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Abstract: The antifungal activity of cinnamon (Cinnamomum cassia Presl), litsea [Litsea cubeba (Lour.) Pers.],
clove (Syzygium aromaticum L.), thyme (Thymus mongolicus Ronn.) and citronella (Cymbopogon win-
terianus Jowitt) essential oils (EOs) against the dominant fungi isolated from moldy peanuts was
investigated in this research. Firstly, strain YQM was isolated and identified by morphological
characterization and 18S rRNA gene sequence analysis to be Aspergillus flavus (A. flavus). Next,
antifungal effects of single or mixed EOs on strain YQM were evaluated by the inhibition zone test.
The cinnamon-litsea combined essential oil (CLCEO, Vcinnamon oil:Vlitsea oil = 3:5) displayed the best
antifungal effect on strain YQM. The chemical composition of CLCEO was identified and quantified
by gas chromatograph-mass spectrometry (GC-MS), and results revealed that the major components
of CLCEO were cinnamaldehyde and citral. Finally, the effect of EOs on the microstructure of strain
YQM mycelia was observed under scanning electron microscope (SEM). The mycelia exposed to
cinnamon essential oil (CEO) and litsea essential oil (LEO) were partly deformed and collapsed, while
the mycelia treated with CLCEO were seriously damaged and the deformation phenomena such
as shrinking, shriveling and sinking occurred. Therefore, CLCEO has great potential for using as
anti-mildew agents during peanut storage.

Keywords: anti-mildew agents; peanut storage; cinnamon-litsea combined essential oil (CLCEO);
antifungal activity; Aspergillus flavus

1. Introduction

Arachis hypogaea Linn., commonly known as peanut or groundnut, is an important oil
crop grown in most parts of the world [1]. Due to the characteristics of poor heat resistance
and high hygroscopicity, peanuts easily go moldy under improper storage conditions.
It has been reported that peanuts are susceptible to infestation by Aspergillus spp., such as
Aspergillus flavus (A. flavus) and A. parasiticus, during the process of post-harvest storage [2].
The proliferation of Aspergillus spp. does not only reduce the germination rate and the
protein content of peanuts, but also leads to lipid oxidation, which causes huge quality
loss and spoilage [3,4]. Moreover, mycotoxins produced by Aspergillus spp., especially
aflatoxins, contaminate peanuts and endanger human and animal health [5]. From 2015 to
2018, cases of excessive aflatoxins in peanuts accounted for 93% of violations of mycotoxins
in Chinese food and food exports to the EU, which seriously restricts the development of
Chinese peanut industry [6]. Therefore, it is urgent to find effective methods to inhibit the
growth of molds during the peanut storage process.

For many years, synthetic fungicides, as an efficient method, have been widely used
to control the growth of phytopathogenic fungi to reduce grain losses and ensure global
food security [7,8]. Although synthetic fungicides are effective against a variety of molds,
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adverse effects on the environment and the development of resistance increased public
concern [9]. Most synthetic chemicals can cause a certain accumulated toxic effect on human
beings, environmental pollution, and drug resistance after long-term use, these factors lead
to the restricted use of chemical synthetic antifungal agents [10,11]. Due to the negative
effects of synthetic fungicides on stored grains, it is absolutely imperative to develop safe
and natural anti-mildew compounds in the replacement of chemical synthetic ones [12].

Essential oil (EOs), secondary metabolites extracted from plant materials, are expected
to be safe antimildew agents and have received increasing attention due to their effective
antifungal activity, environmental soundness, and low toxicity [13]. Many researchers
have investigated the antifungal effects of EOs against fungi commonly found in grains.
Reyes-Jurado et al. [14] studied the antifungal activity of thyme EO in vapor-phase against
A. niger and Penicillium expansum in corn tortillas, and they found thyme EO significantly
slowed the growth of A. niger. Strelkova et al. [15] assessed the inhibitory activity of thyme,
oregano, lemongrass, clove, and cajeput EOs against five strains of Penicillium ochrochloron,
Fusarium sporotrichioides, Fusarium solani, A. niger, and A. flavus, and found that the growth
of the five fungal strains could be completely inhibited by EOs when each of them was
used at 125 µL/L, except cajeput essential oil (EO), among which the effect of thyme
EO was the best. Ju et al. [16] reported that cinnamon and clove EOs could inhibit the
growth of Penicillium spp. and Aspergillus spp. and they also could extend the shelf life of
green bean cake by about 9–10 and 3–4 days, respectively. Anžlovar et al. [17] found that
thyme EO could inhibit the growth of endophytic fungi in wheat without affecting seed
germination. The results of Raveau et al. [18] also confirmed the potential of EOs (clary
sage and coriander seeds EO) as post-harvest decay control products to inhibit the growth
of Zymoseptoria tritici and Fusarium culmorum.

