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A B S T R A C T   

Background: In mild traumatic brain injury (mTBI), diffuse axonal injury results in disruption of functional 
networks in the brain and is thought to be a major contributor to cognitive dysfunction even years after trauma. 
Objective: Few studies have assessed longitudinal changes in network topology in chronic mTBI. We utilized a 
graph theoretical approach to investigate alterations in global network topology based on resting-state functional 
connectivity in veterans with chronic mTBI. 
Methods: 50 veterans with chronic mTBI (mean of 20.7 yrs. from trauma) and 40 age-matched controls under-
went two functional magnetic resonance imaging scans 18 months apart. Graph theory analysis was used to 
quantify network topology measures (density, clustering coefficient, global efficiency, and modularity). Hier-
archical linear mixed models were used to examine longitudinal change in network topology. 
Results: With all network measures, we found a significant group × time interaction. At baseline, brain networks 
of individuals with mTBI were less clustered (p = 0.03) and more modular (p = 0.02) than those of HC. Over 
time, the mTBI networks became more densely connected (p = 0.002), with increased clustering (p = 0.001) and 
reduced modularity (p < 0.001). Network topology did not change across time in HC. 
Conclusion: These findings demonstrate that brain networks of individuals with mTBI remain plastic decades after 
injury and undergo significant changes in network topology even at the later phase of the disease.   

1. Introduction 

Traumatic Brain Injury (TBI) is a debilitating neurological disorder 
that results from a traumatic external impact to the head or body. TBI is 
a significant public health burden, affecting 10 million people world-
wide every year (Humphreys et al., 2013; Hyder et al., 2007). Veterans 
and those who serve in the military are at an especially high risk. Data 
from the Department of Defense revealed that from 2000 to 2011, 
approximately 4.2% of those who served in the armed forces were 
diagnosed with some form of TBI (Centers for Disease Control and 
Prevention, 2015). TBI severity is typically defined as mild, moderate, or 
severe, based on time spent unconscious and/or coma rating score, the 
duration of post-traumatic amnesia, and neuroimaging results. Of these 

categorizations, by far the most common is mild traumatic brain injury 
(mTBI), which accounts for 70–90% of all TBI cases (Leo et al., 2015). 

Though on the lower end of the severity spectrum, mTBI often pro-
duces a wide range of neurological impairments that can have long- 
lasting consequences on brain health (Dean and Sterr, 2013; Quinn 
et al., 2018). These impairments include cognitive disruptions, motor 
control deficits, and behavioral problems (Basford, 2003; Rabinowitz 
and Levin, 2014). Approximately 20–30% of mTBI cases (Shenton, 
2012) and up to 65% of moderate/severe cases (Rabinowitz and Levin, 
2014; Selassie, 2008) report chronic problems that can be detected years 
after initial recovery. These persistent deficits cause disability and 
interfere with a patient’s ability to perform day-to-day tasks (Rabino-
witz and Levin, 2014). To date, very few studies have investigated how brain 
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networks adapt to the chronic progression of mTBI (Caeyenberghs et al., 
2017), resulting in a limited understanding of how the brain reacts to this type 
of insult over a long period of time. To better elucidate this question, we 
conducted a longitudinal study of chronic mTBI to assess changes in 
brain network topology over an 18-month period. 

Functional magnetic resonance imaging (fMRI) allows the exami-
nation of neuronal activity by tracking its metabolic and hemodynamics 
consequences (Fox and Raichle, 2007), and has thus provided critical 
insights into brain function (Biswal et al., 2010; Nakamura et al., 2009; 
Raichle, 2011). With respect to mTBI, resting state fMRI (rsfMRI) studies 
have shown abnormal patterns of activity within the default-mode 
network (DMN) (Mayer et al., 2015; Zhou et al., 2012), as well as 
other resting-state networks, including the motor and fronto-parietal 
networks (Palacios et al., 2017; Stevens, 2012; Zhou, 2014). In recent 
years, functional connectivity alterations associated with TBI have been 
examined using the mathematical concepts of graph theory (Caeyen-
berghs et al., 2017). Graph theory provides a powerful framework for 
characterizing the topology of complex biological systems (Bassett and 
Bullmore, 2009; Sporns, 2018, 2013). In this perspective, brain net-
works can be thought of as graphs which are composed of sets of nodes 
(e.g. distinct brain regions), linked by sets of edges, which can be either 
structural (white matter fiber tracts) or functional (correlated activity 
between regions) in nature. Graph analysis thus allows an integrative 
approach to characterizing different properties of brain networks, 
including integration, segregation, and node centrality. 

