of 0–9.722%. Nevertheless, the flow with a 10–100% exceedance probability exhibited a rising signal. 

3.3. Analysis of the monthly optimal elevation of koka reservoir 

The monthly optimum elevation was computed by HEC-ResPRM using the monthly inflow, storage penalty functions, elevation, 
storage, and outflow constraints as input to the model. In this study, the average deviation of the observed storage against the target 
storage was used to develop a penalty function. During the initial stage of reservoir operation, the target inactive storage was 180 
MCM. However, the ten-year monthly average observed storage was 250 MCM, which is a 28% deviation from the target minimum 
operating storage. Consequently, the penalty assigned at 180 MCM was 28. The active storage capacity of the Koka reservoir was 1680 
MCM. On the other hand, the average ten-year observed storage capacity analysis revealed that the actual active storage capacity was 
1206.860 MCM, depicting a deviation of 28.163% from the target storage capacity. Similarly, the total storage capacity is 1850 MCM. 
However, the observed average storage capacity deviated from the target storage capacity of Koka reservoir by 36.757%. Table 6 
shows the penalty values assigned at each storage level. 

Table 6 shows the increment of penalty with elevation/storage. The cost of deviation from the desired system operation of the Koka 
reservoir is represented by this pricewise linear penalty function. In HEC-ResPRM, network flow programming minimizes unit cost by 
distributing the inflow into the arc with the minimum slope penalty function. As a result, the solution to optimum storage, elevation, 
release, and power capacity is the minimum slope of the penalty function established on the Koka reservoir’s arc, which is found 
between the inflow and outflow nodes of the reservoir. 

Based on the result, the minimum, maximum, and mean monthly optimal elevation values of the Koka reservoir during the 
reference period were 1581.900 m, 1593.200 m, and 1590.771 m (a.m.s.l), respectively. The result indicates that the Koka reservoir 
was operated at maximum elevation during the reference period. However, the optimal elevation of the Koka reservoir will likely 
decrease compared to its correspondence value during the reference period due to the impact of climate change. Accordingly, the mean 
monthly elevation will likely decrease by (0.618 m) (0.343 m), 0.348 m (0.440 m), and 0.256 m (0.276 m) under the RCP4.5 and 
RCP8.5 scenarios in the 2020s, 2050s, and 2080s, respectively. As shown in Table 7, the mean, minimum, and maximum elevations of 
the Koka reservoir were 1590.423 m, 1581.30 m, and 1593.20 m a.m.s.l, respectively, under the RCP4.5 scenario from 2041 to 2070. 
The result also showed that the reservoir might be operated at the lowest elevation during the 2050s under the RCP4.5 scenario. 

In order to investigate the optimizing ability of the HEC- ResPRM, the optimum monthly elevation was compared to the actually 
operated elevation from 2011 to 2021. Statistically, the mean, minimum, and maximum observed elevations of Koka reservoir were 
1587.541 m, 1583.514 m, and 1591.087 m a.m.s.l, respectively. These values are the lowest throughout the study period compared to 
the optimized elevation. Hence, the analysis revealed that the Koka reservoir was not optimally operating during the reference period. 
This indicates that the operation of the reservoir at lower elevation is not due to lack of inflow into the reservoir because the optimized 

Table 6 
Elevation/storage penalty value of Koka reservoir.  

Elevation (m) Target Storage (MCM) Actual Storage (MCM) Penalty (%) 

1580.400 180 250.000 28.000 
1589.950 1680 1206.860 28.163 
1590.700 1850 1170.000 36.757  

Table 7 
Monthly average optimum elevationa of the Koka reservoir during the study period.  

Operation period Mean (m) Minimum (m) Maximum (m) 

Reference (1981–2010) 1590.771 1581.900 1593.200 
Observed (2011–2021) 1587.541 1583.514 1591.087 
RCP4.5 (2011–2040) 1590.153 1581.800 1593.200 
RCP8.5 (2011–2040) 1590.428 1581.700 1593.200 
RCP4.5 (2041–2070) 1590.423 1581.300 1593.200 
RCP8.5 (2041–2070) 1590.331 1581.700 1593.200 
RCP4.5 (2071–2100) 1590.515 1581.700 1593.200 
RCP8.5 (2071–2100) 1590.495 1581.300 1593.200  

a Mean sea level is taken as a reference level to express the optimum elevation of Koka reservoir. 
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elevation is higher than the observed elevation during the same study period. 
As shown in Fig. 7, the magnitude and temporal distribution of optimum elevations under the RCP4.5 and 8.5 scenarios are similar 

