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Abstract: Herpes simplex virus 1 (HSV-1) has extensive interactions with the host DNA damage
response (DDR) machinery that can be either detrimental or beneficial to the virus. Proteins in
the homologous recombination pathway are known to be required for efficient replication of the
viral genome, while different members of the classical non-homologous end-joining (c-NHEJ)
pathway have opposing effects on HSV-1 infection. Here, we have investigated the role of the
recently-discovered c-NHEJ component, PAXX (Paralogue of XRCC4 and XLF), which we found
to be excluded from the nucleus during HSV-1 infection. We have established that cells lacking
PAXX have an intact innate immune response to HSV-1 but show a defect in viral genome replication
efficiency. Counterintuitively, PAXX−/− cells were able to produce greater numbers of infectious
virions, indicating that PAXX acts to restrict HSV-1 infection in a manner that is different from other
c-NHEJ factors.

Keywords: herpes simplex virus 1; HSV-1; DNA damage response; DDR; PAXX; c-NHEJ; classical
non-homologous end joining

1. Introduction

Mammalian cells have evolved mechanisms to detect and repair damaged DNA, in order
to maintain genomic integrity. Causes of DNA damage are diverse and include ionizing
radiation, intracellular reactive oxygen species, malfunction of endogenous processes, infections,
and chemotherapeutic drugs. The most toxic DNA lesions for a cell are DNA double strand breaks
(DSB). Non-homologous end joining (NHEJ) is a key process for DSB repair (Figure 1), particularly
when homologous recombination (HR), which requires the presence of an identical DNA sequence
for repair, is not possible [1]. The rejoining of DNA DSBs by NHEJ is initiated when free DNA
ends are bound by the Ku70/80 heterodimer, which acts as a molecular scaffold and recruits the
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [2–4]. X-ray cross complementing
protein (XRCC4), XRCC4-like factor (XLF), and paralogue of XRCC4 and XLF (PAXX) are also recruited
to the Ku heterodimer [5–9]. The ligation of the broken DNA ends is performed by DNA ligase IV
(LIG4), which is activated through binding to XRCC4 and XLF [5,10]. PAXX is the most recently
identified component of the classical NHEJ (c-NHEJ) complex, and was found due to its high degree
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of structural similarity with XRCC4 and XLF [6–8]. PAXX does not bind directly to DNA, but binds to
DNA-bound Ku80 to stabilise the NHEJ-complex assembly [6,11,12].
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Figure 1. Schematic overview of non-homologous end joining after a DNA double strand break. (1) 
Linear DNA; (2) A double strand break (DSB) caused by genotoxic damage is bound by the Ku70/80 
heterodimer, which slides along the DNA to make room for subsequent complex formation; (3) DNA-
dependent protein kinase, catalytic subunit (DNA-PKcs) binds to the Ku70/80 heterodimer; (4) 
Factors, including aprataxin, Aprataxin And PNKP Like Factor (APLF), Polynucleotide Kinase 3'-
Phosphatase (PNKP), Artemis, Werner Syndrome RecQ Like Helicase (WRN), DNA polymerase 
lambda (Polλ), and DNA polymerase mu (Polμ) modify the ends of the DNA if necessary; (5) 
Paralogue of XRCC4 and XLF (PAXX) and/or XRCC4-like factor (XLF) bind Ku70/80 and recruit the 
XRCC4/Ligase 4 (LIG4) complex, which in turn ligates the DNA ends together. 

While being essential for the rapid, template-independent repair of DSBs, components of the c-
NHEJ machinery have other cellular functions. For instance, DNA damage response (DDR) proteins, 
including those involved in NHEJ, are also involved in the sensing of intracellular foreign DNA that 
results in the initiation of an innate immune response by triggering Type 1 interferon (IFN-I) 
production [13]. These include several cytoplasmic and nuclear DNA sensors, such as interferon γ-
inducible protein 1 (IFI16) [14,15], DNA-PKcs [16,17], Ku70/80 [18,19], Double-strand break repair 
protein MRE11 (MRE11) [20], and RAD50 [21], which can activate a variety of innate immune 
signalling outputs [22,23] but mostly lead to IFNβ induction by activation of the Stimulator of 
interferon genes-Tank-binding kinase-Interferon Regulatory Factor 3 (STING-TBK-IRF3) pathway 
[14,24]. In response, herpes simplex virus type 1 (HSV-1) has evolved to inhibit these pathways, 
providing a partial explanation for the presence of multiple DNA sensing mechanisms [25–27]. 

The nuclear-replicating HSV-1 has extensive interactions with the DNA repair machinery, partly 
since its dsDNA genome contains gaps, nicks, and DNA-ends that pose targets for cellular DDR and 
innate immune DNA sensing mechanisms [28]. The activation of these pathways can mount a hostile 
cell-intrinsic antiviral response, for example through silencing of viral gene expression, cell cycle 
arrest, and apoptosis [29,30]. One of the earliest studies investigating the interaction of HSV-1 with a 
component of the NHEJ complex showed that HSV-1 attenuates the activity of DNA-PKcs via the 
viral immediate-early protein ICP0 [31]. This study indicated that DNA-PKcs has antiviral effects 

Figure 1. Schematic overview of non-homologous end joining after a DNA double strand break.
(1) Linear DNA; (2) A double strand break (DSB) caused by genotoxic damage is bound by the
Ku70/80 heterodimer, which slides along the DNA to make room for subsequent complex formation;
(3) DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) binds to the Ku70/80 heterodimer;
(4) Factors, including aprataxin, Aprataxin And PNKP Like Factor (APLF), Polynucleotide Kinase
3′-Phosphatase (PNKP), Artemis, Werner Syndrome RecQ Like Helicase (WRN), DNA polymerase
lambda (Polλ), and DNA polymerase mu (Polµ) modify the ends of the DNA if necessary;
(5) Paralogue of XRCC4 and XLF (PAXX) and/or XRCC4-like factor (XLF) bind Ku70/80 and recruit
the XRCC4/Ligase 4 (LIG4) complex, which in turn ligates the DNA ends together.

While being essential for the rapid, template-independent repair of DSBs, components of the
c-NHEJ machinery have other cellular functions. For instance, DNA damage response (DDR) proteins,
including those involved in NHEJ, are also involved in the sensing of intracellular foreign DNA
that results in the initiation of an innate immune response by triggering Type 1 interferon (IFN-I)
production [13]. These include several cytoplasmic and nuclear DNA sensors, such as interferon
γ-inducible protein 1 (IFI16) [14,15], DNA-PKcs [16,17], Ku70/80 [18,19], Double-strand break repair
protein MRE11 (MRE11) [20], and RAD50 [21], which can activate a variety of innate immune signalling
outputs [22,23] but mostly lead to IFNβ induction by activation of the Stimulator of interferon
genes-Tank-binding kinase-Interferon Regulatory Factor 3 (STING-TBK-IRF3) pathway [14,24].
In response, herpes simplex virus type 1 (HSV-1) has evolved to inhibit these pathways, providing
a partial explanation for the presence of multiple DNA sensing mechanisms [25–27].