Recent studies have shown graph theory to be a promising method to 
model brain network organization and to quantify pathological de-
viations across a variety of disorders (Caeyenberghs et al., 2017; Ajilore, 
2014; Bassett et al., 2012). In the case of TBI, there have been several 
imaging studies that have used this approach to characterize alterations 
in brain network topology in response to trauma (for reviews see 
(Caeyenberghs et al., 2017; Imms, 2019). These studies indicate that TBI 
is associated with network hyperconnectivity, characterized by 
increased density and clustering coefficient, and suboptimal global 
integration (Caeyenberghs et al., 2017; Aerts et al., 2016). While these 
are useful insights, it is important to note that there is a high degree of 
heterogeneity in findings (Caeyenberghs et al., 2017). It is likely that 
certain aspects which are unique to TBI research, such as difference in 
severity and time from injury, contribute to the divergent nature of 
findings across studies. It thus becomes important to distinguish be-
tween studies that have looked at mild vs. severe/moderate TBI, as well 
as those that have studied acute vs. chronic progression of the illness. 

One specific subgroup of TBI that has received relatively limited 
attention is chronic mTBI. While TBI is a static event, its etiology is 
better thought of as a chronic disease process (Masel and DeWitt, 2010). 
There is evidence that trauma triggers persistent neuroinflammation and 
long-term atrophy of both grey and white matter, leading to a progres-
sive degeneration of the neural substrate (Bigler, 2013; Farbota, 2012; 
Gilmore et al., 2020). For example, in a longitudinal study, Farbota 
(2012) followed individuals for up to 4 years post injury and found that, 
rather than showing just an acute period of brain degeneration, TBI 
resulted in a protracted period of brain change that lasted for years 
following trauma. These findings raise important questions about the 
chronic consequences of mTBI and indicate that neural degeneration is a 
long-term process with a time course that has not yet been clearly 
elucidated. 

To our knowledge, only two longitudinal studies using graph anal-
ysis of rsfMRI have been conducted in mTBI. Both studies used rsfMRI to 
assess brain networks immediately in the acute phase of injury and again 
at 6 months and 1 year respectively (Dall’Acqua et al., 2017; Messé 
et al., 2013). Messé et al. (2013) found significantly lower network 
modularity in patients who suffered from post-concussive symptoms 
compared to those that did not. No other differences in network prop-
erties were identified. Dall’Acqua et al. (2017) found that the acute 
phase of recovery was characterized by functional hypoconnectivity in 
the DMN (reduced network strength between controls and mTBI 

patients), and that this hypoconnectivity normalized over the course of a 
year. 

These studies offer crucial, if limited, insights into the restructuring 
of brain networks after mTBI. The present study expands on these 
findings by investigating changes in network topology in chronic mTBI 
(~20 years post trauma on average). This is the first longitudinal study 
using graph theory-based analysis to investigate the progression of mTBI 
at such a late phase of injury. The results provide an insight into how 
brain network topology continues to change even decades after initial 
recovery. 

2. Methods 

2.1. Participant demographic and clinical information 

Participants were veterans receiving services in the Minneapolis VA 
Health Care System (MVAHCS). Participants in the TBI group were 
diagnosed with mild or symptomatic TBI based on the Mayo TBI Severity 
Classification System (Malec et al., 2007) following information self- 
reported during an interview using the Minnesota Blast Exposure 
Screening Tool (MN-BEST) (Nelson et al., 2015). Participants in the 
healthy control group (HC) were veterans with no history of TBI or head 
trauma. Informed consent was obtained after the study was approved by 
the MVAHCS Institutional Review Board. A total of 139 veterans were 
enrolled in the larger longitudinal study (see (Gilmore et al., 2020) for 
overall study and sample details). Of these, 50 in the mTBI group and 40 
in the HC group were able to undergo functional MRI testing on two 
occasions separated by 18 months. Participants completed a clinical 
interview at their baseline visit that included the Mini-International 
Neuropsychiatric Interview (M.I.N.I.)(Amorim, 2000), Alcohol Use 
Disorders Identification Test (AUDIT-C)(Reinert and Allen, 2002) and 
the MN-BEST. 