and the two graphs are close to each other. This indicates that the impact of climate change on the operating level of the Koka reservoir 
is adequately represented by the HEC-ResPRM model. However, throughout the study period, the minimum operating level of the 
reservoir was higher than that of the dead storage level. The study also revealed that the optimum monthly elevation increased from 
the reference to the end-of the century (2080s) under the two RCP scenarios. As illustrated in Fig. 7 (b), the actual operating level of the 
Koka reservoir was mainly lower than the optimum reservoir level. Even during the rainy season of Ethiopia, the reservoir was not full. 
Therefore, the additional optimum storage level obtained in this study can be used to store more water, reducing the risk of water 
scarcity during the dry season and producing more power. Furthermore, because the reservoir has more space to store excess water 
without overflowing, the risk of flooding can be reduced during periods of high flood. 

Fig. 7 also shows that the elevation rapidly increases from 1981 to 1983 during the reference period. However, the rate of 
increment is expected to decrease between 1984 and 2100. The network flow programming distributes more water to the minimum 
penalty value because the minimum storage penalty was assigned at the dead storage level. As a result, the optimum elevation 
increment was from the dead storage level to the normal pool level of the reservoir. If the model does not achieve optimum elevation, 
the initially assigned penalty values can be slightly modified to obtain the optimal elevation and storage of the reservoir. However, in 
this study, the optimum reservoir level was determined by the initial values of storage penalty functions and outflow constraints. 

The release from the reservoir for environmental and irrigation purposes is less than the inflow of the reservoir. Consequently, the 
new incoming flow will be added to the previously stored water. Due to this, the elevation showed a continuous increasing signal. 
However, even though the optimum elevation increased, it cannot extend beyond the maximum flood level of the dam which is 
1593.20 m a.m.s.l. Hence, the optimum elevation corresponds to the flood level of the Koka reservoir. Accordingly, the additional 
elevation of the reservoir will be 2.5 m. As shown in Fig. 7, the minimum and maximum storage levels fluctuate around the optimum 
operating level of the reservoir. This indicates that the reservoir can quickly recover if its level is dropped to the minimum level for 
power production. 

Fig. 8 shows the 30-year monthly average elevation during the reference, 2020s, 2050s, and 2080s periods. The result indicates that 
the long-term monthly optimum elevation was also maximum during the reference period (1592.210 m a.m.s.l). Furthermore, the 
analysis of monthly inflows into the Koka reservoir revealed that the reference period had the highest average inflow. On the other 
hand, the monthly average elevation during the 2020s, 2050s, and 2080s shows a similar pattern with little elevation difference 
between the specified time periods. 

The graph (Fig. 8) also indicates that the average elevation is likely to decrease during the dry months. Hence, the minimum 
operating level of Koka reservoir was computed in June, which is the transition month from the autumn to the summer in Ethiopia. 
According to the analysis, the optimum elevation values of the Koka reservoir during August, September, October, and November were 
1591.683 m, 1592.210 m, 1591.880 m, and 1591.870 m, respectively. March, April, May, and June showed the lowest elevation values 
(1590.047 m, 1589.970 m, 1589.810 m, and 1589.867 m a.m.s.l., respectively). The result is also supported by Sharaky et al. [7] and 
Abera et al. [10]. 

3.4. Analysis of the monthly optimum storage capacity of the koka reservoir 

The monthly inflow of Koka reservoir simulated by SWAT model was used to compute the monthly power capacity. Therefore, the 
average storage volume represents the useable storage capacity in this study. However, the actual minimum and maximum storage 
may be affected by the maximum inactive storage level, peak demand, and electromechanical equipment efficiency. At normal 
operating levels, the maximum storage capacity of the Koka reservoir is 1850 MCM. The HEC-ResPRM requires the user to provide a 
minimum and maximum storage capacity, which can be used as a boundary value to simulate the optimum storage capacity. Therefore, 
the actual maximum and minimum storage capacity of the Koka reservoir was directly used as a lower and higher boundary values 
during the initial optimization phase. However, the solution for network flow programming in HEC-ResPRM, was not feasible. Because 
the inflow into the reservoir exceeded the carrying capacity of the reservoir. As a result, during the subsequent optimization phases, the 
initial lower and higher boundary values were 180 MCM and 2500 MCM, respectively. However, the model simulated the final op-
timum value of storage by taking into account the storage penalties, constraints, and inflow capacity. 

