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Abstract: Squamous cell carcinoma of the head and neck is one of the most common cancer types 

worldwide. It initiates on the epithelial lining of the upper aerodigestive tract, at most instances as a 

consequence of tobacco and alcohol consumption. Treatment options based on conventional therapies or 

targeted therapies under development have limited efficacy due to multiple genetic alterations typically 

found in this cancer type. Natural products derived from plants often possess biological activities that 

may be valuable in the development of new therapeutic agents for cancer treatment. Several genera 

from the family Celastraceae have been studied in this context. This review reports studies on chemical 

constituents isolated from species from the Celastraceae family targeting cancer mechanisms studied to 

date. These results are then correlated with molecular characteristics of head and neck squamous cell 

carcinoma in an attempt to identify constituents with potential application in the treatment of this com-

plex disease at the molecular level. 

Keywords: Celastraceae, Triterpenoids, Quinone-methides, Cancer, Head and neck squamous cell carcinoma, Targeted ther-
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1. INTRODUCTION 

 Cancer presently accounts for approximately 8 million 

deaths per year worldwide, a number that should escalate in 

the next two decades according to current projections [1]. 

Considered a global health problem, great scientific efforts 

are being made in order to understand the burden of cancer 

and prevent an even worse scenario.  

 In the past 10 years, the PubMed searchable databases 

alone have registered over a million articles addressing can-

cer [2]. Results show that despite improvements in early di-

agnosis and treatment, most cancer patients are still lacking 

treatment options and that success rates in drug development 

are low [3, 4]. 

 Head and neck squamous cell carcinoma (HNSCC) is 

responsible for about 90% of the cancers arising in the 

epithelial lining of the mucosal surfaces of the head and neck 

[5]. It is considered the sixth most prevalent cancer type 

worldwide, with approximately 540,000 new cases annually 

and 271,000 deaths, mostly due to lack of early diagnostic 

markers and efficient therapies [6]. Major risk factors  
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include heavy drinking and tobacco consumption [7] and the 

human papilloma virus for certain HNSCC subsites [8]. 

Most patients are diagnosed at advanced cancer stages. At 

this point treatment requires complex surgeries followed by 

radiotherapy and/or chemotherapy, with severe conse-

quences in speech, breathing and eating abilities [9, 10]. 

Noteworthy is the fact that over 50% of patients will present 

recurrence in less than 2 years after initial treatment with 

overall survival between 6 and 12 months [11, 12]. The mo-

lecular complexity of this cancer type is certainly the major 

drawback for the development of more efficient therapies. 

The use of biologically active molecules acting upon distinct 

cellular processes could be a desirable alternative for ther-

apy. 

 Compounds isolated from plants have traditionally been 

considered for their medicinal properties [13]. Several 

commercially available drugs for cancer were developed 

using bioactive molecules originally isolated from plant 

extracts, including Velban
®

 (also known as vinblastine, 

originally isolated from Catharanthus roseus G. Don), On-

covin
®

 (generically known as vincristine, it was originally 

obtained from Catharanthus roseus G. Don), Taxol
®

 (pacli-

taxel, originally obtained from Taxus brevifolia), Eldisine
®

 

(also known as vindesine, originally obtained from Ca-
tharanthus roseus G. Don), Navelbine

®
 (known as vinorel-

bine, obtained from Catharanthus roseus G. Don), 
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Taxotere
®

 (generically known as Docetaxel, a semisynthetic 

compound derived from bacatin III, which was originally 

isolated from Taxus baccata needles), Vepesid
®

 (also known 

as etoposide, it is a semisynthetic analogue of podophyllo-

toxin obtained from the root of Podophyllum peltatum), Vu-

mon
®

 (known as teniposide, it is a semisynthetic analogue of 

podophyllotoxin obtained from the root of Podophyllum pel-
tatum), Camptosar

®
 (known as irinotecan, a semisynthetic 

analogue of the natural alkaloid camptothecin originally iso-

lated from the bark and stem of Camptotheca acuminate) 

and Hycamtin
®

 (also known as topotecan, a synthetic analog 

of the natural chemical compound camptothecin originally 

obtained from Camptotheca acuminata), as reviewed else 

where [14, 15]. 

 The Celastraceae family is among those greatly investi-
gated for antineoplastic effects. It comprises around 100 
genera and 1300 species, most of them distributed in the 
tropical and sub tropical regions of South America as well as 
in eastern Asia [16, 17]. This review presents a comprehen-
sible collection of articles addressing the antineoplastic ef-
fect of Celastraceae plant extracts and/or chemical constitu-
ents. Genes and proteins reportedly targeted by these mole-
cules and associated with deregulated signaling pathways in 
cancer are reported and special emphasis was given to 
HNSCC molecular features. The final aim was to tackle if 
plant extracts or constituents isolated from species of the 
Celastraceae family could be considered potential new 
sources for therapeutics development for this kind of cancer. 

2. OVERVIEW OF PUBLICATIONS ON CELAS-

TRACEAE AND CANCER 

 In order to identify research articles possibly associating 
Celastraceae and cancer the PubMed searchable database 
(accessing mostly journals indexed in the MEDLINE data-
base, Medical Literature Analysis and Retrieval System On-
line), the repository PubMed Central (PMC) and the Scien-
tific Electronic Library Online (SciELO) were used. The 
general terms Celastraceae (all fields) AND Cancer (Ti-

tle/Abstract) were used in all instances. Publications auto-
matically selected following the criteria described above 
were manually curated and only those presenting in vitro 
reports on molecular mechanisms of action of extracts and/or 
compounds isolated from species of the Celastraceae family 
were further discussed in this review. Publications reporting 
only cytotoxicity and cell proliferation results, reviews, re-
tracted articles, articles published in any language other than 
English, and studies reporting only results other than anti-
neoplastic-related effects were excluded. Reports found us-
ing more than one database were included only once in the 
total number of publications. 

 A total of 101 publications associating Celastraceae and 
cancer were identified using the search engines and elec-
tronic databases selected for this review. Most literature (61 
reports, 83% of all results) was retrieved through PubMed, 
followed by PubMed Central (14,8%). Of these potentially 
useful publications, 27 were kept for further discussion in 
this review since they matched the final selection criteria. 
Only 2 publications were identified in SciELO, but they did 
not qualify for further analysis. 