The nuclear-replicating HSV-1 has extensive interactions with the DNA repair machinery, partly
since its dsDNA genome contains gaps, nicks, and DNA-ends that pose targets for cellular DDR and
innate immune DNA sensing mechanisms [28]. The activation of these pathways can mount a hostile
cell-intrinsic antiviral response, for example through silencing of viral gene expression, cell cycle
arrest, and apoptosis [29,30]. One of the earliest studies investigating the interaction of HSV-1 with
a component of the NHEJ complex showed that HSV-1 attenuates the activity of DNA-PKcs via the



Viruses 2017, 9, 342 3 of 19

viral immediate-early protein ICP0 [31]. This study indicated that DNA-PKcs has antiviral effects and,
although the consequences of this interaction between DNA-PKcs and ICP0 are not fully resolved,
other NHEJ proteins may be involved in this interaction [32]. These findings are coherent with a recent
study, demonstrating that HSV-1 infection of cortical rat neurons downregulates the expression level
of Ku80, via proteasomal degradation, leading to aberrant DDR processes in these cells [33].

However, DDR components can also promote HSV-1 infection. HSV-1 DNA synthesis occurs
in the nucleus in distinct replication compartments. It has been proposed that viral replication
follows an intricate rolling circle model, including the production of genome concatemers that are
cleaved into monomers and packed into pre-assembled capsids [29,34]. To facilitate this cycle of
generating virus progeny, HSV-1 also hijacks cellular components. One example of a DDR pathway that
positively influences productive growth of HSV-1, and leads to impaired virus replication when absent,
is the Fanconi anemia (FA) pathway [30,35]. Activation of the FA pathway after HSV-1 infection is
initiated by DNA polymerase through mono-ubiquitination of the Fanconi Anemia Complementation
Group I and Fanconi anemia group D2 protein (FANCI/FANCD2) complex. The FANCD2 protein
then travels to the replication compartments in the nucleus and interacts directly with the HSV-1
single-stranded DNA binding protein ICP8 to potently stimulate viral replication. Interestingly, HSV-1
activates the FA pathway, possibly to suppress antiviral functions of c-NHEJ [35]. However, further
investigations into the interaction of HSV-1 with NHEJ proteins by Muylaert and colleagues found
that the inhibition of LIG4 and XRCC4 by RNA interference (RNAi) reduced HSV-1 virus production
and interfered with viral DNA synthesis in human fibroblasts [36]. Besides NHEJ-proteins, many other
DDR factors have been found to interact with HSV-1 and only by dissecting each of these factors will
we receive a full picture of the HSV-life cycle. Interesting examples are Ataxia-telangiectasia-mutated
protein (ATM) and Ataxia-telangiectasia and Rad3-related protein (ATR), which have functions
connected to HR and, like DNA-PKcs, are members of the Phosphatidylinositol 3-kinase-related kinases
(PIKK) family [37]. ATM, ATR, and DNA-PKcs are all tightly regulated through specific co-factors,
share similar organisational and structural features, and in some cases regulate one another [38].
While DNA-PKcs has antiviral properties in HSV-1 infection, the virus uses ATR and ATM for its own
advantage to promote efficient replication. HSV-1 also inhibits downstream DDR signaling via ATR,
highlighting the often conflicting nature of viral interactions [39–43].

To fully understand the interaction of virus and cell, it is crucial to uncover all factors involved in
the interplay. Here we present data indicating that the NHEJ protein PAXX, which shares structural
similarities with XRCC4 and XLF but is unstudied in the context of virus infection, acts to restrict
HSV-1 in a manner that is different from those mediated by other DDR proteins.

2. Materials and Methods

2.1. Cell Culture

All cells were incubated at 37 ◦C, 5% CO2, and 3% O2. U2OS (human osteosarcoma) cells and
Vero cells were grown in Dulbecco’s Modified Eagle Medium (DMEM; Gibco, Waltham, MA, USA)
with 10% volume per volume (v/v) heat-inactivated foetal bovine serum (FBS; Sera Laboratories
International Ltd., West Sussex, UK) and 50 µg/mL of penicillin/streptomycin (P/S; Gibco, Fisher
Scientific UK Ltd., Loughborough, UK). Retinal pigment epithelia (RPE-1) cells were cultured
in DMEM-F12 with Glutamax, 10% v/v FBS, 0.2% weight/volume (w/v) sodium bicarbonate,
and 50 µg/mL P/S. Mouse embryonic fibroblasts (MEFs) were maintained in DMEM-F12 with
Glutamax (Gibco), 15% v/v FBS, 0.001% v/v 2-mercaptoethanol, non-essential amino acids (glycine,
L-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-proline, L-serine; all 100 nM), 1 mM sodium
pyruvate, and 50 µg/mL P/S.
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2.2. Transfection

TransIT-LT1 (Mirus Bio LLC, Madison, WI, USA) was used for plasmid DNA transfection.
For optimum transfection efficiency cells were seeded at 70–80% confluency. TransIT-LT1 was mixed
with OptiMEM (Gibco) at a ratio of 1:33 and incubated at room temperature for 5 min, DNA was
then added at a ratio of 1 µg DNA:3 µL TransIT-LT1, and incubated for a minimum of 15 min.
The transfection mix was added to the cells directly into the culture medium.

2.3. Viruses

Strain 17+ (S17) HSV-1 virus was used as the wild-type (WT) strain and was a kind gift from
Professor Stacey Efstathiou. An S17 virus lacking ICP0 (referred to in the literature as dl1403) was
a kind gift from Professor Gill Elliot [44]. dl1403 contains a 2 kb deletion within the TRL and IRL copies
of Vmw110 (the gene encoding the immediate-early protein ICP0) which encode 105 amino acids from
the original N-terminus followed by 56 amino acids altered by a frame-shift. The ∆gE/Viral protein
26 (VP26)-yellow fluorescent protein (YFP) virus is derived from a strain-16 (S16) parental virus and
was a gift from Dr. Colin Crump.

2.4. Plaque Assay Titration of HSV-1

Vero cells, or U20S cells for dl1403, were seeded into 6-well plates to be confluent at the time
of titration. The virus stock was serially diluted 10-fold in DMEM plus 2.5% v/v FBS, and applied
to the cells. The plates were rocked every 15 min for one hour, and then the medium was replaced
with 1.5% carboxymethyl cellulose (CMC) complemented with a final concentration of 1×minimum
essential medium (MEM). The plates were incubated at 37 ◦C, 5% CO2 and 3% O2 until plaques were
observed. The semi-solid overlay was then removed and cells were fixed and stained with 5% (v/v)
crystal violet (Sigma, St. Louis, MO, USA) and 25% (v/v) ethanol for one hour, washed with water,
and the plaques counted. Each experiment was conducted three times with three biological replicates.