Though some progress has been made in the application of plant EOs in grain storage,
there are still problems to be solved in practical application, such as the high cost of EOs.
Combined EOs not only improve the antifungal effect, but also reduce the dosage of EOs,
which reduces the costs and the odor of EOs [19]. Purkait et al. [20] indicated that the
combined EO composed of cinnamon and clove EOs had a synergistic antifungal effect
on A. niger and was recommended as a safe and natural antifungal blend in the food
and pharmaceutical industries. Yuan et al. [21] reported that the combination of thymol,
carvacrol, trans-cinnamaldehyde, eugenol and vanillin exhibited additive interactions
against Escherichia coli O157:H7, and the reason for the stronger antimicrobial efficacy
of EO compounds was due to the increase of membrane damages. Hlebová et al. [22]
observed three combinations of litsea and lemongrass, clove and lemongrass, cinnamon
bark and lemongrass EOs; all showed synergistic effect against A. flavus, and the mixture of
EOs with synergistic antifungal properties can reduce resistance and the dosage of EOs.
These previous studies have shown that combined EOs are more effective in preventing
the contamination of cereals by molds than single EOs. However, the research data on
the application of combined EOs in peanut storage still needs to be supplemented in
future research [23,24].

Therefore, the aims of this study were to determine the antifungal efficacy of five single
EOs including cinnamon (Cinnamomum cassia Presl) EO (CEO), litsea [Litsea cubeba (Lour.) Pers.]
EO (LEO), clove (Syzygium aromaticum L.) EO (CLO), thyme (Thymus mongolicus Ronn.) EO
(TEO) and citronella (Cymbopogon winterianus Jowitt) EO (CNO) and to select the combined
EO with the best inhibitory effect against the dominant fungal strain of moldy peanut
kernels. In addition, the effect of the combined EO on the microstructure of mold hyphae
was also observed.

2. Results
2.1. Dominant Fungal Strain from Moldy Peanut Kernels

A dominant fungal strain YQM was isolated from moldy peanuts. Morphological
characteristics of strain YQM were shown in Figure 1. On the front side of the solid PDA
medium, strain YQM was white at the initial stage, then turned yellow-green at the mature
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stage (Figure 1A). The colony showed velvet-like protrusions with regular edges, while
strain YQM was yellow on the back side (Figure 1B). The phylogenetic tree was constructed
based on 18S rRNA gene of strain YQM and closely related reference strains (Figure 2). On
the base of point above, the dominant fungal strain YQM was identified as A. flavus.
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based on 18S rRNA gene.

2.2. Antifungal Activity of Five Single EOs against Strain YQM

The inhibitory effects of five single EOs on the growth of strain YQM are shown
in Figure 3. The results revealed that strain YQM could be inhibited by each of EOs
(Figure 3A), and the diameter of the inhibition zone was linear with the concentration
of EOs (Figure 3B). When the concentration of EOs was 60 µL/mL, the diameters of the
inhibition zone of CEO, LEO and CLO were 40.2, 25.0 and 25.2 mm, respectively. The
criterion of the inhibition zone experiment is: diameter of inhibition > 20 mm, highly
sensitive; diameter of inhibition 10–20 mm, moderately sensitive; and 7 mm < diameter
of inhibition < 10 mm, low sensitivity [25]. Strain YQM was highly sensitive to these EOs,
among which CEO was the best as a single EO.