According to the analysis, the average monthly observed storage was 1207 MCM. However, the average monthly optimum storage 
during the reference period was higher than that of the observed storage by 35.136%. Similarly, the optimized storage capacity during 
the 2020s, 2050s, and 280s study periods showed a relative increment of +30.875% (+32.903%), +32.797% (+32.123%), and 
+33.297% (+33.352%) under the RCP4.5 and RCP8.5 scenarios, respectively as compared to the observed storage. 

On the other hand, the Koka reservoir has a designed useable storage capacity of 1680 MCM. However, during the reference period, 
the optimum storage increased by +9.717% compared to the designed useable storage capacity. Similarly, the designed useable 
storage capacity increased by +3.787% (+6.609%), +6.461% (+5.523%), and +7.158% (7.234%) during the 2020s, 2050s, and 2080s 
study periods under the RCP4.5 and RCP8.5 scenarios, respectively. The results showed that useable storage capacity increased the 
most during the reference period compared to the observed and useable storage capacity throughout the study period. The monthly 
distribution of optimum storage capacity is similar to the monthly distribution of optimum elevation of the Koka reservoir. The overall 
minimum average storage for the entire study period was 1542.550 MCM, which was obtained in July. This is because July is the 
beginning month for reservoir filling. As a result, the monthly average inflow of the Koka reservoir for the entire study period indicates 
that maximum inflow occurs from July to October (Fig. 9). 

Fig. 10 depicts a box plot of the average storage capacity for the reference, the 2020s, 2050s, and 2080s periods. The graph also 
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Fig. 7. The monthly optimum elevation of Koka reservoir for the reference (a), the 2020s (b), 2050s (c) and 2080s (d) periods.  
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Fig. 8. The mean monthly elevation of the Koka reservoir (a.m.s.l) under the reference, 2020s, 2050s, and 2080s periods.  

Fig. 9. The Monthly average optimum storage capacity of the Koka reservoir.  

Fig. 10. Box plot of the relative change in optimum storage capacity of the Koka reservoir.  
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demonstrated that the maximum storage capacity was obtained during the reference period. However, storage capacity is expected to 
decline during the 2020s, 2050s, and 2080s periods compared to the storage capacity during the reference period. According to the 
analysis, the maximum and minimum declining rates were − 6.164% and − 2.677%, respectively, during the 2020s under the RCP4.5 
and the 2080s under the RCP8.5 scenario. 

3.5. Analysis of the monthly optimum power capacity of koka reservoir 

The average optimum monthly power capacity throughout the reference period was 16.489 MW. The monthly observed average 
power, on the other hand, was 11.224 MW. The findings revealed that the Koka reservoir was not being operated optimally during the 
reference period. Lack of efficient management of the Koka reservoir is one possible explanation for the reservoir operating below its 
optimum capacity. For example, rapid water release during the summer season with a danger of flood inundation downstream of the 
Koka hydropower plant. The reservoir was designed to hold more water during the summer and operate during the other seasons. 
However, rapid water release to the downstream of the reservoir results in the release of energy without any use. As a result, the 
stationary assumption of hydro meteorological variables, which leads to reservoir to be operated based on the past rule curve, has 
reduced the optimal operation of the Koka reservoir. 

The optimum power capacity throughout the 2020s, 2050s, and 280s periods increased by +31.280% (+31.281%), +32.066% 
(+32.069%), and +32.025%, (+32.193%) under the RCP4.5 and RCP8.5 scenarios, respectively, as compared to the observed power. 
As a result, the optimum power capacity of the Koka reservoir under climate change will likely be more than the actual produced 
power. Similarly, optimum power capacity is expected to rise in the 2020s, 2050s, and 2080s periods compared to their respective 
value during the reference period. Under RCP4.5 and RCP8.5 scenarios, the relative changes throughout the 2020s, 2050s, and 2080s 
periods compared to the reference period were − 0.948% (+0.161%), +0.199% (+0.202%), and +0.138% (+0.386%). The overall 
result showed that optimum power capacity is projected to increase due to climate change. 

The analysis also showed that the maximum and minimum monthly observed power were 13.779 MW and 9.736 MW, respectively. 
The discrepancy between the maximum and minimum values indicated the existence of high-power fluctuation during the observed 
period. However, the difference in the optimized monthly power capacity for the reference, 2020s, 2050s, and 2080s, as shown in 
Table 8, verified the likely existence of little fluctuation throughout the whole study period. The reason could be concomitant to the 
increment of low flow and the decrement of high flow which possibly shifted to increase the mid-range flow. 

