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ABSTRACT Explosive growth in the amount of genomic data is matched by increasing power of consumer-
grade computers. Even applications that require powerful servers can be quickly tested on desktop or laptop
machines if we can generate representative samples from large data sets. I describe a fast and memory-
efficient implementation of an on-line sampling method developed for tape drives 30 years ago. Focusing on
genotype files, I test the performance of this technique on modern solid-state and spinning hard drives, and
show that it performs well compared to a simple sampling scheme. I illustrate its utility by developing a
method to quickly estimate genome-wide patterns of linkage disequilibrium (LD) decay with distance. I provide
open-source software that samples loci from several variant format files, a separate program that performs LD
decay estimates, and a C++ library that lets developers incorporate these methods into their own projects.
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Growth in the amount of genomic data available is matched by in-
creasing power and storage space of consumer-grade computers. Using
such low-cost systems to perform genomic analyses can speed devel-
opment cycles and empower users operating under economic con-
straints. The range of such analyses can be extended with light-weight
software tools that carefully manage system resources.

Collections of single-nucleotide polymorphisms (SNPs) and copy
number variants (CNVs) genotyped in groups of individuals are fun-
damental tonumerousapplications.Thesedata sets are stored inavariety
of formats (The International HapMap Consortium 2003; Purcell et al.
2007; Danecek et al. 2011) and often contain millions of variants gen-
otyped in thousands of individuals. It is often desirable to create random
subsets of such large polymorphism tables. For example, relatively small
samples can be used to quickly test software pipelines. In addition, when
using genome-wide SNPs to predict phenotypes of individuals using
genome selection methods, it is often important to learn the minimal
marker set that achieves good accuracy (Spindel et al. 2015). Finally,
repeated creation of data subsets is a variant of the jack-knife procedure
(Efron 1979) and can be used to construct empirical distributions of
genome-wide statistics.

To be useful for a wide range of applications, any sampling scheme
must meet several criteria. The subset generated must be in the same
order as in the original data set. Variants must be sampled without
replacement, each locus has to be picked with the same probability, and
the size of the resulting data setmust always reflect the value required by
theuser.The timerequired tosamplevariantsmustgrowatmost linearly
with the number of polymorphisms in the sub-sample. Furthermore,
because the original data setmay be very large, the time required to pick
locimust be as insensitive as possible to the overall size of the data set. In
addition, since my aim is to empower researchers with limited access to
powerful hardware, the implementation should minimize the use of
system resources, particularly avoiding reading large files intomemory.
The general problem of ordered on-line sampling of records from files
was solved 30 years ago (Vitter 1984, 1987). Unfortunately, this work is
relatively unknown with limited application in computer system man-
agement and sampling of business data streams. No genetics papers
appear to reference Vitter’s articles and I was unable to find any soft-
ware that uses this approach for biological data.

I implemented a version of Vitter’s algorithm (Vitter 1987) that
samples loci from a variety of variant file formats while minimizing
system resource use. I examine themethod’s performance compared to a
simple sampling scheme and provide an example application to estimate
genome-wide patterns of linkage disequilibrium. I also provide a library
that allows developers to incorporate these methods into their software.
All source code, data, and analysis methods are openly available.

METHODS

Sampling scheme
The original motivation for the ordered on-line sampling I am employ-
ing here was for random selection of records from tape drives. The
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fundamental constraint was that reading was slow compared to di-
rectional searching, and rewinding was undesirable. Thus, sampling of
records as theywere arrangedon the tapewas themost efficient solution.
More modern incarnations of this problem include sampling of data
streams, such as stock tickers or social media posts. Additionally,
modern solid state drives support direct access to specific addresses
within afile. Thismakes themanalogous to tape drives in that reading of
records dominates seeking within a file.

Vitter’s main insight was to derive a scheme that samples the num-
ber of records to skip given how many remain to be picked and the
number left in the file (Vitter 1984, 1987). There are additional speed-
ups available if one is willing to store the index values in an array, but I
opted to conserve memory instead and save the sampled records to the
output file right away. Preliminary tests suggested that file I/O time
dominates random number generation even on a machine with a solid
state drive (SSD, results not shown), so the increase in sampling speed
would not be noticeable.