2.5. Virus Titre Assay

MEFs were seeded into 6-well plates, and RPE-1 cells were seeded into T25 flasks. Prior to
infection, cells were counted and infected at multiplicity of infection (MOI) of 0.01 or 4. At the desired
time post-infection, cells were scraped into the growth medium. The cell suspensions of all samples
were freeze-thawed three times, and stored at −80 ◦C. Infectious virion numbers were determined by
titration of each sample in duplicate on Vero cells. Each experiment was conducted at least three times
with three biological replicates.

2.6. Cellular RNA Extraction

Cells were lysed in situ using 250 µL of lysis buffer containing 4 M guanidine thiocyanate,
25 mM Tris pH 7, and 143 mM 2-mercaptoethanol. Consequently 250 µL of ethanol was added, and
the solution was applied to a silica column (Epoch Life Science, Inc., Sugar Land, TX, USA) and
centrifuged; all centrifugation steps were performed for 30 s at 16,000× g. The bound RNA was
washed by centrifugation with 500 µL of buffer containing 1 M guanidine thiocyanate, 25 mM Tris
pH 7, and 10% ethanol, followed by a second washing step with 500 µL of wash buffer 2 (25 mM
Tris pH 7 and 70% (v/v) ethanol). An additional wash step was performed with 500 µL of Wash
Buffer 2 and centrifuged for two minutes at 16,000× g. The RNA was then eluted by centrifugation
in 30 µL of nuclease-free water. The RNA concentration was determined using a NanoDrop
2000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA).

2.7. cDNA Synthesis

Complementary DNA (cDNA) was generated from 500 ng of isolated RNA. 1 µL of a 10 mM
deoxynucleotide triphosphate (dNTP) mixture and 500 ng of oligo(dT) (both Thermo Scientific,
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Waltham, MA, USA) were incubated with the RNA at 65 ◦C for five minutes in a total volume
of 13 µL. 40 U of RNaseOUT recombinant RNase inhibitor (Invitrogen, Carlsbad, CA, USA), 50 U of
Superscript III Reverse Transcriptase (Invitrogen), 2 µL of 10× first strand buffer, and 1 µL of 0.1 M
dithiothreitol (DTT) were then added and the volume adjusted to 20 µL with nuclease-free water.
This solution was incubated for one hour at 50 ◦C, and then at 72 ◦C for 15 min.

2.8. Quantitative Real Time-Polymerase Chain Reaction (qPCR)

cDNA was diluted 1:3 in nuclease-free water and 2 µL was added into wells of a MicroAmp Fast
Optical 96-well or 384-well reaction plate (Applied Biosystems, Foster City, CA, USA). A mastermix
containing 5 µL Fast SYBR Green Master Mix (Life Technologies, Carlsbad, CA, USA) and 1 µL of
10 mM stocks of each of a forward and reverse primer per well were added per well (Table 1). The
plate was centrifuged for one minute at 180× g before being analysed on a 7500 Fast Real-Time
PCR System (Applied Biosystems). Each experiment was conducted at least three times with three
biological replicates.

Table 1. Primer sequences used for quantitative real time-polymerase chain reaction (qPCR).

Gene Name Primer Sequence

ICP27 (fwd) GTGCAAGATGTGCATCCACCACAACCTGCC
ICP27 (rev) GCCAGAATGACAAACACGAAGGATGCAATG
ICP4 (fwd) GACGTGCGCGTGGTGGTGCTGTACTCG
ICP4 (rev) GCGCACGGTGTTGACCACGATGAGCC

US11 (fwd) CTTCAGATGGCTTCGAGATCGTAG
US11 (rev) TGTTTACTTAAAAGGCGTGCCGT
gB (fwd) TGTGTACATGTCCCCGTTTTACG
gB (rev) GCGTAGAAGCCGTCAACCT

Cxcl10 (fwd) GTGGCATTCAAGGAGTACCTC
Cxcl10 (rev) GCCTTCGATTCTGGATTCAGACA
Ifnb (fwd) ACATCCCTGAGGAGATTAAGCA
Ifnb (rev) GCCAGGAGGTTCTCAACAATAG

2.9. Isolation of Cellular and Viral DNA for Quantification by qPCR

Infected cells were scraped into growth medium, centrifuged for five minutes at 400× g, and the
resulting pellet was resuspended in lysis buffer (10× the volume of the pellet) consisting of 5 µM
sodium dodecyl sulfate (SDS), 10 mM Tris-HCl pH 8.3, and 100 µg/mL proteinase K. The cells and
buffer were then incubated at 50 ◦C for 90 min, before proteinase K was heat inactivated at 95 ◦C for
10 min.

2.10. Quantification of Viral DNA by qPCR

For qPCR of cellular and viral genomes, primers and probes, tagged with the fluorophores
cyanine5 (Cy5) and 6-carboxyfluorescein (FAM), coupled with a BlackBerry quencher (BBQ), targeting
the promoter regions of human glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and HSV-1
ICP0 were used (Table 2). A mastermix was created with final concentrations of 8 mM MgCl2 (Qiagen,
Hilden, Germany), 0.8 mM dNTPs (Thermo Scientific), 5% (v/v) dimethyl sulfoxide (DMSO), 0.8 U of
HotStarTaq DNA polymerase (Qiagen), and Taq polymerase buffer. Primers and probes (TIB Molbiol,
Berlin, Germany) were added as detailed in Table 2. 19 µL of this mastermix and 1 µL of the sample
were mixed (all samples were analysed in triplicates). A standard curve was generated by using
a dilution series of two plasmids each containing one of the promoter regions. qPCR of the samples
and standards was carried out simultaneously on a Rotorgene 3000 (Corbett Research, Hilly St,
Australia). The reaction was held at 95 ◦C for 15 min, before 45 cycles of 95 ◦C for 30 s, and 60 ◦C for
60 s. The standard-adjusted signal from the ICP0 reaction was divided by the standard-adjusted signal



Viruses 2017, 9, 342 6 of 19

for GAPDH to give a relative signal intensity. Each experiment was conducted at least three times with
three biological replicates.

Table 2. Primer and probe sequences used for qPCR of viral and cellular DNA.