2.1.1. Mild TBI severity scoring 
Ratings of mTBI likelihood and severity were assigned by consensus 

of doctoral level clinical neuropsychologists based on information 
secured by trained study interviewers using the semi-structured MN- 
BEST. Symptoms of mTBI assessed included altered consciousness (e.g., 
confusion and disorientation), loss of consciousness (LOC) <30 min, 
post-traumatic amnesia (PTA) up to 24 h, and neurological symptoms (e. 
g., headache, tinnitus, nausea, sensitivity to light or noise) immediately 
after the event. The three most significant potential blast-related and 
impact head injury events were considered, each of which received a 
severity score ranging from 0 (no concussion) to a potential maximum of 
30 (severe TBI). No score was higher than 4 (the maximum within the 
mTBI range) for a single event in the current sample. The severity scores 
for each of the reported head injury events were summed to get an 
overall mTBI severity score for each participant. 

2.2. Neuropsychological assessment 

A battery of standard tests were used to examine neuropsychological 
symptoms known to be impacted by TBI. The Depression Anxiety and 
Stress Scale (DASS-21) (Ownsworth et al., 2008) was used to assess 
affect. The Neurobehavioral Symptom Inventory (NSI) examined post- 
concussion symptoms(Belanger, 2017), and the Post-Traumatic Stress 
Disorder checklist (PCL) (Blevins et al., 2015) was used to examine PTSD 
symptoms. All scales were completed at baseline and at the follow up 
visit prior to the second scan. 

2.3. Image acquisition and preprocessing 

MRI data were acquired at the University of Minnesota’s Center for 
Magnetic Resonance Research on a single 3 T Siemens Prisma fit scanner 
(Siemens, Erlangen, Germany) equipped with 32-channel head coils. For 
each participant, T1-weighted (MP-RAGE, TR = 2400 ms, TE = 2.24 ms, 
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TI = 1060 ms, voxel size = 0.8 mm isotropic, flip angle = 8 degrees) and 
T2-weighted (SPACE sequence, TR = 3200 ms, TE = 564 ms, voxel size 
= 0.8 mm isotropic, variable flip angle) scans were acquired. A resting 
state fMRI (rsfMRI) scan was acquired after the participants were 
instructed to keep their eyes open, look at a fixation cross, and not think 
about anything in particular. The Human Connectome Project (HCP) 
aging and development protocol (HCP-A/D, Harms et al., 2018) (TR 800 
ms, TE = 37 ms, voxel size 2 mm isotropic, multiband acceleration 
factor = 8, 600 volumes, 8 min) was used for acquisition. 

Image quality for the rsfMRI data was using tools from the FSL 
toolbox (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/; v6.0.1) and custom 
MATLAB (R2017b) scripts. Preprocessing for the image quality assess-
ment consisted of motion correction and spatial smoothing (6 mm full 
width at half maximum). Framewise displacement (FD) and root mean 
variance of temporal derivative over voxels (DVARS) was calculated 
using the methods outlined in Power et al. (Power et al., 2012). Volumes 
with FD > 0.5 mm and/or DVARS > 8 were considered to have suspect 
quality, along with 1 vol before and 2 volumes which followed. The total 
number of flagged volumes within a rsfMRI scan was then computed; 
runs with>25% flagged volumes were rejected from further analysis. 

Following acquisition, the scans were pre-processed using a 
container of version 4.0.1 of the HCP minimal preprocessing pipeline 
(Glasser et al., 2013). The container can be made available upon request. 
T1-weighted and T2-weighted anatomical scans were aligned, and 
gradient distortion correction was applied. Segmentation and cortical 
reconstruction of the structural images to the cortical sheet was 
completed with FreeSurfer (v6.0.0) (Dale et al., 1999; Fischl et al., 2001, 
1999). Structural images were then output to CIFTI space (Glasser et al., 
2013). Preprocessing of the rsfMRI scans involved correcting for 
nonlinear gradient inhomogeneities and realignment of EPI volumes to 
correct for participant head motion by registration to a single band 
reference image (using the FSL tool “FLIRT” Jenkinson et al., 2002; 
Jenkinson and Smith, 2001). To correct for distortion in the phase 
encoding direction, a pair of spin echo images with AP and PA phase 
encoding polarity (with matching geometry and echo-spacing to the rest 
scan) was also acquired. These spin echo images were used to estimate a 
distortion field with the FSL tool “topup” (Andersson et al., 2003). This 
estimated distortion field was then applied to the rsfMRI volumes with 
“FLIRT”. The rsfMRI images were then registered to the T1-weighted 
and T2-weighted images, and finally to MNI space. To complete the 
minimal pre-process of the rsfMRI scan, its MNI registered volumes were 
resampled onto cortical surfaces and extracted to CIFTI space. 