2.3. Antifungal Activity of Combined EOs against Strain YQM

Based on the results of antifungal activity of five single EOs against strain YQM, three
kinds of EOs such as CEO, LEO and CLO were selected for the follow-up experiments
due to the relatively better antifungal activity. The three kinds of EOs were mixed in
two or three with the same volume, and the final concentration of combined EOs was
adjusted to 60 µL/mL. Four kinds of combined EOs such as CLCEO, CEO-CLO, LEO-CLO,
and CEO-LEO-CLO were obtained. The antifungal effect of four kinds of combined EOs
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(1:1 or 1:1:1 mixture) is shown in Figure 4. The cinnamon-litsea combined EO (CLCEO) had
the highest antifungal activity on strain YQM (Figure 4A), and its inhibition zone diameter
was 40.3 mm (Figure 4B), which was significantly larger than that of other combined EOs
(p < 0.05). This result clearly elucidated that the combination of CEO and LEO had a better
antifungal effect on strain YQM than that of other combination of EOs.
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Values are average values ± standard deviation (biological replicates, n = 3).
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Values are average values ± standard deviation (biological replicates, n = 3). Values with different
superscript lowercase letters show significant differences among treatments (p < 0.05).

2.4. Minimum Inhibitory Concentration (MIC) Value of CLCEO against Strain YQM

The above results revealed that the inhibitory effect of CLCEO on the strain YQM was
the best; hence, the minimum inhibitory concentration (MIC) value of CLCEO against strain
YQM was determined by the agar dilution method. The combined antifungal effect of CEO
and LEO was judged by calculating the fractional inhibitory concentration (FIC) index. The
growth of strain YQM treated with different concentrations of CLCEO is summarized in
Table 1. The MIC value of CLCEO against strain YQM was 0.0313 µL/mL, which indicated
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the CLCEO had a good antifungal effect on strain YQM. Based on the criterion [26], the FIC
index was 0.28, indicating that the antifungal effect of different kinds of EOs was synergistic.
Consequently, it could be concluded that CEO and LEO had a synergistic interaction on
inhibiting the growth of strain YQM.

Table 1. Growth of strain YQM treated with different concentrations of CLCEO.

EOs
Different Concentrations of EOs MIC

2 1 0.5 0.25 0.125 0.0625 0.0313 0.0156 Blank (µL/mL)

CEO — − − − − − + + + 0.0625
LEO − − — w w + + + + 0.5

CLCEO − − − − − − − + + 0.0313

Note: Strain YQM growth was evaluated as +, growth; −, no growth; 1% Tween-20 solution was used for blank;
MIC: minimum inhibitory concentration.

2.5. Component of CLCEO with Strongest Antifungal Effect against Strain YQM

The antifungal effect of CLCEO composed of a varied ratios of CEO and LEO was
studied. It was noticed that the antifungal effect of CLCEO against strain YQM was the
best when the volume ratio of CEO and LEO was 3:5, 4:4 and 5:3, respectively (Figure 5A),
while the corresponding inhibition zone diameter was 40.2, 40.3 and 40.0 mm, respectively
(Figure 5B). However, there was no significant difference (p > 0.05) among the three propor-
tions of CLCEO. In terms of cost, CLCEO (VCEO:VLEO = 3:5) was selected as the combined
EO with the best antifungal activity and used for further analysis.
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Figure 5. Antifungal effect of different combinations of CLCEO on strain YQM: (A) growth of strain
YQM on 9-cm plate media; (B) quantification of inhibition as zone diameter. Values are average
values ± standard deviation (biological replicates, n = 3). Values with different superscript lowercase
letters show significant differences among treatments (p < 0.05).
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2.6. Chemical Composition of EOs

The chemical compositions of EOs were determined by GC-MS and analyses are listed
in Table 2. A total of 23, 19 and 13 major compounds were identified from CEO, LEO and
CLCEO, respectively. CEO was mainly composed of cinnamaldehyde (28.48%), cineole
(23.48%) and benzaldehyde (17.20%). In LEO, two main components, citral (31.27%) and
limonene (30.56%) were detected. The dominant compounds of CLCEO were aromatic and
terpenoid compounds, among which, cinnamaldehyde accounted for 49.33%, followed by
citral (34.77%). In addition, eugenol and limonene were also detected in CLCEO, their ratio
was 9.11% and 2.83%, respectively.

Table 2. Chemical compounds of individual and combined essential oils.