Name Sequence Concentration

ICP0 (forward) GGAAAGGCGTGGGGTATAA 24 nM
ICP0 (reverse) AACGTAGGCGGGGCTTC 72 nM

ICP0 probe 6FAM-TCGCATTTGCACCTCGGCAC-BBQ 50 nM
GAPDH (fwd) CGGCTACTAGCGGTTTTACG 72 nM
GAPDH (rev) AAGAAGATGCGGCTGACTGT 24 nM
GAPDH probe Cy5-CACGTAGCTCAGGCCTCAAGACCT-BBQ 50 nM

2.11. Isolation of Viral DNA for Southern Blotting

Infected cells were scraped into the growth medium, and centrifuged at 400× g for five
minutes. The pellet was resuspended in 1.6 mL of buffer containing 10 mM Tris, 50 mM
Ethylenediaminetetraacetic acid (EDTA), 0.5% (w/v) SDS and 163 µL/mL proteinase K before
incubation at 37 ◦C overnight. The next day, an equal volume of phenol was added and gently
mixed before the solution was centrifuged for 10 min at 1600× g and 20 ◦C. The top, aqueous layer
was transferred to a clean tube, and the phenol wash was repeated. An equal volume of chloroform
was added to the aqueous layer, and the solution was centrifuged for 10 min at 1600× g and 20 ◦C.
The aqueous layer was isolated and NaCl was added to a final concentration of 0.2 M. Absolute ethanol
was added to a final concentration of 29% (v/v), and the solution was mixed. The sample was then kept
at−20 ◦C overnight before 15 min of centrifugation at 2900× g and 4 ◦C. The supernatant was removed
and the precipitated DNA pellet was air-dried, before resuspension in 300 µL of 10 mM Tris and 1 mM
EDTA. The concentration of the samples was measured with a NanoDrop 2000 Spectrophotometer.

2.12. Creation of Hybridisation Probe for Southern Blotting

The HSV-1 BamHI K fragment (nucleotides 123459 to 129403 of strain S17 [45], were excised
from a donor plasmid (pAT153 containing fragment Kpn A), gel-purified, and 100 ng of the excised
fragment were added to nuclease-free water to a total volume of 34 µL. After boiling for five minutes,
the solution was placed on ice for five minutes. A dNTP mix was created with final concentrations of
0.17 mM biotin-14-dATP (Invitrogen), 0.17 mM biotin-14-dCTP (Invitrogen), and 0.98 mM of each of
dATP, dTTP, dGTP, and dCTP. The BamHI K fragment was then added to 5 µL of the dNTP mix, 1 µL
of Klenow enzyme (NEB, Ipswich, MA, USA), and 10 µL of 5× labelling mix (NEB) and incubated
at 37 ◦C for three hours. 200 µg of salmon sperm DNA and 30 µL of water were added prior to
purification using a Qiagen PCR purification kit.

2.13. Southern Blotting

Prior to Southern blotting, isolated DNA was digested with BamHI. The samples were then
analysed on a NanoDrop 2000 Spectrophotometer, and an equal mass of DNA from each sample was
loaded onto a 0.8% (w/v) agarose gel containing ethidium bromide along with biotinylated molecular
weight markers (NEB). The gel was run at 16 V overnight, and once sufficient separation of the samples
was observed, the gel was rocked in 0.25 M HCl for 20 min to hydrolyse the DNA. The gel was then
rocked in 0.4 M NaOH for 30 min and the transfer of separated samples on a membrane was conducted
using a semi-dry transfer overnight.

Filter paper was washed in 4× standard saline phosphate EDTA (SSPE, pH 7.4; 750 mM NaCl,
800 mM NaH2PO4·H2O, and 20 mM Na2EDTA·2H2O) for 30 min. The filter paper was blocked in
prehybridisation buffer (final concentrations of 1× Denhardt’s solution, 200 µg/mL boiled salmon
sperm DNA, 4× SSPE, 2% (w/v) SDS, and 10% (w/v) dextran sulphate) at 65 ◦C in a hybridisation oven
for a two hours. The probe was then added to the prehybridisation buffer and allowed to hybridise at
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65 ◦C overnight. The filter paper was washed twice in each of three wash buffers (2× SSPE; 2× SSPE,
1% (w/v) SDS; 0.1× SSPE) for 15 min at 65 ◦C. The filter paper was then incubated at room temperature
in Odyssey block (LI-COR Biosciences, Lincoln, NE, USA) containing 1.2% (w/v) SDS for 30 min,
followed by a 30 min incubation in Odyssey block, 1.2% (w/v) SDS, and Streptavidin-IRDye 800 CW
(LI-COR Biosciences). The filter paper was washed in phosphate-buffered saline with Tween-20 (PBST)
three times, and visualised using a LI-COR imaging system. Each experiment was conducted at least
three times with three biological replicates.

2.14. Immunofluorescence

Cells were seeded onto sterile 13 mm coverslips in standard growth medium to be 60–70%
confluent at the time of fixation. Following treatment cells were fixed by aspirating the medium
and then incubating in 250 mM pH 7.4 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)
with 4% (w/v) paraformaldehyde (PFA) at 4 ◦C, and then a further 10 min in 8% PFA and 250 mM
pH 7.4 HEPES. The coverslips were washed twice in PBS, permeabilised in 1% (v/v) Triton X-100 in
PBS for five minutes, and washed twice more in PBS. 5% (w/v) milk from powder (Premier Food
Groups) in PBS was used as a blocking agent for one hour at room temperature on a rocking platform.
The primary antibody (anti-PAXX, Sigma) was diluted 1:1000 in 1% (w/v) milk in PBS, and 50 µL of the
dilution was pipetted onto a sheet of Parafilm M (Bemis, Neenah, WI, USA). The coverslips were placed
sample-side down onto the antibodies, and incubated at room temperature in a humidified chamber
in the dark for one hour. Following this incubation, the coverslips were washed three times in PBS,
and then incubated for 30 min in 200 µL of fluorophore-conjugated secondary antibodies (anti-rabbit or
anti-mouse conjugated to Alexa Fluor488 or Alexa Fluor546; Invitrogen) diluted 1:1000 in 1% w/v milk.
The plates were washed twice in PBS and once in water. Coverslips were mounted onto slides using
10 µL of mounting solution (25% glycerol (v/v), 0.1 M Tris pH 8.5, 10% Mowiol 4-88 w/v containing 4′,
6-diamidino-2-phenylindole (DAPI)) and allowed to set in the dark overnight. Samples were visualised
and imaged using a Zeiss Pascal Confocal Microscope (LSM 800, Carl Zeiss Ltd., Cambridge, UK) at
63× magnification under oil, and images were collected using Zeiss LSM Image Browser (ZEN lite
2012 software, Carl Zeiss Ltd., Cambridge, UK). Each experiment was conducted at least three times
with three biological replicates.