 In summary, of 101 publications found using the terms 
“cancer” and “Celastraceae”, 73% were excluded. Twenty-
six of them were reports on the potential use of Celastraceae-
related natural compounds for other diseases or the evalua-
tion of specific properties of compounds isolated from spe-
cies of the Celastraceae family not directly associated with 
cancer. Several publications focused on extraction and puri-
fication protocols of bioactive molecules, and therefore were 
dismissed. A total of 27 publications were selected for full-
text reading. The selection results are represented in (Fig. 1).  

 The 27 selected reports were published between 2005 
and 2014, but most of them were published in 2008, 2012 
and 2013. Prior to 2005 most publications did not report spe-
cific mechanisms of action for the studied biomolecules and 
were not, therefore, included in this review. China is respon-
sible for 48% of the publications, possibly due to the wide-
spread use of traditional medicine, often based on plant ex-

 

Fig. (1). Summary of screening results for publications associating Celastraceae and cancer. 
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tracts, in that country. The USA appears as the second coun-
try with highest number of publications (24%). The remain-
ing of the publications came from Brazil, Korea, Taiwan and 
Vietnam.  

3. THE ANTI-CANCER POTENTIAL OF COM-

POUNDS ISOLATED FROM SPECIES OF THE CE-

LASTRACEAE FAMILY 

 Accumulating evidence presented in this review indicates 
that several species from the Celastraceae family are poten-
tial sources of molecules that may interfere in the progres-
sion of cancer. The most studied cancer types were prostate 
and colon cancer, with 17% of the studies, followed by 
breast cancer, hepatocellular carcinoma and pancreatic can-
cer, with 13% of the studies each (Fig. 2). One of the ap-
proaches for studying the anti-cancer activities of plant ex-
tracts and bioactive molecules is to directly address signaling 
pathways commonly deregulated in cancer. A comprehen-
sive summary of current results using this approach is shown 
in (Table 1). As shown, ten Celastraceae species were stud-
ied in the literature reviewed in this work: Celastrus panicu-
latus, Celastrus hypoleucus, Salacia cochinchinensis, May-
tenus ilicifolia, Tripterygium wilfordii, Tripterygium regelii, 
Tripterygium hypoglaucum, Euonymus alatus, Microtropis 
fokienensis and Perrottetia arisanensis. The genus Triptery-
gium was the most frequently studied, followed by Celastrus 
and Maytenus. These species can be considered source of at 
least three classes of molecules: terpenoids, alkaloids and 
polyphenols. Most studies (92%) focused on the anti-tumoral 
activities of terpenoids. Terpenoids constitute a large and 
diverse group of naturally occurring products. They are es-
sentially lipids, built up of isopropene units, but differ in 
their carbon skeleton and functional groups, characteristics 
responsible for their specific effects in biological systems. 
Three terpenoids were most cited in the selected studies: 
sesquiterpenoids, diterpenoids, and triterpenoids, with 4%, 
39% and 57% of the citations respectively.  
 

 

Fig. (2). Cancer types potentially treatable by compounds isolated 

from species of the Celastraceae family and the percentage of re-

ports addressing each cancer type according to the reports retrieved. 

 Among diterpenoids, triptolide, the principal bioactive 

ingredient of Tripterygium wilfordii, has a unique structure 

leading to multiple biological activities [18]. According to 
reports, triptolide directly induces tumor cell apoptosis, but 

can also enhance apoptosis induced by cytotoxic agents (e.g. 

TNF-α and TRAIL) and chemotherapeutic agents by inhibit-
ing NFκB activation [19]. The design and synthesis of trip-

tolide derivatives have been motivated owed to its high po-

tential but limited clinical use due to severe toxicity and wa-
ter-insolubility. As a matter of fact, PG490-88, a derivative 

of triptolide, is part of a phase I clinical trial for treatment of 

prostate cancer in the USA [19]. 

 The most studied triterpenoids are quinone-methides 

(85% of the studies on triterpenoids). Quinone-methides are 

common constituents of biological systems and some pos-
sess important biological activities, including DNA alkyla-

tion and DNA cross-linking [20]. In fact, oxidation to a reac-

tive quinone-methide is the mechanistic basis of many phe-
nolic anti-cancer drugs [21, 22]. Quinone-methides obtained 

from natural sources are among the most promising chemical 

classes for the development of new drugs against cancer [23, 
24]. Naturally occurring quinone-methide triterpenoids can 

only be found as secondary metabolites in plants of the Ce-

lastraceae family [25]. Despite their broad pharmacological 
potential, including anti-cancer effects, these compounds 

cannot be obtained by chemical synthesis yet. Extraction 

from plants remains the only feasible strategy and biotechno-
logical techniques, such as in vitro culture of cells, may be-

come an alternative source in the future [25]. 

 Celastrol and its methyl ester, pristimerin, are the most 
studied triterpenoid quinone-methides in cancer (Table 2). 

Originally extracted from the root bark of T. wilfordii, an 

ivy, vine-like plant native to China, Japan and Korea, these 
compounds are currently obtained from several other spe-

cies. The chemical structure of the three most studied com-

pounds obtained from species of the Celastraceae family, 
namely triptolide, celastrol and pristimerin, are depicted in 

(Fig. 3). 

4. PRISTIMERIN, CELASTROL AND TRIPTOLIDE: 
MOLECULAR FUNCTIONS AND MECHANISMS IN 

CANCER 

 The triterpenes quinone-methides celastrol and pris-
timerin and the diterpenoid triptolide are the most studied 
molecules isolated from species of the Celastraceae family in 
regard to molecular mechanisms associated with anti-cancer 
effects.  

 Triterpene quinone-methides have been found to actively 
inhibit choline kinase-α, a critical enzyme in the synthesis of 
phosphatidylcholine, a major structural component of eu-
karyotic cell membranes, as reviewed in Estévez-Braun and 
co-authors [89]. The compounds tested in this study were 
further found to exhibit anti-proliferative activity against 
human colorectal adenocarcinoma HT29 cells in vitro and 
they also showed in vivo anti-tumoral activity in xenographs 
of HT29 cells injected into mice [89].  