The monthly distribution of produced power revealed that maximum power was produced during the driest season in Ethiopia. 
Based on the analysis, the observed values of power during February, March, and January were11.391 MW, 13.779 MW, and 13.477 
MW, respectively. This indicates that maximum release was during the dry months, and the reservoir was allowed to store more water 
during the wettest season. As shown in Fig. 11, the monthly power attains its peak value during February and continually decreased 
afterwards. However, the optimized power proved that the power capacity was maximum from February to August during the 
reference period following the pattern of inflow. On the contrary, the optimum power during the reference period from September to 
December attained its minimum value compared to the optimum power capacity during the 2020s, 2050s, and 2080s study periods. 

Based on the finding, the maximum power capacity values throughout the study period were 17.387 MW, 17.297 MW, and 16.960 
MW, which were obtained during August, September, and October, respectively. The maximum power capacity during the reference 
period was 17.915 MW, which was mimicked in August, whereas the peak power capacity values during the 2020s, 2050s, and 2080s 
were 17.325 MW (17.481 MW), 17.457 MW (17.421 MW), and 17.436 MW (17.560 MW), respectively, under the RCP4.5 and RCP8.5 
scenarios, which were obtained in September. The analysis indicates that climate change is also responsible for the shift in peak values 
of the power capacity from August to September. 

During the observed period, the produced power showed subsequent decline even during the wet season. However, if the reservoir 
is optimally operated, there will be a chance of refilling the reservoir for the subsequent year. Because the inflow during the wet season 
is abundant, allowing the reservoir to hold water above its normal operating level. As a result, it is possible to generate power while 
also storing water. 

According to Hamududu and Killingtveit [6], the power capacity in East Africa showed a general rising trend under the impact of 
climate change. However, if the existing reservoir operation rule is not modified, the optimum power capacity cannot be fully utilized. 
Therefore, the study proposed reservoir filling and operation alternatives based on inflow variation. In this study, the optimum power 
capacity was obtained during the wettest season of Ethiopia. As a result, there are two options to operate the Koka reservoir. The first is 
filling the reservoir to its maximum capacity, which is simulated in this study and operates at full capacity during the dry seasons. 

Table 8 
Statistical summary of optimized power capacity and actually produced power.  

Study period Mean (MW) Maximum (MW) Minimum (MW) 

Observed 11.224 13.779 9.736 
Reference 16.489 17.915 15.985 
RCP4.5 (2011–2040) 16.333 17.325 15.983 
RCP 8.5 (2011–2040) 16.516 17.481 15.975 
RCP4.5 (2041–2070) 16.522 17.457 15.975 
RCP8.5 (2041–2070) 16.522 17.421 15.976 
RCP4.5 (2071–2100) 16.512 17.436 15.979 
RCP8.5 (2071–2100) 16.553 17.560 15.985  
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Hence, rather than shifting the operational season, the existing operation rule should be modified to account the effects of climate 
change. Thus, operating the reservoir more during the dry months and less during the wet months can helps in storing water for the dry 
months. The irrigation and environmental water requirements, on the other hand, typically becomes maximum during the dry season. 
As a result, the second option is reservoir filling and power generation should be a simultaneous activity that can align with the 
temporal dynamics of the inflow. However, due to limited storage, the power production capacity should be enhanced during the rainy 
season by directly feeding the incoming excess flood to the turbine. 

Fig. 12 (a) shows that there was during the reference period. However, the monthly power distribution under the two scenarios will 
likely become uniform and consistent. The monthly observed power distribution is also shown on the graph to demonstrate how the 
observed power distribution behaves with the optimum power capacity mimicked by the HEC-ResPRM (Fig. 12 (b)). 

3.6. Limitations of the study 

In this study, the projected climate change is based on the RCP4.5 and RCP8.5 scenarios, which are developed based on emission, 
concentration, and land use trajectories that result in varying levels of radioactive forcing. Detail understanding of the future LU/LC 
trajectory, greenhouse and aerosol emissions, and the conversion of those gases into climate change may lead to a better understanding 
of the trend of radio-active forcing. Therefore, the uncertainty of future population growth, socioeconomic activities, changes in living 
standards, and new technological development may influence the spatiotemporal variation of LU/LC, as well as the emission and 
concentration of greenhouse gases. As a result, new updated scenarios could be developed. On the other hand, no scenario can be 
developed in the absence of uncertainty. Internal variability in climate change may also cause uncertainty. As a result, the projected 
climate may deviate from the RCP4.5 and/or RCP8.5 scenarios. Therefore, this study indicates the likely impact of climate change, 
which may not accurately represent the actual inflow, storage, elevation and power capacity of Koka reservoir during the respective 
future study periods. 