2.15. Immunoblotting

Cells were scraped into the medium, and centrifuged at 1900× g for five minutes. The supernatant
was aspirated, and the pellet resuspended in PBS before centrifuging at 1900× g for five minutes.
The supernatant was aspirated, and the cells were lysed in 250 µL of lysis buffer (150 mM NaCl, 20 mM
Tris-HCl (pH 7.4), 10 mM CaCl2, 0.1% (v/v) Triton X-100, and 10% (v/v) glycerol) on ice for 30 min.
After the 30 min the cell lysate was centrifuged at 16,000× g at 4 ◦C for 10 min. The supernatant
was flash-frozen in liquid nitrogen and stored at −80 ◦C. Prior to loading onto a gel, a bicinchoninic
acid (BCA) assay (Thermo Scientific) was used to determine protein concentrations, allowing for the
equal loading of protein samples. 6× sample loading buffer (300 mM Tris-HCl (pH 6.8), 12% (w/v)
SDS, 60% (v/v) glycerol, 0.6% (w/v) bromophenol blue, and 600 µM β-mercaptoethanol (BME)) was
added to the samples before heating at 94 ◦C for five minutes prior to electrophoresis. Following
SDS-polyacrylamide gel electrophoresis (SDS-PAGE), gels, nitrocellulose membranes (GE Healthcare,
Little Chalfont, UK) and blot paper (BioRad, Hercules, CA, USA) were equilibrated in transfer buffer
(20% (v/v) methanol, 2.5 mM Tris Base, and 19.2 mM glycine) for five minutes. A Trans-Blot Turbo
semi-dry transfer machine (BioRad) was used for protein transfer onto the membrane at 25 V for 30 min.
After transfer, the nitrocellulose membrane was blocked in 5% (w/v) milk for one hour. The membrane
was washed three times in PBS with 0.025% (v/v) Tween 20 (PBST), and incubated overnight at 4 ◦C in
primary antibody diluted in PBST (Table 3). After three washes in PBST the membrane was incubated
for one hour in 5% (w/v) milk containing the secondary antibody (Table 3). The membrane was washed
three times in PBST, air-dried in the dark, and visualised using a LI-COR imaging system, or with
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enhanced chemiluminescent (ECL) reagent (125 mM luminol, 0.4 mM curaric acid, 0.1 M Tris pH 8.8),
using a developing film processor (SRX101A, Konica Minolta, Tokyo, Japan). Each experiment was
conducted at least three times with three biological replicates.

Table 3. Antibodies used in this study.

Name Source Dilution

PAXX Sigma, Dorset, UK (HPA045268) 1:1000
PARP-1 Abcam, Cambridge, UK (ab6079) 1:1000

Ku80 Santa Cruz, Dallas, TX, USA (sc1483) 1:500
Tubulin Millipore, Burlington, MA, USA (05-829) 1:15,000

HSV-1 VP22 Gift from Geoffrey Smith (AGV031) 1:20,000
HSV-1 ICP4 Gift from Colin Crump 1:50
HSV-1 VP5 Gift from Colin Crump 1:500
HSV-1 ICP0 Abcam (ab6513) 1:2000

IRDye 800CW anti-mouse Licor, Lincoln, NE, USA (926-32210) 1:10,000
IRDye 680RD anti-rabbit Licor (926-68071) 1:10,000

Anti-mouse (HRP-conjugated) Sigma (A4416) 1:10,000
Anti-rabbit (HRP-conjugated) Sigma (A6154) 1:20,000
Anti-goat (HRP-conjugated) Sigma (A5420) 1:20,000

3. Results

3.1. HSV-1 Infection Induces Changes in PAXX Distribution

The HSV-1 protein ICP0 induces degradation of DNA-PKcs, a component of the c-NHEJ machinery
that is required for sensing of viral DNA [16,17,46]. Since PAXX and DNA-PKcs are both part of the
c-NHEJ machinery [6], we hypothesised that PAXX may also be degraded during HSV-1 infection.
The HSV-1 genome replicates in the nucleus and PAXX has been reported to be predominantly
nuclear [6], so we analysed the effect of HSV-1 infection on nuclear PAXX. U2OS cells were infected
with S17+ HSV-1 at an MOI of 10 and the cells were lysed at various times after infection. Samples
were fractionated into nuclear and cytoplasmic compartments, and immunoblotting was performed to
visualise PAXX levels in these compartments during infection (Figure 2A). We observed that prior to
infection PAXX is both nuclear and cytoplasmic but at both 8 and 16 h post-infection a large reduction
in levels of nuclear PAXX was observed. Cytoplasmic levels of PAXX, however, remained largely
unchanged. Despite this specific reduction in nuclear PAXX, immunoblotting of whole cell lysates
indicated that overall PAXX levels were not significantly reduced during infection (Figure 2B).

These findings were complemented using confocal microscopy studies in which YFP-tagged
PAXX was ectopically expressed in U2OS cells, and in the absence of infection had both nuclear
and cytoplasmic localisation (Figure 2C). Following HSV-1 infection, however, PAXX was only
weakly observed in the nucleus, but cytoplasmic levels remained unchanged. Immunofluorescence of
endogenous protein during HSV-1 infection is limited by the presence of the HSV-1 IgG Fc receptor
that can bind non-specifically to the primary and/or secondary antibodies used in these assays. In the
absence of the HSV-1 glycoprotein gE this complex cannot form [47], so to visualise endogenous
PAXX during infection U2OS cells were infected with a ∆gE YFP-VP26 HSV-1 virus (Figure 2D).
This experiment confirmed the observations made using ectopic PAXX expression, and together the
data showed that nuclear PAXX protein is depleted early in HSV-1 infection. The above observation,
that in uninfected cells PAXX is predominantly localised in the nucleus whereas during infection PAXX
is dispersed uniformly in the cell was also confirmed in RPE cells (Supplementary Figure S1).
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was used as a loading control; (B) U2OS cells were infected at MOI 10 and whole cell lysates 
immunoblotted with the indicated antibodies; (C) Yellow fluorescent protein (YFP)-PAXX was 
ectopically expressed in U2OS cells, and these were infected with HSV-1 VP26-mCherry at MOI 1. 16 
h after infection slides were imaged by confocal microscopy; (D) U2OS cells were infected with ΔgE 
VP26-YFP HSV-1 at an MOI of 1 for 16 h and analysed by immunofluorescence. Scale bars in (C, D) 
denote 20 μm. 
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considered the possibility that PAXX is also involved in the innate sensing of viral DNA during HSV-
1 infection. To test this we used passage 1 MEFs generated from wild-type (WT) and Paxx−/− mice [12]. 
Early passage MEFs respond to intracellular DNA stimulation by producing significant amounts of 
IFN-I, chemokines, and cytokines [16,51]. WT and Paxx−/− MEFs were infected at an MOI of 5 with 
ΔICP0 HSV-1. ICP0 is a potent inhibitor of innate immune-signaling pathways so use of this deletion 
virus enhances IFN-I production from infected cells [49,52,53]. RNA was harvested after six hours of 
infection, and cDNA was created for analysis by qPCR. No defect in Ifnb or Cxcl10 transcription was 
observed in the Paxx−/− MEFs (Figure 3). As a result, we rejected the hypothesis that PAXX is required 
for the production of IFN-I and cytokines in response to HSV-1 infection. 