Other than the above deviation, I implemented Vitter’s method D
as described in the Appendix A, algorithm A2 in Vitter (1987). The
implementation uses a hardware random number generator (RNG)
(https://software.intel.com/en-us/articles/the-drng-library-and-man-
ual). If not supported, the software substitutes the 64-bit Mersenne
Twister (Matsumoto and Nishimura 1998) seeded with the proces-
sor’s time stamp counter. The decision is made automatically at run
time and does not involve user input.

Included software
This report describes three pieces of software: aC++ library libsampFiles
and two stand-alone programs: sampleSNPs produces ordered samples
from variant files and sampleLD uses locus samples to calculate distri-
butionsof linkagedisequilibriumstatistics.All software is releasedunder
the BSD three-part license. The whole set of programs can be trivially
compiled using the included Makefile, with no external dependencies
required. Compilation was tested onMac OS High Sierra and FreeBSD
(version 11.1-RELEASE) with llvm/clang v9.0, on RedHat Linux using
theGNUcompiler collection (gcc version 4), andonUbuntu Linuxwith
gcc version4and5.Theeasiestway toobtainand install the latestversion
of the package is to clone the GitHub repository (https://github.com/
tonymugen/sampleSNPs/).

C++ class library: The libsampFiles library allows users to easily
include in their own software support for sampling loci from most
commonly used file formats (.tped and .bed from plink (Purcell et al.
2007), VCF (Danecek et al. 2011), and HapMap (The International
HapMap Consortium 2003)), as well as a generic text and binary file.
Reading and writing in these formats is supported, as well as limited
manipulation (see the reference manual for details). Format conver-
sion is not supported at present. Random number generators and
population indexing facilities are also available. The library is con-
structed using hierarchical classes and is built with extensibility
in mind. File manipulations are implemented to reduce random-
access memory (RAM) use, without unduly reducing execution speed.
The trade-offs were tested on a laptop with a solid state drive (SSD)
and 16 gigabytes of RAM. Performance may differ on other system
types.

In addition to the software, a directory with example SNP files is
provided in the distribution for testing purposes. The project GitHub
page (https://github.com/tonymugen/sampleSNPs/) provides a mech-
anism for users to report problems. Detailed library interface documen-
tation is available at https://tonymugen.github.io/sampleSNPs/.

Sampling variants: Iusedthe libsampFiles library towritea stand-alone
program, sampleSNPs, that subsamples variant files. All formats men-
tioned above are supported. The program runs via command line using
standard Unix-style flags to pass execution parameters. The README
file included with the project and available on the GitHub documen-
tation page has detailed instructions. Sampled SNPs are saved into a file
in the sameformat as theoriginal.Auxiliaryfiles, if present (e.g., .famand
.bim for .bed), are modified or copied as appropriate.

Linkage disequilibrium among sampled loci: As an example of an
application of locus sampling, I implemented a stand-alone program
that estimates genome-wide LD decay with between-locus distance. A
full accounting of this relationship would require the calculation of
linkage disequilibrium statistics for all Np ¼ nðn2 1Þ=2 pairs of loci,
where n is the number of genotyped variants. This task quickly becomes
unmanageable as the number of genotypes in the data set grows. One
solution, implemented in plink (Purcell et al. 2007), is to calculate LD
only among loci falling within a neighborhood window on a chromo-
some. A complementary approach, implemented here, is to sample 2Ns

(Ns is the desired number of sampled pairs) loci using Vitter’s method
and calculate LD between consecutive pairs. Justification for this ap-
proach is provided in Appendix A. Once a pair of loci is picked, sam-
pleLD calculates two linkage disequilibrium statistics: r2 and D9
(Lewontin 1964). Missing data are removed (only individuals success-
fully genotyped at both loci are considered). If there are not enough
genotypes to produce ameaningful result, “-9” is reported. If a file with a
population index is provided, the program will calculate LD statistics
within each population and report them separately.

Unlike sampleSNPs, sampleLD currently only supports plink .bed
files as input. The auxiliary .bim and .fam files are also required. A
detailed description of input file requirements, command line flags, and
output format are in the README file includedwith the project and on
the documentation page.