Compounds Retention Time/min CEO/% LEO/% CLCEO/%

2-Methylheptane 5.517 0.31 — −
n-Octane 6.181 1.72 − −

2,4-Dimethyl-heptane 6.697 1.43 − −
4-Methyloctane 7.846 0.19 − −
Cyclofenchene 10.065 0.18 − −

Pinene 10.537 1.53 4.47 0.59
Camphene 11.215 1.04 1.07 0.10

Benzaldehyde 11.945 17.20 − −
Sabinene 12.260 − 9.43 0.46

trans-pinocarveol 12.432 − 3.90 −
Myrcene 13.028 − 2.96 0.21
Decane 13.437 1.29 − −

α-Terpinene 14.423 − 0.13 −
4-Methyldecane 14.594 0.31 − −

Cineole 15.254 23.48 − −
limonene 15.318 − 30.56 2.83

γ-Terpinene 16.760 − 0.34 −
Sabinene hydrate 17.542 − 0.37 −

Isogeranialdehyde 17.75 − 3.87 0.76
Linalool 19.492 − 3.13 0.21

Phenethyl alcohol 20.844 4.75 − −
7-methyl-3-methylene-6-octena 21.974 − 1.79 −

Citronellal 22.535 0.54 1.14 0.19
Dodecane 25.287 3.76 − −
α-Terpineol 25.592 − 0.77 −

Cinnamaldehyde 27.202 28.48 − 49.33
Citral 28.266 0.35 31.27 34.77

1,3-Di-tert-butylbenzene 28.849 0.99 − −
2,4-Dimethyldodecane 29.346 0.51 − −
4,6-Dimethyldodecane 30.303 1.01 − −

γ-Elemene 34.300 − 0.13 −
2-Methyl-3-phenyl-2-propenal 34.605 0.98 − −

α-Terpineyl Acetate 35.247 − 0.22 −
Piperitene 36.839 − 0.37 −

2,6-di-tert-butyl-4-methylphenol 37.11 − − 0.87
Caryophyllene 39.453 3.52 2.53 0.56
Cinnamyl ester 41.123 2.58 − −

Eugenol 47.633 3.55 − 9.11
Total − 99.71 98.42 99.99

Note: −, not detected; CEO, cinnamon essential oil; LEO, litsea essential oil; CLCEO: cinnamon-litsea
combined EO.

2.7. Effect of EOs on the Microstructure of Strain YQM Mycelia

Scanning electron microscopic (SEM) analysis was adopted to investigate the effect
of CEO, LEO and CLCEO (VCEO:VLEO = 3:5) on the microstructure of strain YQM mycelia
(Figure 6). The microstructure of strain YQM mycelia treated without EOs (the control
group) was complete and full, and the thickness was uniform (Figure 6A). In contrast,
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the mycelia of strain YQM treated with 0.25 µL/mL CEO (Figure 6B) and 2 µL/mL LEO
(Figure 6C) was partly deformed and collapsed. Furthermore, the surface of strain YQM
mycelia treated with 0.25 µL/mL CLCEO contained large breakages and serious damage
such as shrinking, shriveling and sinking occurred (Figure 6D).
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3. Discussion

As an oil crop rich in protein, lipid and other nutrients, peanuts are easily infected
by fungi during the process of field growth or post-harvest storage. Fungal strains will
consume the nutrients of peanuts and peanut products. Mycotoxins secreted by fungi
could also affect their edible quality, thus posing a serious threat to the health of human
beings and animals. Harvested peanuts are susceptible to the infestation of various molds,
mainly including Aspergillus spp. and Penicillium spp., etc. [27,28]. In this study, a domi-
nant fungal strain YQM was isolated from moldy peanuts and identified as A. flavus by
morphological and molecular biological characteristics (Figures 1 and 2). It was reported
that A. flavus could produce B-series aflatoxins such as AFB1 and AFB2, among which,
AFB1 was classified as a Group 1 carcinogen by the IARC (1993) because of its involvement
in cancer development in humans [29]. Therefore, it is absolutely imperative to find an
effective measure to prevent the growth and propagation of A. flavus strains in peanuts.