 The anti-cancer effect of the quinone-methide pristimerin 
has been studied in a variety of cells in vitro and cancer 
models in vivo. Several molecular mechanisms underlying
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Table 1. Studies addressing the anti-cancer potential of Celastraceae through their effect on commonly deregulated genes and/or 

proteins in cancer. 

Source Compound/extract Chemical Class Tumor Type Addressed Target References 

Euonymus alatus chlorogenic acid polyphenol hepatocellular carcinoma MMP-9 [26] 

* celastrol 
quinone-methide 

triterpenoid 
prostate 

Proteasome, IκB-α, Bax, 

p27, caspase-3 
[27] 

Microtropis fokie-
nensis and Perrotte-

tia arisanensis 

(28-hydroxy-3-oxo-lup-

20(29)-en-30-al) 
triterpenoid leukemia PARP, Bax [28] 

Maytenus ilicifolia pristimerin 
quinone-methide 

triterpenoid 
leukemia Topoisomerase I [29] 

Tripterygium  
wilfordii 

triptolide diterpenoid triepoxide pancreatic caspase-3, Bax [30] 

Tripterygium  
wilfordii 

triptolide diterpenoid triepoxide ovarian caspase-3 [31] 

* pristimerin 
quinone-methide 

triterpenoid 
prostate 

Bax, p27, IκBα, protea-

some 
[32] 

Tripterygium  
wilfordii 

triptolide diterpenoid triepoxide breast Erα [33] 

* triptolide diterpenoid triepoxide colon 
IL-6, JAK1,  STAT3, 

Rac1, cyclin D1, Cdk4 
[34] 

* celastrol 
quinone-methide 

triterpenoid 
hepatocellular carcinoma HIF-1α, VEGF, AKT, Met [35] 

Tripterygium  
wilfordii 

triptolide diterpenoid triepoxide colon 
c-Myc, VEGF, COX-2, 

CXCR4,TGF-β, 
[36] 

Tripterygium regelii celastrol 
quinone-methide 

triterpenoid 
breast Bax, Bcl-2, cytocrome c [37] 

* triptolide diterpenoid triepoxide pancreatic 

triptolide combined with 

HCPT : topoisomerase, 

caspase-9/caspase-3, NF- 

κB 

[38] 

Celastrus  
hypoleucus 

oleanen triterpene colon caspase 9,  Bim [39] 

Tripterygium wil-
fordii Hook F 

triptolide diterpenoid triepoxide gastric 

In association with cis-

platine: pro-caspase3 and 

9, NF-κB/p65, Bax, cyto-

chrome c 

[40] 

* triptolide diterpenoid triepoxide colorectal 14-3-3 epsilon [41] 

Celastrus  
orbiculatus 

leaf extract - hepatocellular carcinoma VEGF [42] 

* pristimerin 
quinone-methide 

triterpenoid 
pancreatic 

cyclin D1, cyclin E, Cdk2, 

Cdk4, Cdk6, p21, p27, 

pro-caspase-3, Bax, Bcl-2, 

Bcl-xl, NF-κB/p65 

[43] 

Celastrus  
paniculatus 

(1a,2a,8b,9b)-1,8-

bis(acetyloxy)-2,9-

bis(benzoyloxy)-14-hydroxy-

bdihydroagarofuran 

sesquiterpenoid breast 
AKT, ERK, p38, NF-κB, 

Bcl-2 
[44] 
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(Table 1) contd…. 

Source Compound/extract Chemical Class Tumor Type Addressed Target References 

Salacia  
cochinchinensis 

pristimerin 
quinone-methide 

triterpenoid 
breast 

HER-2, FASN, 

AKT/ERK1/2, p38, JNK,  

mTOR/p70s6K/4E-BP1 

[45] 

Maytenus ilicifolia aqueous extract from aerial 

parts, 
- hepatocellular carcinoma caspase-3, Bcl-2 [46] 

Tripterygium  
wilfordii 

triptolide diterpenoid triepoxide colon 
caspase-3,-8,-9; PARP, 

Bax, Bcl-2, Bcl-xl, 
[47] 

* pristimerin 
quinone-methide 

triterpenoid 
prostate 

PARP-1, procaspase-3 and 

-9, cytochrome c , Bcl-2 
[48] 

* pristimerin 
quinone-methide 

triterpenoid 
pancreatic 

PARP-1, procaspase -3, -8 

and -9, cytochrome c, Akt, 

NF-κB, Foxo-3α, cyclin 

D1, Cox-2, VEGF, 

pS6K1, 4E-BP1, Bcl-2, 

survivin 

[49] 

Tripterygium  
hypoglaucum 

alkaloid rich root extract alkaloids colon 
caspase-3, Bcl-2,Bcl-xl, 

XIAP 
[50] 

* pristimerin 
quinone-methide 

triterpenoid 
prostate 

Cyclin D, Cyclin E, Cdk2, 

Cdk4, Cdk6, p21, p27, 

PARP, Bcl-2, Bcl-xL, 

Bax, Bak, Bad, Survivin, 

XIAP, cIAP 

[51] 

** celastrol 
quinone-methide 

triterpenoid 
ovarian, lung 

Caspase- 3, 8, 9, IκB, 

pIκB, E-cadherin 
[52] 

(*) Commercially obtained  (**) obtained from other researchers (donation or collaboration). 

 

Table 2. Celastrol and pristimerin in cancer. 