Test data
Execution timing was performed with SNP files extracted from the Dro-
sophila genome nexus (Lack et al. 2016). I used the Zambia and France
populations from that data set. LD measurements were performed
on cultivated rice (Oryza sativa) genotypes (McCouch et al. 2016). I
extracted a random sample of 100 indica (IND) and 100 tropical japonica
accessions, and filtered out loci with minor allele counts less than two. I
estimated the smoothed relationships between LD and distance, with
their confidence intervals, using the ggplot2 R package (Wickham 2009).

Data availability
File S1, Timing of Sampling Schemes, is an archive of the directory that
contains theR andC++ code, aswell as datafiles, necessary to reproduce
the algorithm timing analyses presented in this article. Compilation and
running instructions are included. File S2, LD Analyses, is an archive of
thedirectory thatcontains theRcodeanddatafilesnecessary toreproduce
the linkage disequilibrium results presented in this article. File S3,
Software Source Code, is an archive of the directory that contains the
source code of software described in this paper. Compilation and testing
instructions are included.Anup-to-date version canbe foundonGitHub
(https://github.com/tonymugen/sampleSNPs/). Supplemental material
available at Figshare: https://doi.org/10.25387/g35968987.

RESULTS AND DISCUSSION
I required ordered random samples from SNP files for my own work,
mainly to quickly test software during development. For the samples to
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be representative of the whole data set, I needed records to be sampled
uniformly without replacement and to be in the same order as in the
original file. After an extensive search I was unable to find existing
software that performs this task. The widely-used command-line tool
plink (Purcell et al. 2007) does have a function (accessible via the–thin
“flag”) that extracts a random sample of SNPs while preserving order.
However, the program simply examines each locus and includes it with
the specified probability. Thus, the resulting sample varies in size (Sup-
plemental Figure S1) from run to run.

Ordered sampling of loci
Given that no other software appears to be available, I set out to
implement a light-weight solution that quickly generates ordered sam-
ples without replacement even from very large data sets. The simplest
idea is to examine every variant record in turn and decide, given the
current number of loci picked, the number remaining in the input file,
and the total to be sampled, whether to pick the current one (Fan et al.
1962). The selected records are read into memory and saved to the
output file. While this solution is obvious and easy to implement, it
requires an examination and a (pseudo)random number sampling step
for each line in the input file.

An alternative approach has been proposed by Vitter (Vitter 1984,
1987). The idea is to decide how many loci to skip, given the current
number already picked and remaining to be examined. Vitter (1987)
demostrated that this approach (Vitter’s Method D) is faster than the sim-
ple line-wise decision-making outlined above (referred to as Method S).
However, the tests were performed 30 years ago. The files were stored
on tape, and random number generation was computationally expen-
sive. Therefore, I implemented both Method S and Method D in

C++, using comparable language facilities (see Methods and Supple-
mental files for details), and tested them in a number of scenarios to
determine which scheme is preferable on modern-day computers.

Several variables can influence algorithm execution speed. Random
(or pseudorandom) number generation is used extensively to generate
samples from required distributions. However, code profiling (not
shown) revealed that at least the hardware RNG I chose for this
implementation (seeMethods for details) is never the rate-limiting step,
evenwhenfiles are storedona fast solid statedrive.Rather, it isfile input/
output that takesmost timeduringagivenexecutioncycle.Thereare two
parameters to consider when we investigate file read/write timing. One,
storagecanbeeitheronasolid-state (SSD)ora spinningdrive (HDD).The
former is generally faster and allows for random file access. Second, the
files can be either in a binary format (I use the popular and highly-
compressed plink .bed), or in plain text. The important difference is that
lines in files with text records are in general variable in length. Thus, if we
want to skip several recordswehavenochoicebut to readeach row in turn
anddiscardunwanted loci. Incontrast,binary formatsusefixed-sizefields,
leading to uniform row sizes. It is then trivial to compute the number of
bytes to skip without reading before arriving at the desired record.