Recently, the use of plant-derived EOs to inhibit the growth of fungi and treat various
agricultural diseases has received widespread attention [30]. In this study, the antifungal
activity of five kinds of EOs such as CEO, LEO, CLO, TEO, and CNO against A. flavus YQM
isolated from moldy peanuts were evaluated. The results showed that all five kinds of EOs
exhibited pretty inhibitory effect against strain YQM, among which, CEO had the strongest
inhibitory effect on strain YQM (Figure 3). In a similar study, Denkova-Kostova et al. [31]
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found that cinnamon EO exhibited good antifungal effect on A. flavus and A. niger, which
might be attributed to cinnamaldehyde, the main antifungal component of cinnamon EO.
It was also described that cinnamaldehyde could perform strong antifungal activity against
A. niger and Fusarium sambucinum by disrupting the integrity of their cell membrane [32,33].
Achar et al. [34] found that 500–2000 ppm clove EO could inhibit not only the growth of
A. flavus but also the production of aflatoxin. Arasu et al. [35] selected Acorus calamus L.,
Allium sativum L., Mucuna pruriens (L.) DC., and Sesamum indicum L. EOs to constrain
the growth of plum fruit spoilage microbes and concluded that Allium sativum EO could
effectively inhibit the growth of A. flavus and A. niger on plum fruit. Sawadogo et al. [36]
reported that Cymbopogon nardus (L.) EO exhibited high antifungal activity against A. flavus
and A. parasiticus. Yan et al. [37] determined the antifungal impacts of seven EOs from
masson pine, cinnamon, star anise, litsea, camphor, lemon eucalyptus, and camphor on
the dominant molds Trichoderma viride, A. niger, and Penicillium citrinum inhabited on the
surface of bamboos, and found that cinnamon EO, star anise EO, and litsea EO had a good
antifungal activity against molds of bamboo, which could reduce molds on the surface of
bamboo chips. These researches were similar to the results in this paper, demonstrating the
effectiveness of EOs against A. flavus.

Studies have shown that the antifungal effect of combined EOs is better than that of
single EOs by combining two or more EOs to create a synergistic effect [38]. For example,
Xiang et al. [26] found that there was a synergistic antifungal effect among cinnamon,
oregano, and lemongrass EOs, and the composite EO consisting of three EOs with the
volume ratio of 1:5:48 displayed remarkable inhibitory activity against the mycelial growth
of A. flavus and aflatoxin production. In this study, CEO, LEO, and CLO were mixed in
different ways to obtain four kinds of combined EOs to explore their antifungal activity
on strain YQM. The results indicated that CLCEO exerted the best antifungal effect on
strain YQM and the inhibition zone diameter was larger than that of other combination of
EOs (Figure 4). The FIC index of CLCEO was calculated according to the MIC (Table 1).
The FIC index (FIC = 0.28) showed that the combination of CEO and LEO exhibited
synergistic effect against A. flavus YQM. Similarly, Nikkhah et al. [39] found that the
combination of cinnamon and marjoram, thyme and marjoram EOs displayed an additive
effect against Botrytis cinerea; and the combination of marjoram, cinnamon and thyme
exhibited an additive effect against Penicillium expansum. Although traditionally used
fungicides are effective, the drug resistance and safety issues caused by fungicides have
arisen great attention. Aimad et al. [40] compared the antifungal effect of Origanum
compactum Benth. EO and fluconazole (the traditional fungicide) on A. flavus and the
results showed that the MIC value of Origanum compactum Benth. EO was 6.25 µg/mL,
lower than that of fluconazole (256 µg/mL). Studies have also shown that EO can act as
enhancers of commercial antifungal agents to enhance the antifungal activity, and EOs are
potential alternatives to synthetic fungicides [41–43]. In addition, the optimal volume ratio
of CLCEO with strongest antifungal effect against A. flavus YQM was also determined in
this research. It was found that CLCEO composed of CEO and LEO with a volume ratio
of 3:5, 4:4 and 5:3 (v/v ) showed the best antifungal effect against A. flavus YQM (Figure 5).
Finally, CLCEO consisting of CEO and LEO with the volume ratio of 3:5 was chosen to be
the best due to the costs of CEO and LEO.

Studies have reported that the nature bioactive compounds in EOs mainly contribute
to the antifungal properties [40,44]. In this study, the chemical compositions of CEO, LEO
and CLCEO were analyzed by GC-MS (Table 2). According to the results, cinnamaldehyde
(28.48%), cineole (23.48%) and benzaldehyde (17.20%) were the main components of the
CEO, which was consistent with that of previous reports. Xiang et al. [26] found that
cinnamaldehyde was the main chemical component of cinnamon EO. Hlebová et al. [45]
also reported that cinnamaldehyde was the most abundant component in cinnamon EO.
For LEO, citral (31.27%) and limonene (30.56%) were the main components, which was
consistent with that of Zhao et al. [46] They analyzed litsea EO by GC-MS and found that
the important components included α-pinene, limonene, linalool, citral, etc., among which,
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the predominant constituents were citral and limonene. In addition, the main components
of CLCEO were also detected, and the results showed that cinnamaldehyde (49.33%) and
citral (34.77%) accounted for the two highest proportions. The compositions of EOs used
in different studies vary greatly, which may be related with the extraction methods, but
the main components of EOs were the same. Liang et al. [47] compared the effects of
subcritical n-butane and ethanol extraction on the composition of cinnamon EO and found
that cinnamaldehyde was the major compound in both extraction methods.