Figure 2. PAXX distribution changes during HSV-1 infection. (A) U2OS cells were infected at
a multiplicity of infection (MOI) of 10. Cells were harvested and the cytoplasmic (C) and nuclear
(N) fractions separated and probed by immunoblotting for PAXX. Poly (ADP-Ribose)-Polymerase
1 (PARP-1) and tubulin controlled for fractionation, VP22 demonstrated successful infection, and Ku80
was used as a loading control; (B) U2OS cells were infected at MOI 10 and whole cell lysates
immunoblotted with the indicated antibodies; (C) Yellow fluorescent protein (YFP)-PAXX was
ectopically expressed in U2OS cells, and these were infected with HSV-1 VP26-mCherry at MOI
1. 16 h after infection slides were imaged by confocal microscopy; (D) U2OS cells were infected with
∆gE VP26-YFP HSV-1 at an MOI of 1 for 16 h and analysed by immunofluorescence. Scale bars in (C,D)
denote 20 µm.

3.2. Paxx−/− MEFs Are Not Defective in Type I Interferon Production during HSV-1 Infection

Several DDR proteins, including some c-NHEJ components, are involved in the intracellular
innate immune sensing of HSV-1 DNA that is essential for type-I interferon production during
infection [14,16–19,27]. In response, the virus has evolved mechanisms to inactivate such proteins
to enhance its replication [31,46,48–50]. Since HSV-1 infection results in the loss of nuclear PAXX,
we considered the possibility that PAXX is also involved in the innate sensing of viral DNA during
HSV-1 infection. To test this we used passage 1 MEFs generated from wild-type (WT) and Paxx−/−

mice [12]. Early passage MEFs respond to intracellular DNA stimulation by producing significant
amounts of IFN-I, chemokines, and cytokines [16,51]. WT and Paxx−/− MEFs were infected at an MOI
of 5 with ∆ICP0 HSV-1. ICP0 is a potent inhibitor of innate immune-signaling pathways so use of
this deletion virus enhances IFN-I production from infected cells [49,52,53]. RNA was harvested
after six hours of infection, and cDNA was created for analysis by qPCR. No defect in Ifnb or Cxcl10
transcription was observed in the Paxx−/− MEFs (Figure 3). As a result, we rejected the hypothesis
that PAXX is required for the production of IFN-I and cytokines in response to HSV-1 infection.
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Figure 3. PAXX does not affect innate immune responses to HSV-1 ∆ICP0 infection. WT or Paxx−/−

Mouse embryo fibroblasts (MEFs) were infected with MOI 5 ∆ICP0 for 5 hr, and qPCR was used to
analyse the transcription of (A) Cxcl10; and (B) Ifnb. n = 3. Error bars denote mean +/− standard error
of the mean (SEM).

3.3. PAXX Is Not Required to Create Endless Forms of the HSV-1 Genome

As PAXX is not required for HSV-1-induced IFN-I production, we considered alternative roles
for PAXX in HSV-1 infection. During infection, circular and concatemeric forms of the HSV-1 genome
are formed as endless replication intermediates, and some DDR proteins negatively affect production
of these endless species by interfering with their production [36,54]. To test whether PAXX affects
the formation of endless genome structures or their subsequent processing, WT and PAXX−/−

human retinal pigment epithelial (RPE-1) cells [6] were infected at MOI 4, and at various times
after infection viral and cellular DNA was isolated. BamHI restriction enzyme digestion was used
to create, amongst others, tHSV-1 genome fragments K, Q, and S (Figure 4A). These fragments are
indicative of HSV-1 genome structure because K fragments are formed where the terminal Q and
S fragments are combined [36]; therefore samples with higher levels of endless genomes will have
a higher proportion of K fragments than those with monomeric genomes. The K, Q, and S fragments
can be visualised on a Southern blot using biotinylated, randomly-primed, single-stranded DNA
(ssDNA) probes recognising the K fragment, and streptavidin conjugated to fluorescent markers.
After five hours of infection endless forms of the genome were produced in cells of both genotypes
(Figure 4B). After 12 and 24 h of infection monomeric forms (represented by Q and S) were visible in
both WT and PAXX−/− cells, and the relative levels of K to Q and S fragments was similar between
genotypes. It has been suggested that cleavage of the HSV-1 genome occurs simultaneously with
its packaging into the capsid [55,56], and so the presence of the Q and S fragments after 12 and 24 h
suggested that packaging is occurring efficiently in the presence or absence of PAXX. Interestingly,
overall viral DNA levels were lower in PAXX−/− cells than in WT cells, implying that PAXX promotes
HSV-1 genome replication.
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The expression of the HSV-1 γ2 true late genes is dependent on viral genome replication [60,61]. 
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These time points were selected to investigate immediate-early gene expression, and because 
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Figure 4. PAXX does not affect the proportion of endless HSV-1 genomes, but promotes genome
replication. (A) Linear structure of the HSV-1 genome, indicating repetitive elements (a, a′, a′′) and
the S, K, and Q fragments created by cleavage with BamHI (selected restriction sites are denoted by
red lines); (B) WT and PAXX−/− cells were infected at MOI 4, and total cellular and viral DNA was
isolated. The HSV-1 Q, K, and S fragments were visualised by southern blot following digestion with
BamHI; (C) WT and PAXX−/− RPE-1 cells were infected at an MOI of 4, and genome copy numbers
were quantified using TaqMan qPCR. n = 3. Statistical significance, calculated by Student’s t-test,
is denoted by stars—** = p < 0.02, *** = p < 0.01. n = 3. Error bars denote mean +/− SEM.

3.4. PAXX−/− Cells Produce Fewer Viral Genomes than WT Cells

Many DDR proteins promote replication of the HSV-1 genome [36,42,57–59]. To follow up on our
observation that PAXX−/− cells produced less viral DNA than their WT counterparts, we quantified
viral genome production directly by using qPCR. WT and PAXX−/− RPE-1 cells were infected at MOI
4 with HSV-1, and viral and cellular DNA was isolated at various times post-infection. Primers and
probes recognising the promoter regions of ICP0 and GAPDH were used so that only genomic DNA,
and not mRNA, would be amplified. After eight and 12 h of infection, there were significantly more
genomes per cell in WT RPE-1 cells than in PAXX−/− cells (Figure 4C). These data supported the
observations made with southern blotting (Figure 4B), and suggested that PAXX may contribute to
creating an environment that promotes HSV-1 genome replication.