Given that I am interested in creating a tool that can be used on
personal workstations and laptops, and since solid state drives have
become the standard choice, I focus on execution timing on a laptop
(mid-2015 15-inch MacBook Pro) with an SSD. However, I also
replicated the results on a 2014MacMini with anHDDwith essentially
the same results (see Supplemental Figures 2 and 3). I first held the input
file size constant and varied the number of loci sampled. As shown
in Figure 1, time taken by both Method D and Method S grows

Figure 1 Execution timing with samples of
varying size. (A) Execution time (y-axis) as a func-
tion of the number of samples picked from the
file (x-axis). The total number of SNPs is held
constant. The input file is in a binary (.bed) for-
mat. (B) The ratio of the Method S to Method D
execution time as a function of the number of
samples taken from a binary file (the timing data
taken from panel A). (C) Arranged the same as
panel A, but the input file is in a text (.tped)
format. (D) The same as B, but using the .tped
format. Distributions are derived from 15 repli-
cate runs.
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approximately linearly with the number of loci sampled. This is the case
for both binary and text files. Method D (Vitter’s skip-over algorithm)
outperforms the simpler Method S several-fold when the number of
records is much smaller than the total in a binary file. This is not
surprising, given that in this case Method S examines and discards
many more loci for each one picked. As expected, the difference largely
disappears when we sample from a text file. This is because both meth-
ods have to at least read and discard file lines one at a time. Interestingly,
I obtained similar results on an HDD (Figures S3 and S2), even though
a spinning drive should not allow the same level of random access as an
SSD. It is notable that in every caseworkingwith a binaryfile is about an
order of magnitude faster, even though I am sampling more loci from a
bigger file (500,000 loci in the binary vs. 100,000 in the text file). Finally,
although the performance benefit of Method D is not always dramatic,
it never underperforms Method S. The relatively small amount of extra
time taken byMethod S likely reflects the additional operations that are
necessary to decide whether to include a given record.

Given that Vitter’s method decides ahead of time how many loci to
skip before sampling, I would expect that it should be relatively in-
sensitive to the total size of the input data set. Indeed, this is the case for
binary file sampling (Figure 2, panels A and B). Increasing input file size
fivefold results in no measurable rise in execution time. Method S
execution time, and that of both methods on a text file (Figure 2, C
and D), grows approximately linearly with input size. Again, MethodD
is always at least as fast as Method S.

GiventhatMethodSnever consistentlyoutperformsVitter’sMethod
D, I included only the latter in my implementation. While I do include
the facility to read various text variant file formats, it is clear that using
the .bed binary files, ideally on an SSD, results in optimal performance.

Linkage disequilibrium distributions
Estimating rates of LD decay with distance on a chromosome are
necessary, for example, in genome-wide association studies where
such rates determine peak resolution. Because calculating LD between
all pairs of loci is infeasible and unnecessary, a typical approach is
to estimate linkage statistics in sliding windows. This technique is
employed in plink. I implemented an alternative approach, picking loci
according to Vitter’s algorithm (see Methods for details) and then
calculating LD statistics between consecutive variants in the sample.
To test my implementation, I used a data set of 638,699 SNPs from the
rice high-density array (McCouch et al. 2016, see Methods for
details). I first ran plink to calculate r2 and D9 between loci no more
than 500 kb or 20 SNPs apart. This yielded more than 12 million
locus pairs, stored in a 1.2 gigabyte file. The relationships between
linkage disequilibrium and distance are depicted in Figure 3 (A, B).
As expected, precision of LD estimates between distant loci dimin-
ishes due to undersampling. I then analyzed the same data set using
my approach, sampling 30,000 SNP pairs (the resulting file occupies
a mere 1.4 megabyte). While the confidence intervals from these
estimates are wider (Figure 3A, B), the pattern of LD decay is the
same as that captured by the considerably larger sample set produced
by plink. Thus, my light-weight approach may be the best option
when great precision is not required and computational resources are
limited.

As the number of locus pairs picked for the LD analysis increases,
the average distance between them gets smaller. This leads to an
increased precision of LD estimates between SNPs close to each other,
at the expense of undersamling and hence diminished accuracy of
disequilibrium calculations between distant loci. The user should keep

Figure 2 Execution timing and total record number.
(A) Execution time (y-axis) of sampling 50,000 SNPs
as a function of the total number of records in the
(binary .bed) file. (B) The ratio of Method S to
Method D timing, derived from the data in panel
A. (C) The same as (A), but for sampling 10,000 loci
from a text .tped file. (D) Method S to Method D
execution time ratio for the data from panel C. Dis-
tributions reflect 15 replicate runs.
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this trade-off inmindwhen selecting the sample size. A further increase
in LD estimate precision between distant variants can be achieved if one
collects several sparse samples.However, caremustbe taken toeliminate
redundant locus pairs because sampling without replacement is not
guaranteed in this case.