4. Summary and conclusions 

In this study, the impact of climate change on the inflow and optimal operation of the Koka reservoir was investigated from 1981 to 
2100. During the reference period, the observed climate data were used to simulate the monthly inflow, optimum elevation, storage, 
and hydropower capacity of Koka reservoir, whereas from 2011 to 2100, the climate data from the multimodal ensemble of DMI- 
HIRHAM5, KNMI-RACMO22T, CLMcom-CCLM4-8-17, RCA4, REMO2009, and CanRCM4 under the RCP4.5 and RCP8.5 scenarios 
were used to forecast the monthly inflow of Koka reservoir using the SWAT model. Even though the future climate pattern may not 
follow the RCP8.5 and 4.5 scenarios, the monthly pattern of the projected values of inflow, elevation, storage, and hydropower ca-
pacity agrees with their corresponding observed values from 2011 to 2021. The SWAT model was calibrated from 1981 to 1998 and 
validated from 1999 to 2010 using the monthly observed stream flow near the outlet of Upper Awash watershed. The graphical and 
statistical analysis of the simulated and observed runoff hydrographs during the calibration and the validation periods indicated that 
the SWAT model is suitable and adequate for the monthly surface runoff simulation of the Upper Awash watershed. Based on the result, 
the monthly inflow into the Koka reservoir is expected to rise due to climate change. During the reference period, there was a sig-
nificant inter-annual inflow variation. However, the variation of inflow from 2011 to 2100 is not significant, which is a favorable 
feature of climate change for the Koka reservoir. However, as a result of climate change, the occurrence month of the highest inflow of 

Fig. 11. The monthly optimum power during the reference (a), 2020s (b), 2050s (c), and 2080s (d).  
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the Koka reservoir will likely shift from August to (September–October). The influence of climate change was also studied using 
different flow regimes of the Upper Awash watershed. The results showed that high flow shows a diminishing signal, but the wet, mid- 
range, and dry period, and low flow show a steady increasing signal throughout the study period. Therefore, the novel finding of the 
study is that there is a shift in the monthly occurrence of peak discharge, increment of low flow, and decrement of high flow due to 
climate change. 

The other novel finding of the study is the use of penalty functions and physical constraints of the Koka reservoir to bring the system 
to the desired operation in HEC-ResPRM. Following the inflow pattern, the optimum elevation and storage showed a slightly 
increasing. Compared to the observed storage and elevation, the values of optimum elevation and storage was the highest throughout 
the study period. However, during the reference period, the values of optimum elevation and storage were higher than their 

Fig. 12. Monthly distribution of optimized and observed power.  
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corresponding values in the 202s, 2050s, and 2080s. This study also indicated that the power capacity of the Koka reservoir will likely 
increase under the impact of climate change. Based on the analysis, the optimized power capacity is higher than the observed power of 
the Koka reservoir. However, following the seasonal shift of the inflow, there is also a shift in the monthly distribution of hydropower 
capacity. Accordingly, the occurrence month of the peak hydropower capacity will likely shift from August to (September–October). 
The study indicated that the inflow, storage, elevation and power capacity will likely increase under the impact of climate change. 
Accordingly, the operation of the Koka reservoir should consider the likely impact of climate change. Accordingly, the existing 
reservoir rule curve should be modified to utilize the additional power capacity of the Koka reservoir. The long-term average elevation, 
storage, and hydropower capacity obtained in this study can be used as a rule curve under the uncertainty due to climate change. The 
study is also important to analyze the difference between the past and the present operation and the likely operation of the Koka 
reservoir in the future time horizon. In this regard, the study is vital to develop feedback mechanisms for efficient and optimal power 
generation. However, this study does not consider the temporal variation of LU/LC and demand change associated with the socio- 
economic activity of the population. Therefore, further study should be conducted to address the impact of LU/LC and demand 
change on the operation of the Koka reservoir. The future study should also consider a recently updated scenarios and climate models 
to assess the impact of climate change on the available water resources and hydropower capacity of the watershed. 
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