In general, the most common conclusion about the antifungal mechanisms was the
damage to the cell membrane and cell wall [48]. In this research, the potential antifungal
mechanism of EOs against A. flavus YQM was preliminarily investigated. The effect of
CEO, LEO and CLCEO on the microstructure of A. flavus YQM mycelia was analyzed by
SEM. The hyphae of the LEO treatment group were less shriveled than that of the CEO
treatment group, which was consistent with the results of the previous inhibition zone
experiment. Compared with single EOs, combined EO treatment caused more serious
damage to mycelia (Figure 6). Based on the results, it was speculated that the possible anti-
fungal mechanism of CLCEO on A. flavus YQM may be that CLCEO damaged the integrity
of the cell wall and cell membrane, resulting in the leakage of cellular contents and causing
cell apoptosis, which might be consistent with the results of previous research [49,50]. For
example, Wang et al. [51] explored the antifungal properties and potential mechanisms of
clove EO against Colletotrichum gloeosporioides isolated from sweet cherry, and the SEM re-
sults showed that the morphology and ultrastructure of Collelotrichum gloeosporioides treated
with clove EO were destroyed and altered. Moreover, Sarathambal et al. [52] studied the
inhibitory effect of Pimenta dioica (L.) leaf EO on A. flavus, and several irreversible morpho-
logical changes such as loss of pigmentation and irregular maturity of conidiophores were
observed under a light microscopy. In addition, Brandão et al. [53] evaluated the antifungal
and anti-mycotoxigenic effects of Eremanthus erythropappus (DC.) MacLeish EO against
A. carbonarius, A. flavus, and A. ochraceus. The results of SEM showed that the integrity
of the mycelium was destroyed and the conidial head was deformed or not formed after
treatment with the Eremanthus erythropappus EO.

The U.S. FDA (Food and drug administration) has classified cinnamon, citronella,
thyme, and other EOs as GRAS (Generally Recognized as Safe) status. The safety of EOs is
related with various factors, such as the dosage, action time and receptor [54]. In general,
small amount of EOs is safe for most people [55]. Research has proven that there was
no obvious toxicity in mice after oral administration of thymus vulgaris [56]. In another
study, there were no safety concerns by adding litsea berry EO into the target animal
feed [57]. In recent years, EOs have also been widely used as new coatings or fungicides
alternatives in the preservation of fruits, vegetables and other foods [58–60]. Therefore,
there is great chance for EOs to be used as anti-mildew agents for peanut storage. Although
research has made some progress, the specific antifungal mechanisms of CLCEO are not
fully understood. Additionally, the effect of CLCEO on the quality of peanut during
storage process has not been investigated. Further studies should focus on the specific
antifungal mechanism of CLCEO on A. flavus YQM and the effect of CLCEO on the quality
of stored peanuts.

4. Materials and Methods
4.1. Materials

The peanut kernels (Yuanza 9102) were harvested in September, 2020, provided by
farmers from Zhengyang city, Henan province, China, and the initial moisture content
was 5% (w/w). Five kinds of EOs such as CEO, LEO, CLO, TEO, and CNO used in this
study were purchased from Zhongxiang Botanical Co., Ltd. (Ji’an, Jiangxi, China) and
stored at 4 ◦C for further use. Potato dextrose agar (PDA) was bought from Beijing Aobox
Biotechnology Co., Ltd. (Beijing, China); potato dextrose broth (PDB) was acquired from
Qingdao Haibo Company (Qingdao, Shandong, China); Tween-20 was obtained from
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Beijing Solarbio Technology Co., Ltd. (Beijing, China) and kept under room temperature
for later use. All reagents used in this study were analytical-grade.