Compound Tumor References 

celastrol/pristimerin lung [35, 53-59] 

celastrol/pristimerin prostate [27, 32, 48, 51, 55, 59-66] 

celastrol/pristimerin breast [37, 45, 55, 59, 67-71] 

celastrol liver [35, 55, 69, 72] 

celastrol/pristimerin cervical [41, 73-75] 

celastrol oral squamous cell [55, 76, 77] 

celastrol thyroid [78] 

celastrol gastric [55, 79-81] 

celastrol/pristimerin pancreatic [43, 49, 82, 83, 84] 

celastrol/pristimerin colorectal [85] 

celastrol bladder [86] 

celastrol melanoma [58, 87] 

celastrol/pristimerin glioma [55, 59, 88] 

celastrol myeloma [55] 

celastrol kidney [55, 74, 89] 

celastrol/pristimerin leukemia [29, 66, 69] 

celastrol/pristimerin ovarian [59, 90] 
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the pristimerin effects were proposed; some of them have 
been confirmed through studies in more than one tumor type. 
Pristimerin was found to induce apoptosis in hormone-
sensitive (LNCaP) and hormone-refractory (PC-3) prostate 
cancer cell lines [91]. Pristimerin increased annexin V-
binding and cleavage of PARP-1, procaspases-3 and -9-
induced mitochondrial depolarization, cytochrome c release 
from mitochondria, generation of reactive oxygen species 
(ROS), and downregulation of BCL-2 and survivin expres-
sion via proteasome-dependent degradation [51, 91]. How-
ever, in the study, overexpression of BCL-2 rendered pros-
tate cancer cells resistant to pristimerin. Pristimerin inhibits 
protein expression of CD133 and CD44, reduces VEGF ex-
pression and the expression of pro-inflammatory cytokines 
such as interleukin [IL]-1, -6, -8, TNF-α and interferon-γ in 
human prostate cancer PC-3 cells, also preventing the 
growth of xenografted PC-3 tumors into the bone of nude 
mice [91]. Pristimerin inhibited VEGF-induced vasculogene-
sis of bone marrow derived-endothelial progenitor cells by 
suppressing proliferation, adhesion and migration, possibly 
due to decreased phosphorylation of VEGF receptor-2, AKT 
and eNOS [91]. Pristimerin also inhibited the proliferation of 
(HER2)-positive SKBR3 human breast cancer cells, possibly 
due to changes in FASN and AKT expression. The changes 
in HER2, FASN and AKT expression induced by pristimerin 
altered the phosphorylation levels of various mitogen-
activated protein kinases (MAPK), including ERK1/2, p38 
MAPK, and JNK, and lowered levels of phosphorylated 
mTOR and its downstream targets, such as p70S6K and 4E 
binding protein-1 (EIF4EBP1) [45]. Pristimerin inhibited 
migration and invasion of cells, and co-treatment with the 
mTOR inhibitor, rapamycin, additionally suppressed these 
cellular functions [45].  

 

 

Fig. (3). Chemical structure of triptolide (1), celastrol (2) and pris-

timerin (3), originally isolated from species of the Celastraceae 

family. ChemDraw 12.0 software (currently available through 

PerkinElmer) was used to draw these structures. 

 Pristimerin decreased cell proliferation of human pancre-
atic cancer cells (BxPC-3, PANC-1 and AsPC-1) in a dose- 
and time-dependent manner [43]. The work reported that 
treatment of pancreatic cancer cells with pristimerin resulted 
in G1-phase arrest associated with a marked decrease in the 
level of cyclins CCND1 and CCNE, and cyclin-dependent 
kinases (CDK-2, -4 and -6) with concomitant induction of 
CDK inhibitors, CDKN1A (p21WAF1) and CDKN1B 
(p27KIP1). Pristimerin treatment also resulted in apoptotic 
cell death through cleavage of caspase-3, modulation in the 
expression of BCL-2 family proteins and inhibition of the 
translocation and DNA-binding activity of NF-κB [43].  

 In human pancreatic ductal adenocarcinoma cells (Mia-
PaCa-2 and Panc-1) pristimerin inhibited the proliferation 
and induced apoptosis [49]. These effects were characterized 
by increased Annexin V-binding and cleavage of poly (ADP-
ribose) polymerase (PARP)-1 and activation of procaspases -
3, -8 and -9 [49]. The induction of apoptosis was associated 
with the inhibition of the pro-survival AKT, NF-κB and 
mTOR proteins and downstream targets, such as FOXO3A, 
CCND1, COX-2, VEGF, p-70S6K1, p-4E-BP1, and protein 
kinase C-ε (PKCε), as well as of anti-apoptotic BCL-2 and 
survivin (also known as BIRC5) but not BCL-xL. Addition-
ally, pristimerin induced mitochondrial depolarization and 
the release of cytochrome C from the mitochondria [49]. 

 Pristimerin was found to possess potent cytotoxic effects, 
inducing apoptosis and inhibiting proliferation in U87 hu-
man glioma cells [86]. Pristimerin activated caspase-9, -3, 
and PARP cleavage. Pristimerin also increased the genera-
tion of ROS, and induced the subsequent release of cyto-
chrome c from the mitochondria into the cytosol [86]. In 
ovarian cancer cells, pristimerin also induced apoptosis 
through cleavage of PARP-1, procaspases-3, -8 and -9 activ-
ity and enhanced mitochondrial depolarization [88]. The 
study also showed downregulated levels of p-AKT, p65 
subunit of NF-κB and p-mTOR, and downregulated expres-
sion of NF-κB-regulated genes encoding anti-apoptotic pro-
teins, such as BCL-2, BCLxL, c-IAP1 and survivin (BIRC5), 
therefore promoting apoptosis [88].  

 In a somewhat different approach, pristimerin was shown 
to inhibit human telomerase reverse transcriptase (hTERT) 
expression and activity in human pancreatic cancer cells 
[90]. The compound inhibited hTERT expression by sup-
pressing the transcription factors Sp1, c-Myc and NF-κB, 
which are known to control hTERT gene expression, and 
inhibited protein kinase AKT, which phosphorylates and 
facilitates hTERT nuclear import and its telomerase activity 
[90]. 