An extra feature of my sampleLD program, unavailable in plink,
is the ability to make separate LD estimates for each population
present in a set of individuals. I illustrate this possibility by estimating
linkage disequilibrium in indica and tropical japonica rice varietal
groups (Figure 3C, D). It is well established (McCouch et al. 2016)
that LD levels are lower in indica. My analyses recapitulate this
pattern.

The software described in this report enables users to quickly
generate subsets of large SNP or CNV data sets, opening the door
to numerous applications that constrain resources available for genetic
data manipulation. For example, it enables quick testing of bioinfor-
matics pipelines on representative data subsets before full-scale de-
ployment. This work exemplifies the kinds of approaches needed to
speed discovery cycles and empower researchers lacking access to
expensive hardware.

WEB RESOURCES

Project name: sampleSNPs
Project homepage: https://github.com/tonymugen/sampleSNPs/
Project documentation: https://tonymugen.github.io/sampleSNPs/
Operating systems: Unix-like (Linux, BSD, Mac OS)
Programming language: C++
Other requirements: No dependencies other than the C++11 stan-

dard library
License: BSD three-part
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Figure 3 Linkage disequilibrium among sampled loci. The r2 (A, C)
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APPENDIX A

LD SAMPLE SCHEME DERIVATION
For the sample to accurately reflect whole-genome values, the probability of picking eachpairmust be equal. Furthermore, pairsmust be sampled

without replacement. To derive such a scheme, I order the list of all possible locus pairs as theywould appear in a pair-wise relationshipmatrix. Since
LDmeasures are symmetric,we needonly concern ourselveswith the upper (or, equivalently, lower) triangle of thismatrix. Thefirst rowof the upper
triangle lists the pairings of thefirst locus on a chromosomewith alln2 1 subsequent loci other than itself. Next row listsn2 2 relationships between
the second variant and the rest, excluding itself and the first locus. The process continues until we reach the last locus, which has no additional pairs.
Sampling from this list will yield the desired uniform representation of locus pairs. Each variant on the list of pairs is represented n2 i times in a
row, where i ¼ 1; . . . ; n2 1 is the index of the locus position. Thus, instead of going through the pairs list (which contains Np ¼ nðn2 1Þ=2
elements) we can use a two-step scheme.We start by picking the first locus in a pair by sampling variants with weights reflecting the length of their
run in the pairs list. We would then randomly pick another variant from the remaining loci. Finally, we go back to the first SNP or CNV in the pair
and use it to sample the jump length to the next locus according to a weighted algorithm and repeat the process until we have the desired number of
pairs. The initial sampling weight for locus i under this scheme is

wi ¼ piP

i
pi
;

where pi is the probability of sampling locus i. Since, as mentioned above, each variant is represented n2 i times on the list,

pi ¼ n2 i
Np

¼ n2 i
nðn2 1Þ=2

Since pi are probabilities,
P

ipi ¼ 1: This leads to the expression for wi :

wi ¼ piP

i
pi

¼ pi

¼ 2ðn2 iÞ
nðn2 1Þ

¼ 2
n2 1

2
2i

nðn2 1Þ

� 2
n
2

2i
n2

when  n  is  large

Thus, the deviation from an equal-weight random sampling (with all wi ¼ 1=n) depends solely on the value approximately 2i=n2; which is tiny
for large data sets (n$ 100; 000) we typically encounter.

According to the schemepresentedabove, oncewehave thefirst locus in a pair,wewould then sample randomly fromthe loci further downon the
chromosome to obtain the second variant for LD calculations. The next roundwould then require us to go back in the file to the first locus in the pair
and continue with our scheme. This step is potentially computationally expensive, especially for text files with variable-width lines. To eliminate this
complication, I further simplify the algorithm by instead usingVitter’smethod to sample 2Ns (Ns is the desired number of sampled pairs) loci. I then
calculate LD between consecutive pairs of variants. A slight correction is needed only whenmore than one chromosome is present in the data set. In
such cases, locus pairs that are located on different chromosomes are discarded and the additional pairs are sampled to restore the total to the
required value. The resulting scheme approximates true uniform sampling very well when data sets are large and sample sizes are relatively small
(preliminary tests suggested that sample sizes as large as 1/3 the total number of SNPs still yield reasonable results).
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