4.2. Isolation and Identification of the Dominant Fungal Strain from Moldy Peanut Kernels

The moisture content of peanut kernels was adjusted from 5% to 9.7%. Around 500 g
of peanut kernel samples with 9.7% moisture were put into a sterile transparent plastic
bag and stored in an HWS humidity chamber (Ningbo Southeast Instrument Co., Ltd.,
Ningbo, Zhejiang, China) at 30 ◦C until the samples turned moldy. Then 25 g of moldy
peanut kernels were mixed with 225 mL sterile water, and vortexed fully in MVS-1 Vortex
Mixer (Jinbeide Industry and Trade Co., Ltd., Beijing, China). Subsequently, the suspension
was spread onto PDA plates and the plates were incubated at 28 ◦C for 3 days. After three
times’ streaking, single colonies were obtained, among which, strain YQM was picked out
for further experiments.

Strain YQM was inoculated on PDA plate and incubated at 28 ◦C for 5 d. Then the
morphology of strain YQM was observed under UB203i Upright Biological Microscope
(Chongqing Uop Optoelectronics Technology Co., Ltd., Chongqing, China). Morphological
characteristics of strain YQM were compared with the descriptions of GB/T 4789.16-2016.
Genomic DNA of strain YQM was extracted with TIAN quick FFPE DNA Kit (Tiangen
Biochemical Technology Co., Ltd., Beijing, China) and the universal fungal primer set
(ITS1: 5′-TCCGTAGGTGAACCTGCGG-3′ and ITS4: 5′-TCCTCCGCTTATTGATATGC-3′)
was used to amplify 18S rRNA gene fragment. The 18S rRNA gene of strain YQM was
sequenced by BEIJING LIUHE Co., Ltd (Beijing, China). The 18S rRNA gene sequence was
compared by using the database of National Center for Biotechnology and Information
Basic Local Alignment Search Tool (NCBI BLAST, National Center for Biotechnology and
Information Basic Local Alignment Search Tool. Available online: https://blast.ncbi.nlm.
nih.gov/Blast.cgi, accessed on 6 March 2022). The phylogenetic tree based on 18S rRNA
gene sequences was constructed by MEGA X software [61]. In addition, the 18S rRNA
gene sequence of strain YQM was deposited to the NCBI GeneBank (National Center
for Biotechnology and Information. Available online: https://www.ncbi.nlm.nih.gov/,
accessed on 6 March 2022), and the accession number was MT903389.

4.3. Determination of the Antifungal Activity of EOs against Strain YQM

The antifungal activity of EOs against strain YQM was evaluated by the inhibition
zone experiment described by Xia et al. [25] with several modifications. In brief, EOs were
dissolved in 1% sterile Tween-20 solution to obtain EOs solutions with the concentration of
10, 20, 30, 40, 50, and 60 µL/mL, respectively. The preparation of strain YQM suspension
was based on the method of Ma et al. [62]. Firstly, the spores of strain YQM incubated at
28 ◦C for 5 d were collected. Secondly, the concentration of fungal spores was determined
by using a hemocytometer. Then the final concentration of strain YQM spores was adjusted
to 5 × 105–6 × 105 spores/mL. The strain YQM spore suspension (100 µl) was sucked
and spread evenly onto the PDA plate. Next, a circular hole with a diameter of 7 mm
was punched in the center of the plate by a puncher, and 100 µL of different kinds of EOs
solution with the concentration of 10, 20, 30, 40, 50, and 60 µL/mL was added to the hole,
respectively. Subsequently, the plates were placed at room temperature (around 25 ◦C)
for one hour to make the EOs fully diffuse and incubated at 28 ◦C for 3 days. Finally, the
diameter of the inhibition zone was measured by the cross method and the pictures were
taken for further use. The same amount of 1% Tween-20 solution was used to replace EOs in
the control group and each experiment was done in triplicate. Similarly, the inhibition zone
experiment was adopted to evaluate the antifungal effect of combined EOs on strain YQM.

4.4. Determination of MIC Value of CLCEO against Strain YQM

The MIC value of CLCEO was determined by the agar dilution method with slight
modifications [63]. Strain YQM spore suspension (100 µL) was evenly spread on sterile
PDA plates containing 0.0313, 0.0625, 0.125, 0.25, 0.5, 1, and 2 µL/mL CLCEO. Then the

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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plates were incubated at 28 ◦C for 4 days. The lowest concentration of CLCEO that did not
allow the visible growth of colonies was regarded as the MIC value. In addition, fractional
inhibitory concentration (FIC) was used to determine the combined antifungal effect of
CEO (A) and LEO (B) [39].