 Celastrol and triptolide extracted from the Chinese herb 
Tripterygium wilfordii Hook F (also known as Lei Gong 
Teng or Thunder of God Vine) were also found to exhibit 
marked anti-tumoral effects [62]. Triptolide efficiently inhib-
ited cell growth and induced cell death in human prostate 
cancer LNCaP and PC-3 cell lines in vitro as well as inhib-
ited the xenografted PC-3 tumor growth in nude mice in vivo 
[62]. Tumor cell apoptosis was induced through the activa-
tion of caspases and PARP cleavage and reduced SUMO-
specific protease 1 (SENP1, a potential biomarker and thera-
peutic target for prostate cancer) expression in dose- and 
time-dependent manner resulting in an enhanced cellular 
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SUMOylation in prostate cancer cells [62]. Meanwhile, trip-
tolide decreased c-Jun expression, and suppressed c-JUN 
transcription activity. On the one hand, silencing of SENP1 
or c-JUN in PC-3 prostate cancer cells decreased cellular 
viability, suggesting that the cytotoxicity of triptolide could 
result from triptolide-induced downregulation of SENP1, or 
c-JUN. On the other hand, ectopic expression of SENP1, or 
c-JUN significantly increased the viability of prostate cancer 
cells upon triptolide exposure, indicating that rescuing these 
triptolide downregulated proteins could inhibit cell toxicity 
induced by triptolide [62].  

 Several other studies have addressed the effects of tripol-
ide on cancer cells. For instance, exposure of BE(2)��C hu-
man neuroblastoma cells to triptolide resulted in reduction in 
cell growth and proliferation [92]. Along with cell cycle ar-
rest in the S phase and inhibition of the colony�forming abil-
ity of BE (2)�C neuroblastoma cells observed in vitro, reduc-
tion of tumor development and growth of tumor grafts was 
seen in vivo [92]. Triptolide significantly decreased the pro-
portion of regulatory T cells and lowered the levels of 
FOXP3 transcription factor (also known as scurfin) in the 
spleen and axillary lymph nodes of tumor-bearing mice [93]. 
Production of IL-10 and TGF-β in peripheral blood and 
spleen were also decreased and the production of VEGF in 
tumor-bearing mice was inhibited [93]. Triptolide attenuated 
colon cancer growth in vitro and in vivo [94]. Using a pro-
teomic approach, the authors found 14-3-3ε, a cell cycle- and 
apoptosis-related protein, cleavage and perinuclear transloca-
tion, to be induced by triptolide in human colon cancer cells 
[94]. 

 Triptolide was shown to enhance cisplatin-induced cyto-
toxicity in human gastric cancer SC-M1 cells [40]. After 
low-dose combined treatments with triptolide and cisplatin, a 
decrease in viability with a concomitant increase in apoptosis 
was observed in SC-M1 cells but not in normal cells [40]. 
Apoptosis induced by the combined treatments was accom-
panied by a loss of mitochondrial membrane potential and 
release of cytochrome c and triptolide also increased the cis-
platin-induced activation of caspase-3 and -9 and the down-
stream cleavage of PARP in SC-M1 cells in vitro [40]. The 
combined treatment completely suppressed in vivo tumor 
growth of gastric tumor grafts in mouse xenograft model 
[40]. In liver cancer, the combination of triptolide plus che-
motherapeutics (cisplatin, 5-fluorouracil) reduced liver can-
cer cell viability and enhanced apoptosis compared with sin-
gle treatment in vitro [95]. Furthermore, cells treated with 
triptolide plus chemotherapeutics exhibited marked produc-
tion of intracellular ROS and caspase-3 activity, induced 
BAX expression, and inhibited BCL-2 expression [95]. 

 Celastrol, a known natural 26S proteasome inhibitor, 
promotes cell apoptosis and inhibits tumor growth [27, 55, 
62, 63]. Celastrol inhibited the proliferation of various hu-
man tumor cells, including multiple myeloma, hepatocellular 
carcinoma, gastric cancer, prostate cancer, renal cell carci-
noma, head and neck carcinoma, non-small cell lung carci-
noma, melanoma, glioma, and breast cancer (with concentra-
tions as low as 1 μM). Celastrol decreased protein levels of 
CCND1 and CCNE, but increased the CDKN1A and 1B 
protein levels, activated caspase-8, -9, and -3, as well as in-
duced cleavage of BH3 interacting-domain death agonist 

(BID) and PARP. The apoptotic effects of celastrol were 
preceded by activation of JNK and repression of AKT sig-
naling [55].  

 Celastrol was found targeting multiple molecular compo-
nents, including activating transcription factor 2 (ATF2), 
mitochondrial respiratory chain complex I, heat shock pro-
tein 90, beta1 integrin, Kv11.1, the alpha subunit of a potas-
sium ion channel, ERBB2, estrogen receptor α, as well as 
affecting the activities of p38 MAPK and AKT/mTOR 
pathways in various tumor cells [56-58, 60, 64]. 

 Celastrol induces apoptosis in human cervical cancer 
cells by targeting a proteasome catalytic subunit β1, endo-
plasmic reticulum (ER) protein 29 (ERP29) and mitochon-
drial import receptor Tom22 (TOM22) [73]. Celastrol was 
found to induce ER stress and induced translocation of BAX 
into the mitochondria, further upregulating BIM and 
TOM22, possibly involving glycogen synthase kinase-3β in 
these events [73]. Celastrol could also induce paraptosis-like 
cytoplasmic vacuolization in cancer cell lines including 
HeLa cells, A549 cells and PC-3 cells derived from cervix, 
lung and prostate, respectively [41]. Celastrol directly affects 
the biochemical properties of tubulin heterodimer in vitro 
and reduces its protein level in vivo [74]. At the cellular 
level, celastrol induces synergistic apoptosis when combined 
with conventional microtubule-targeting drugs and manifests 
an efficacy toward taxol-resistant cancer cells. Celastrol in-
hibited the cell migration and increased G1 arrest, and in-
duced autophagy and apoptosis in human gastric cancer cells 
[79].  