3.5. Viral Gene Expression and Protein Production Are Unaffected by PAXX

The expression of the HSV-1 γ2 true late genes is dependent on viral genome replication [60,61].
We therefore hypothesised that HSV-1 infection in PAXX−/− cells might result in altered late gene
expression because genome replication is impaired in PAXX−/− cells. To examine this possibility,
WT and PAXX−/− cells were infected at MOI 5, and RNA was isolated after four or eight hours
of infection. These time points were selected to investigate immediate-early gene expression, and
because southern blotting and qPCR (Sections 3.3 and 3.4) had demonstrated that DNA replication
had started by six hours and so late gene expression should also be observed. We used qPCR to
analyse the expression of immediate-early (ICP27 and ICP4), late (gB) and true late (US11) genes.
Perhaps unexpectedly, the expression of all genes analysed was similar between genotypes (Figure 5).
These data suggested that PAXX does not affect the transcription of these viral genes.
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and harvested for protein at various times post infection. An anti-HSV-1 antibody was used, along 
with specific antibodies. (E) As in (D), but in MEFs. Error bars denote mean +/− SEM. n = 3. 
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immunoblotted for the immediate early proteins ICP4 and ICP0, and the γ2 true late protein VP5. 
Total protein levels were similar between genotypes for all gene products analysed (Figure 5D). In 
addition, samples were immunoblotted using an antibody raised against HSV-1 virions, which is 
thought to primarily recognise late gene products in the capsid. Again, there were no differences 
observed in the viral protein levels between the WT and PAXX−/− cells (Figure 5D). The experiment 
was also carried out in MEFs; in contrast to the observations in RPE-1 cells there was slightly higher 
expression of some viral proteins in WT MEF cells observed with the anti-HSV-1 antibody as early as 
six hours post-infection (Figure 5E). This became more marked after 24 and 48 h of infection, although 
not all proteins were affected. Together these data suggested that viral transcription in RPE-1 cells is 
unaffected by PAXX, but that PAXX may play some role in regulating viral gene expression in MEFs. 
In addition whole cell lysates from RPE-1 WT and PAXX−/− cells infected with a high MOI (MOI 4) 
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The observations that there are fewer viral genomes in PAXX−/− cells than in WT cells, and that 
PAXX may promote viral protein production suggested that PAXX might alter the production of 
infectious HSV-1 virions. To test this hypothesis, WT and PAXX−/− RPE-1 cells were infected at an MOI 
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Figure 5. Effects of PAXX on viral gene transcription and protein production. Wild type (WT) or
PAXX−/− RPE-1 cells were infected at an MOI of 5, and RNA extracted. qPCR was used to quantify
viral transcription of (A) ICP27; (B) ICP4; (C) gB and US11; (D) RPE-1 cells were infected at MOI 1 and
harvested for protein at various times post infection. An anti-HSV-1 antibody was used, along with
specific antibodies. (E) As in (D), but in MEFs. Error bars denote mean +/− SEM. n = 3.

To complement the observations made with gene transcription, we also investigated the effect
of PAXX on HSV-1 protein expression during infection. WT and PAXX−/− RPE-1 cells were infected
at MOI 1, and protein was harvested at various times post-infection. Whole cell lysates were then
immunoblotted for the immediate early proteins ICP4 and ICP0, and the γ2 true late protein VP5.
Total protein levels were similar between genotypes for all gene products analysed (Figure 5D).
In addition, samples were immunoblotted using an antibody raised against HSV-1 virions, which is
thought to primarily recognise late gene products in the capsid. Again, there were no differences
observed in the viral protein levels between the WT and PAXX−/− cells (Figure 5D). The experiment
was also carried out in MEFs; in contrast to the observations in RPE-1 cells there was slightly higher
expression of some viral proteins in WT MEF cells observed with the anti-HSV-1 antibody as early as
six hours post-infection (Figure 5E). This became more marked after 24 and 48 h of infection, although
not all proteins were affected. Together these data suggested that viral transcription in RPE-1 cells is
unaffected by PAXX, but that PAXX may play some role in regulating viral gene expression in MEFs.
In addition whole cell lysates from RPE-1 WT and PAXX−/− cells infected with a high MOI (MOI 4)
were immunoblotted using an anti-HSV-1 antibody and showed no difference in protein expression
between the two cell types (Supplementary Figure S2). A high MOI infection experiment was omitted
in MEFs, as infecting them at MOI 4 led to rapid cell detachment and death.

3.6. PAXX−/− Cells Produce More Infectious Virions than WT Cells

The observations that there are fewer viral genomes in PAXX−/− cells than in WT cells, and that
PAXX may promote viral protein production suggested that PAXX might alter the production of
infectious HSV-1 virions. To test this hypothesis, WT and PAXX−/− RPE-1 cells were infected at
an MOI of 0.01 or 4 with HSV-1, and at various times after infection both cell-associated virions and
virions free in the growth medium were titrated together onto vero cells to assess viral titres. PAXX−/−
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cells consistently produced more infectious virions than WT cells across various time points and at
both high and low MOIs (Figure 6A,B). Paxx−/− MEFs also produced significantly more infectious
virions than WT cells after 48 h of infection at MOI 0.01 (Figure 6C). These data thereby established
that PAXX acts to restrict the production of infectious virus in both human and murine cells.
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Figure 6. PAXX restricts production of infectious HSV-1 virions. WT or PAXX−/− RPE-1 cells were
infected with HSV-1 at MOI (A) 0.01, or (B) 4, and infectious virions were titrated onto vero cells to
determine virus titre (plaque-forming units; PFU); (C) WT or Paxx−/− MEFs were infected with HSV-1
at an MOI of 0.01, and infectious virions were titrated onto vero cells. Statistical significance, calculated
by Student’s t-test, is denoted by stars—* = p < 0.05, *** = p < 0.01. n = 3. Error bars denote mean
+/− SEM.

4. Discussion

PAXX acts to restrict HSV-1 infection by reducing the efficiency by which infectious virions are
formed in cells. In the presence of PAXX, there are increased levels of viral DNA and some viral
proteins, but a reduced amount of infectious virus particles compared with cells that lack PAXX.
This increase in virus production in the absence of PAXX is not due to gross changes in viral genome
structure or related to viral gene expression. It is not yet clear how PAXX acts to alter the efficiency of
HSV-1 infection. PAXX possibly interacts with a so far unknown target, sequestering the viral DNA
in the cells in a way which prevents the release of fully infectious virus particles. In contrast, further
upstream in the viral replication pathway, PAXX might have a supportive role in the HSV-1 life cycle in
a similar manner to its role as a stabiliser in c-NHEJ. Our observations are in keeping with the growing
literature on the important function of DDR proteins in regulating multiple aspects of virus infection.