FICA =
MICA combination

MICA sin gle
FICB =

MICB combination
MICB sin gle

FICindex = FICA + FICB (1)

The results were explained as follows: the synergistic effect (FIC ≤ 0.5), the additive
effect (0.5 < FIC ≤ 1.0), the indifferent effect (1 < FIC ≤ 2) and the antagonistic effect
(FIC > 2) [26].

4.5. Determination of the Component of CLCEO with Strongest Antifungal Effect against
Strain YQM

In order to obtain CLCEO with the best antifungal effect on strain YQM, CEO, and LEO
were mixed with the volume proportions of 1:7, 2:6, 3:5, 4:4, 5:3, 6:2, and 7:1, respectively.
The final concentration of eight kinds of CLCEO was all adjusted to 60 µL/mL. The
inhibition zone test was performed to evaluate the antifungal activity of CLCEOs on strain
YQM. Eight kinds of CLCEO solution (100 µL) were added to the circular hole, respectively.
The plates were placed at room temperature (25 ◦C) for 1 h and then incubated at 28 ◦C for
3 days.

4.6. Determination of the Chemical Composition of EOs

The chemical composition of CEO, LEO and CLCEO were analyzed by gas chromatograph-
mass spectrometry (GC-MS) and according to the method of Wang et al. [64]. The samples
were processed as follows: 100 mg EO was added into 10 mL n-hexane and vortexed for
5 min to fully dissolve evenly. After being filtered with a 0.22 µm filter membrane, the
supernatant (2 µL) was subjected to GC-MS analysis.

4.7. Determination of the Effect of EOs on the Microstructure of Strain YQM Mycelia

The mycelium structure observation was conducted according to the descriptions of
Wang et al. [51] and Achar et al. [34] with slight modifications. Strain YQM was cultured in
PDB medium and shaken at the speed of 150 r/min at 28 ◦C for 2 days, then CEO, LEO,
and CLCEO dissolved by 1% Tween-20 were added to the PDB medium to achieve final
concentrations of 0.25 µL/mL, 2 µL/mL, and 0.25 µL/mL, respectively. The mycelia treated
without EOs were used as the control group. After culturing for one day, the mycelia of
strain YQM were collected. The mycelia were rinsed with sterile PBS for three times, fixed
with 2.5% (w/w) glutaraldehyde solution, and stored in refrigerator at 4 ◦C overnight. The
mycelia were rinsed with sterile PBS for three times (10 min per time) again, and then
rinsed with sterile water for two times. The mycelia were dehydrated with 30%, 50%,
70%, and 90% (v/v) ethanol for 10 min, respectively, and anhydrous ethanol for 15 min.
Next, the mycelia were dehydrated with the tert-butanol-ethanol solution with the volume
ratio of 1:1 and 2:1 for 10 min, respectively. Finally, after washing twice with tert-butanol
solution, the tert-butanol solution containing mycelia was obtained. The mycelia samples
were pre-frozen at −80 ◦C for 2 h and then frozen-dried. After drying, the samples were
sprayed with gold, observed and photographed under Quanta 250 FEG Scanning Electron
Microscope (FEI Company, Hillsboro, OR, USA).

4.8. Statistical Analysis

All experiments in this study were performed in triplicate and the data were presented
as mean ± standard deviation (SD). Data were analyzed using SPSS (20.0) software and
Microsoft Excel (2016). Duncan’s method was used to evaluate the significant differences
between the data, and statistically significant differences were set at p < 0.05. Some figures
shown were drawn using Origin Lab (2018) software.



Foods 2022, 11, 1586 12 of 15

5. Conclusions

In this study, a dominant fungal strain YQM was isolated from moldy peanut kernels
and identified as A. flavus. Five single EOs such as CEO, LEO, CLO, TEO, and CNO
had antifungal effects on A. flavus YQM, and as the concentration of EOs increased, the
inhibitory effects also increased. Furthermore, CEO and LEO showed synergistic effect on
restraining the growth of A. flavus YQM, and the ratio of CLCEO with strongest antifungal
effect against A. flavus YQM was VCEO:VLEO = 3:5. GC-MS results showed that the major
components of CLCEO were cinnamaldehyde and citral. According to the results of
SEM, it was preliminarily speculated that CLCEO might inhibit the growth of A. flavus
YQM by destroying the mycelial structure. In conclusion, CLCEO has the potential to be
used as an efficient anti-mildewing agent to improve the shelf life of peanuts during the
storage process.
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