 Celastrol was also found to increase the level of auto-
phagy in the human pancreatic cancer MiaPaCa-2 xenograft 
tumor model. However, autophagy inhibitor 3-MA could 
improve the therapeutic effect of celastrol in vitro and in vivo 
[96]. Celastrol could inhibit proliferation of human osteosar-
coma cells accompanied by G2/M phase arrest, activation of 
caspase-3, -8, and-9, as well as triggering autophagic path-
way, as evidenced by formation of autophagosome and ac-
cumulation of LC3B-II protein [97]. Intriguingly, inhibition 
of apoptosis enhanced autophagy while suppression of auto-
phagy diminished apoptosis in osteosarcoma cells upon ce-
lastrol exposure. Celastrol also induced JNK activation and 
ROS generation, while the JNK inhibitor significantly at-
tenuated celastrol-triggered apoptosis and autophagy while 
ROS scavenger could completely reverse them [97]. Celas-
trol induced autophagy in human androgen receptor (AR)-
positive prostate cancer cells, while the AR knockdown re-
sulted in enhanced autophagy induced by celastrol, and 
autophagy inhibition by miR-101 mimic was found to en-
hance the cytotoxic effect of celastrol in prostate cancer cells 
[98]. 

 Celastrol decreased gastric cancer cells viability via re-
duced IκB phosphorylation, nuclear p65 subunit protein lev-
els and NF-κB activity [81]. Furthermore, celastrol could 
increase miR-146a expression and upregulation of miR-146a 
expression could suppress NF-κB activity. However, down-
regulation of miR-146a expression can reverse the effect of 
celastrol on NF-κB activity and apoptosis in gastric cancer 
cells. Combination of TRAIL and celastrol induced apopto-
sis in human pancreatic cancer cells through upregulation 
and dephosphorylation of EIF4E-BP1 protein [82]. Celastrol 
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was also found to exhibit anticancer activity in KU7 and 
253JB-V bladder cells by inducing apoptosis, inhibition of 
growth, colony formation and migration in vitro and in vivo 
[84]. Celastrol was shown to decrease expression of specific-
ity protein transcription factors Sp1, Sp3 and Sp4 and several 
Sp-regulated genes/proteins including VEGF, survivin and 
CCND1 and fibroblast growth factor receptor (FGFR)-3 
[84]. 

 Suberoylanilide hydroxamic acid (SAHA) is a promising 
histone deacetylase inhibitor approved by the US Food and 
Drug Administration but its clinical application for solid 
tumors is partially limited by decreased susceptibility of can-
cer cells due to NF-κB activation [52]. As an NF-κB inhibi-
tor, celastrol exhibits potent anti-cancer effects but has failed 
to enter clinical trials due to its toxicity [52]. The combina-
tion of celastrol and SAHA exerted substantial synergistic 
efficacy against human cancer cells in vitro and in vivo, ac-
companied by enhanced caspase-mediated apoptosis [52]. 
This combination inhibited the activation of NF-κB caused 
by SAHA monotherapy and consequently led to increased 
apoptosis in cancer cells [52]. Interestingly, E-cadherin was 
dramatically downregulated in celastrol-resistant cancer cells 
and E-cadherin expression was closely related to decreased 
sensitivity to celastrol. However, the combination treatment 
significantly augmented the expression of E-cadherin, sug-
gesting that mutual mechanisms contributed to the synergis-
tic anti-cancer activity [52]. Furthermore, the enhanced anti-
cancer efficacy of celastrol combined with SAHA was vali-
dated in human lung cancer 95-D xenografts in mice in vivo 
without increased toxicity [52]. These synergistic anti-cancer 
effects of celastrol and SAHA could be underlined by their 
reciprocal sensitization, which was simultaneously regulated 
by NF-κB and E-cadherin [52]. 

 The mechanistic effects of plant extracts have also been 
addressed to certain extent. A spray-dried extract of Mayte-
nus ilicifolia was shown to induce apoptosis in human hepa-
tocellular HepG2 cells and human colorectal carcinoma HT-
29 cells via down-regulation of BCL-2 and activation 
caspase-3 [46]. Celastrus orbiculatus extract significantly 
inhibited cell viability and induced apoptosis of human hepa-
tocellular carcinoma LM6 cells in a dose-dependent manner 
[96]. In this study, apoptosis was accompanied by an in-
creased BAX expression and decreased BCL-2 expression, 
induced release of cytochrome C, activation of caspase-3, 
and cleavage of PARP [99]. Furthermore, activation of ERK, 
p38 MAPK, and JNK phosphorylation, and downregulation 
of AKT phosphorylation was observed [96]. Compound 
oleanen from Celastrus hypoleucus also exhibits antitumor 
activity toward human cervical cancer cells by increasing in 
activity of caspase -3, -7, and -6, as well as a proapoptotic 
protein BIM [39]. 

 Emerging evidence shows that quinone-methide triterpe-
nes exert multiple molecular mechanisms leading to decrease 
of tumor cell viability or even cell death, and therefore are 
indeed promising compounds in the context of cancer treat-
ment. However, existing data also highlight the need for 
more comprehensive, far-reaching approaches and technolo-
gies that would lead to a better understanding of direct and 
indirect effects of these compounds on molecular processes 
in tumor cells in vitro and in vivo. 

5. CELASTRACEAE AND POTENTIAL MOLECU-

LAR TARGETS IN HEAD AND NECK SQUAMOUS 

CELLS CARCINOMA 

 HNSCC arises from premalignant progenitor cells that 
progress to invasive malignancy due to cumulative genetic 
alterations [100]. Conventional treatment modalities - sur-
gery, radiation and chemotherapy - are nonselective thera-
pies that not only cause damage to normal tissue but which 
are associated with systemic toxicities that reduce compli-
ance and, consequently, the success of therapy [9, 10]. The 
past decade has witnessed significant improvements in the 
knowledge on the complex molecular abnormalities underly-
ing the clinicopathological characteristics of HNSCC, a 
promising scenario for the development of novel diagnostic 
markers and therapeutic procedures for the clinical manage-
ment of patients [8, 101]. In theory, once major molecular 
mechanisms involved in the pathogenesis of HNSCC are 
known, a cancer therapy working at the molecular level, tar-
geting deregulated pathways may be created. In practice, a 
very limited number of therapeutic agents for the targeted 
treatment of HNSCC are currently undergoing clinical trials 
[102], and the only established therapeutic target is the epi-
dermal growth factor receptor (EGFR). EGFR is a cell-
surface protein that regulates cell growth and differentiation 
and it can be targeted by the monoclonal antibody cetuximab 
(™Erbitux), resulting in the elimination of signal transduc-
tion. EGFR is overexpressed in HNSCC when compared 
with cancer-free mucosa with predictive and prognostic 
value [10, 103-105]. However, despite the abundant expres-
sion in HNSCC, only a subset of patients responds to EGFR 
inhibitors since alternative downstream signaling pathways 
may remain activated [10, 11, 106-108]. These results indi-
cate the need for combined therapy approaches and for the 
continuous search for new active compounds that may target 
molecular processes in HNSCC. 