A number of cellular DDR proteins either positively or negatively affect HSV-1. The mechanisms
can generally be divided into those affecting HSV-1 genome replication and transcription [30], and those
which are linked to the innate immune response [27]. Efficient replication of the HSV-1 genome is
limited in the absence of host factors such as ATM, MRN, or WRN [57,58,62], indicating that such
factors promote productive infection. By contrast, DDR proteins such as DNA-PKcs inhibit replication,
probably through recognition of nicks and gaps in the dsDNA HSV-1 genome [28]. In an attempt
to explain these observations, specific DDR pathways can be described as beneficial or detrimental
for HSV-1 infection, but they can also have more complex roles. Indeed, although the HSV-1 protein
UL12 activates the single-strand annealing (SSA) pathway of DNA DSB repair, it decreases rates
of HR and c-NHEJ [63]. This is despite the fact that many HR proteins are required for efficient
HSV-1 production [57,58,62]. The c-NHEJ pathway, which includes PAXX, is another good example
of a pathway with both beneficial and detrimental components in the context of HSV-1. DNA LIG4
and XRCC4 promote HSV-1 replication [36], while DNA-PKcs and the Ku heterodimer restrict
infection [28,46,58]. Furthermore, we have shown that the impact of PAXX is different from that
of other c-NHEJ proteins, including LIG4 and XRCC4, despite the structural homology between PAXX
and XRCC4 [6]. Although PAXX, LIG4, and XRCC4 all support viral genome replication, knockdown
of LIG4 or XRCC4 reduces genome circularisation and reduces the output of infectious virus [36],
whereas knocking out PAXX has no discernible effect on the formation of endless genomes, but instead
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increased infectious virus production. These data imply that PAXX plays a hitherto undocumented
role during HSV-1 infection.

PAXX is not the only DDR protein shown to have both beneficial and restrictive functions during
HSV-1 infection; ATR is recruited to viral replication centres and promotes viral gene expression and
production of infectious virus, yet the signaling downstream of ATR is inhibited by HSV-1 [39,64].
It therefore seems possible that LIG4 and XRCC4 regulate downstream DDR signaling differently
to PAXX. HSV-1 may regulate DDR signaling pathways because they direct diverse cellular stress
responses, such as the induction of innate immune responses, cell death and control of the cell
cycle, all of which can affect HSV-1 infection. In many instances DDR pathways also regulate
each other, and so pathways beneficial to the virus may be inhibited by other DDR pathways.
HSV-1 induces the FA pathway, which may assist in the suppression of antiviral c-NHEJ functions [35]
such as DNA-PKcs-mediated inhibition of the HR pathway [65]. Whether HSV-1 genome replication
uses rolling circle replication or recombination to create concatemers remains controversial [30,34],
but recombination is at least thought to be important in concatemer formation. Therefore the loss
of PAXX might also relieve inhibition of pathways such as HR that can promote HSV-1 infection.
However, we have found that there is no increase in the formation of endless HSV-1 genomes in
PAXX−/− cells (Figure 4), suggesting that PAXX-dependent regulation of the HR pathway is not
responsible for reduced infectious virion production. It is, however, interesting to note that the change
in PAXX distribution that we observed in Figure 2 occurs at a similar time to the first detection of
endless forms of the viral genome (i.e., between 4 and 6 hours post-infection). It may therefore be that
by this time PAXX has fulfilled its functions that are beneficial to HSV-1 replication, and it is removed
from the nucleus to avoid its subsequent inhibitory role in HSV-1 infection.

Although recombination is thought to be important in the formation of endless HSV-1 genomes,
LIG4 and XRCC4 have functions in this process [36] and it has been suggested that DNA-PKcs may
also be involved [28]. We had hypothesised that PAXX might increase ligation of the viral genome,
and thereby create and stabilise structures such as endless genomes that cannot be packaged, but the Q
and S fragments detected by Southern blotting (Figure 4) are indicative of successful packaging of the
genome into the viral capsid because cleavage is thought to occur concurrently with packaging [36,66].
Circularisation of the genome has been linked to latent infection [67,68], and so if PAXX does contribute
to genome circularisation, this could also explain why WT cells produce fewer infectious virions.
However, we observed comparable levels of viral transcription between WT and PAXX−/− cells,
which does not support this explanation.

The observation that viral transcription is comparable in WT and PAXX−/− cells has other
implications. DDR proteins, such as IFI16, RNF8, RNF168, and DNA-PKcs have been linked to the
silencing of viral gene expression, largely by chromatinisation of the viral genome [30,69,70]. In the case
of IFI16 this occurs quickly enough to inhibit early gene transcription. No differences were observed
in the transcription of any viral gene tested in PAXX−/− cells (Figure 5). With regard to true late (γ2)
HSV-1 genes, such as US11, only being expressed following DNA replication [71], it is interesting that
the reduced rate of viral genome replication in PAXX−/− RPE-1 cells did not result in differences in
true late viral gene expression or protein production. To our knowledge the relationship between the
number of viral genomes and levels of gene expression has not been characterised previously, so we
cannot say that a correlation should necessarily be observed. That said, equal levels of transcription
despite discrepancy in genome copy number may indicate that a higher proportion of the genomes
produced in the WT cells are not transcriptionally functional. Immunoblotting showed that in RPE-1
cells, protein production was also unaffected by PAXX, although some viral proteins were expressed
to a higher level in WT MEFs.

Some DDR proteins also act as DNA sensors, stimulating an innate immune response following
the detection of cytoplasmic or viral DNA (reviewed [27]). An innate immune response can also be
triggered by DNA damage [72–74]. DNA-PKcs [16,17], IFI16 [14], Ku70 [19], and Rad50 [75] are DDR
proteins involved in inducing the innate immune response to viral infection, and we hypothesised that
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PAXX may play a similar role. However, we did not observe reduced stimulation of IFN-β or CXCL10
transcription in response to ∆ICP0 HSV-1 infection in PAXX−/− cells.

Together, the data presented here demonstrate that PAXX restricts HSV-1 infection by reducing
the production of infectious virions. It is therefore tempting to speculate that HSV-1-induced changes
in the intracellular distribution of PAXX may be indicative of viral evasion of this restrictive effect of
PAXX. However, we have also documented that PAXX positively contributes towards efficient HSV-1
genome replication. The roles of PAXX during HSV-1 infection that we have observed appear to be
independent of changes to the formation of endless genomes, and are not linked to changes in viral
gene expression. PAXX is also not required for the stimulation of IFN-I and cytokine transcription
following HSV-1 infection. While further work is required to disentangle what are likely to be multiple
roles for PAXX during HSV-1 infection, our observations contribute to the increasing evidence that
DDR proteins are important for the regulation of multiple stages of virus infection.
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