 Upon comparing literature on genetic and molecular 
characteristics of HNSCC and data on the effects of Celas-
traceae-derived compounds on gene expression and protein 
levels, a lot of overlapping information can be found. We 
summarize the molecular alterations of HNSCC that have 
been addressed in studies on anti-cancer effects of Celas-
traceae-derived compounds and extracts (Table 3).  

 Loss of heterozygosity at the chromosomal region 9p21 
is found in 70–80% of HNSCC cases, representing the most 
common genetic alteration in this type of cancer and in early 
pre-invasive lesions [109]. The CDKN2A gene locus found 
within this chromosome encodes transcript p16 involved in 
G1/S cell cycle regulation through the inhibition of cyclin 
dependent kinases such as CDK4 and CDK6 [110]. These 
kinases phosphorylate retinoblastoma protein (pRB) leading 
to the progression from G1 phase to S phase. For instance, 
pristimerin was previously shown to modulate the activity of 
CDK-4 and -6 resulting in G1-phase arrest of various human 
cancer cells [43, 51]. Emerging evidence shows that triterpe-
nes affect the expression levels of other genes related to cell 
cycle progression, including including cyclin D1, cyclin E, 
p21, p27 and c-Myc, which have also been studied in the 
context of HNSCC [27, 32, 34, 36, 49, 111-113]. Therefore, 
a therapeutic interference able to regulate these CDKs, such 
as one seen upon treatment of tumor cells with pristimerin, 
could be important potential asset helping in cell prolifera-
tion control of HNSCC, as well. 
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Table 3. Possible molecular targets of Celastraceae-derived compounds involved in HNSCC progression. 

Molecules Involved in HNSCC  

Carcinogenesis 

References Addressing the Celastraceae-derived Compounds and 

Cancer 

References Addressing 

HNSCC 

HER-2 [45] [114] 

Cdk2 [43, 51] [111] 

Cdk4 [34, 43,51] [112] 

Cdk6 [43, 51] [111] 

Cyclin D1 [34, 43, 49, 51] [112] 

Cyclin E [43,51] [111] 

p21 [43,51] [113] 

p27 [27, 32, 43, 51] [113] 

c-Myc [36] [115] 

Bax [27, 28, 30, 32, 37, 40, 47, 51] [116] 

Bcl-xl [43, 47, 50, 51] [117] 

Bcl-2 [37, 44, 46-49, 51] [115] 

NF-κB [37, 40, 43, 44, 49] [118] 

AKT [35, 44, 45, 49] [119] 

ERK [44, 45] [119] 

mTOR [45] [119] 

P70-S6 [45,49] [120, 121] 

MET [35] [122] 

XIAP [50,51] [123] 

PARP [28, 47, 49,51,94] [124] 

Cytochrome c [37, 40, 48, 49] [123] 

Caspase-3 [27, 30, 31, 37, 46, 47, 50, 52] [115] 

Caspase-9 [37, 39, 47, 52] [115] 

p38 [44, 45] [119] 

FASN [45] [125] 

COX-2 [36,39] [119] 

CXCR4 [36] [126] 

Proteasome [27,32] [127] 

IL-6 [34] [128] 

MMP-9 [26] [129] 

STAT3 [34] [114] 

Rac1 [34] [130] 

VEGF [35, 36, 42, 49] [131] 

HIF-1α [35] [113] 

JNK [45] [119] 

ERα [33] [132] 

TGF-β [36] [132] 

Survivin [49,51] [134] 

4EB-P1 [45,49] [120] 
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 Major molecular alterations in HNSCCs include the acti-
vation of the phosphatidylinositol-3-kinase/protein kinase B 
(PI3-K/Akt) signal transduction pathway, shown to be acti-
vated in 50–80% of HNSCCs and involved in the regulation 
of various cellular processes, including apoptosis, prolifera-
tion and cell cycle progression [135, 136]. (Table 3) lists 
numerous genes either directly or indirectly involved with 
this pathway, including AKT and ERK, but also Bcl-2, Bcl-x 
and NF-kB [112]. PI3-K itself is considered as a novel 
treatment target for HNSCC [137]. The mammalian target of 
rapamycin (mTOR) is a cell-growth regulator also associated 
with the PI3-K/Akt pathway and considered a therapeutic 
target for HNSCC [114]. Akt activated mTOR, which in turn 
phosphorylates p70-S6 kinase, leads to the activation of the 
ribosomal S6 protein. As a matter of fact, the accumulation 
of the phosphorylated active form of S6 is a common event 
in HNSCC tissue specimens [138]. Lee and co-authors have 
demonstrated that celastrol inhibits the activation of 
PI3K/AKT/mTOR signaling cascade at various levels in 
melanoma cells [139]. This important result could be ad-
dressed in the context of HNSCC since the PI3K-AKT 
pathway is downstream of EGFR, and phosphatidylinositol-
4, 5-bisphosphate 3-kinase (PIK3CA) is among the most 
frequently mutated oncogenes for this cancer type (approxi-
mately 20%), possibly playing a role for both HPV-negative 
and HPV-positive tumors [140, 141].  

 Compounds isolated from Celastraceae also target a he-
patocyte growth factor receptor (HGFR, also known as 
MET, encoded by the c-MET gene), the key player in 
PI3K/AKT/mTOR signaling regulation. MET was found to 
be overexpressed in up to 84% of HNSCC cases and is being 
tackled as a therapeutic target for HNSCC [142]. Addition-
ally, if the antioxidant systems that allow stem-like cancer 
cells to avoid oxidative stress and resist EGFR inhibition are 
targeted, this may sensitize the remaining surviving cells, 
which will become sensitive to treatment [143]. Thus, the 
effects of triterpenoids on the redox state of cells may also 
be explored in this context [144]. 

 As an example of how Celastraceae compounds could 
affect HNSCC, the treatment of human tongue cancer cells 
with triptolide, ionizing radiation, or triptolide plus ionizing 
radiation was reported to oral cell colony numbers [145]. In 
the study, triptolide was shown to increase apoptosis and 
decrease the expression of anti-apoptotic proteins in oral 
cancer cells in vitro. In addition, in vivo a combination 
treatment (triptolide with radiation) synergistically reduced 
tumor weight and volume in vivo possibly via the induction 
of apoptosis and reduction in anti-apoptotic protein expres-
sion suggesting that this may be a promising combined mo-
dality therapy for advanced oral cancer [145]. 

 Celastraceae triterpenoids (dihydrocelastrol and celastrol) 
were identified as potent inducers of unfolded protein re-
sponse (UPR) signaling and cell death in a panel of oral 
squamous cell carcinoma (OSCC) cells [76]. The pharma-
cological exacerbation of the UPR was suggested to be an 
effective approach to eliminate OSCC cells [76]. The UPR is 
executed via distinct signaling cascades, whereby an initial 
attempt to restore folding homeostasis in the endoplasmic 
reticulum during stress is complemented by an apoptotic 
response if the defect cannot be resolved. Moreover, bio-

chemical and genetic assays using OSCC cells demonstrated 
that intact protein kinase RNA-like endoplasmic reticulum 
kinase (PERK)-eukaryotic initiation factor 2 (eIF2)-
activating transcription factor 4 (ATF4)-DNA damage-
inducible transcript 3 (DDIT3, also known as C/EBP ho-
mologous protein, CHOP) signaling is required for pro-
apoptotic function of UPR, and subsequent death of OSCC 
cells upon celastrol treatment [76].  

 Celastrol was found to decrease TGF-β1-induced phos-
phorylation of mitogen-activated protein kinase kinase 
kinase 7 (also known as TAK1) and RELA, and suppressed 
NF-κB reporter gene activity in HNSCC cells [141]. Celas-
trol also inhibited cell proliferation, while increasing sub-G0 
DNA fragmentation and Annexin V markers of apoptosis. 
Furthermore, TGF-β and RELA activation promoted 
SMAD7 expression. In turn, SMAD7 preferentially sup-
pressed TGF-β-induced SMAD and NF-κB reporters when 
compared with constitutive or TNF-β-induced NF-κB re-
porter gene activation. Thus, crosstalk by TGF-β via TAK1 
and NF-κB promotes the malignant phenotype of HNSCC 
[133]. 

 Altogether, current data on the anti-cancer effects of 
compounds isolated from Celastraceae (Table 3) points to a 
prolific and promising field of research in which such mole-
cules should be able to either inhibitor up-regulate key path-
ways involved in HNSCC phenotype. New studies in this 
area should contribute to bringing about additional mole-
cules of interest to this still scarce treatment scenario. 

CONCLUSION 

 At the clinical and molecular level, HNSCCs are charac-
terized by extensive heterogeneity, a picture that defies their 
classification as a single disease. HNSCC treatment should 
undergo substantial changes in the near future due to the 
present-day exploration of its mutational landscape. How-
ever, the development of effective therapy modalities in-
volves not only the increased understanding of the mecha-
nisms involved in HNSCC carcinogenesis but also the identi-
fication of new molecules capable of acting upon several 
molecular mechanisms. Ideally compounds should distin-
guish themselves from conventional cytotoxic agents and 
from drugs that target a single step in signal transduction 
pathways. This review shows that a variety of compounds 
isolated from species from the Celastraceae family and, at 
times, plant extracts, have been addressed as multifunctional 
drugs, interfering in multiple steps in key pathways involved 
in the development and progression of HNSCC. Few studies 
have investigated the potential of Celastraceae molecules to 
target HNSCC features, a scenario that will hopefully change 
in the next few years. 

LIST OF ABBREVIATIONS 

Bcl-xl = B-Cell Lymphoma-eXtra Large 

Bcl-2 = B-Cell Lymphoma 2 

XIAP = X-linked Inhibitor of Apoptosis Protein 

PARP = Poly (ADP-Ribose) Polymerase 

c-MET = Receptor tyrosine kinase acting as a proto-
oncogene, also known as hepatocyte 
growth factor receptor (HGFR) 
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CDK = Cyclin-Dependent Kinase 

NF-κB = Nuclear Factor-κB 

FASN = Fatty Acid SyNthase 

HER-2 = Human epidermal growth factor receptor 

MAPK = Mitogen-Activated Protein Kinase 

c-MYC = MYeloCytomatosis viral oncogene 

VEGF = Vascular Endothelial Growth Factor 

ERK = Extracellular Regulated MAP Kinase 

JNK-c = Jun N-terminal Kinase 

TGF-β = Transforming Growth Factor beta 

mTOR = Mammalian Target Of Rapamycin 

4EB-P1 = Translation initiation factor 4E-binding 
protein 1 

HNSCC = Head and Neck Squamous Cell Carcinoma 

CDKN = Cyclin-Dependent Kinase iNhibitor 

RB = RetinoBlastoma protein 

EGFR = Epidermal Growth Factor Receptor 

PI3K = Phosphatidyl Inositol-3-Kinase 

HPV = Human Papilloma Virus 

SAHA = Suberoyl Anilide Hydroxamic Acid 

PARP = Poly (ADP-Ribose) Polymerase 

CXCR4 = C-X-C chemokine Receptor type 4 
(CXCR-4) also known as fusin, or CD184 
(cluster of differentiation 184) 

hTERT = Human TElomerase Reverse Transcriptase 

UPR = Unfolded Protein Response 

OSCC = Oral Squamous Cell Carcinoma 

HCPT = 10-Hydroxycamptothecin, anti-cancer drug 

ERα = Estrogene Receptor-α 

HIF-1α = Hypoxia-Inducible Factor-α 

TNF-α = Tumor Necrosis Factor-α 

TRAIL = TNF-Related Apoptosis-Inducing Ligand 
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