The final major step, upon completion of both the structural pipeline 
and minimal functional pipeline, was to correct temporal artefacts 
within the rsfMRI time series. First, the rsfMRI time series was linearly 
detrended with a high band pass filter cutoff of 2000s with a slow roll off 
(Smith et al., 2013). The fMRI data, including the rs-fMRI, was then 
concatenated across scans within a given scanning session so as to 
provide more data as input to perform spatial independent component 
analysis with the FSL tool “MELODIC” and “FIX” (Griffanti et al., 2014; 
Salimi-Khorshidi et al., 2014) and to yield better separation of “signal” 
and “noise” components. Once “FIX” had classified the spatial compo-
nents as “signal” or “noise”, both component types were regressed into 
the data and the resulting “noise” spatial maps were multiplied by the 
associated time series and subtracted from the original dataset. Finally, 
following the ICA + FIX process, surface-based functional alignment was 
run on the ICA + FIX cleaned data with the tool MSMAll (Robinson et al., 
2014). MSMAll employed myelin maps, rsfMRI network maps, and 
rsfMRI visuotopic maps to align a participant’s cortical data to a group 
template. Once complete the MSMAll and ICA + FIX fMRI concatenated 
data was dissociated into each respective fMRI scan and this rsfMRI data 
was used for subsequent analyses. Prior to the final analysis, individuals 
who exhibited > 25% flagged volumes (image volumes deemed to have 
an excess amount of noise artifacts) were dropped from the sample. The 
final sample size was 42 mTBI and 33 HC. We found no significant 
group differences in the number of subjects dropped or percent noisy 

volumes. 

2.4. Brain network construction 

Graph theory analysis was applied to resting state fMRI data using a 
multivariate approach (Fig. 1). Functional connectivity was computed 
by taking the absolute value of the Pearson’s correlation between all 
possible pairs of time series, creating a 419 × 419 (N × N) connectivity 
matrix based on a combination of the 400 ROI Schaefer cortical 
(Schaefer et al., 2018) and 19 ROI Harvard-Oxford subcortical (Desikan 
et al., 2006; Frazier, 2005; Makris, 2006) atlases using the tool MAC-
CHIATO (https://github.com/tjhendrickson/MACCHIATO). The raw 
functional connectivity matrices for each subject were then thresholded 
and binarized to facilitate network topology analysis. We applied a 
thresholding method for each graph which kept only statistically sig-
nificant connections between nodes. This was achieved by testing the 
null hypothesis that the correlation coefficient at each link was signifi-
cantly different from zero between any node pairs. Two nodes were 
considered functionally connected if their correlation coefficient was 
significant at p < 0.05 level, resulting in an adjacency matrix G con-
taining information about the connectivity structure of the network. 
Correction for multiple comparisons over all entries in the matrices for 
each session was performed using the linear step-up procedure for false 
discovery rate (FDR). After thresholding, networks were then binarized 
by assigning a 1 to significant links (edges) and a 0 to non-significant 
links. 

2.5. Graph theory analysis 

The Brain Connectivity Toolbox (Rubinov and Sporns, 2010) and our 
own custom scripts were used to compute graph metrics on binarized 
networks. Networks were analyzed using multivariate graph metrics 
which characterize global network topological features such as global 
integration and functional segregation. Network density and global ef-
ficiency were used to assess global integration, while clustering coeffi-
cient and modularity were used to assess functional segregation. The 
graph theory measures investigated in the study considered a network 
G, composed of a set of n nodes and a set of m edges (significant con-
nections between node pairs). 

Network density refers to the fraction of total connections in a 
network compared to the total number of possible unique connections 
(Rubinov and Sporns, 2010): 

D = 2*
m

((n*n) − n )

Global network efficiency is based on characteristic path length 
(defined as number of steps, or links, between network nodes) and 
measures how efficiently a network can exchange information (Latora 
and Marchiori, 2001). The global efficiency, Eg, is defined as the average 
nodal efficiency, where Li,j corresponds to the path length between 
nodes i and j: 

Eg =
1

n(n − 1)
∑

i∕=j∈G

1
Li,j 

Clustering Coefficient (Cg) represents the degree of local connec-
tivity of a given node with its nearest neighbors (Ci): 

Ci =
2Li

ki(ki − 1)

Here, ki, represents the degree of node n and Ln represents the 
number of edges between the neighbors of node i. The average clus-
tering coefficient for the entire network Cg is the average clustering 
coefficient at each node (Watts and Strogatz, 1998): 

Cg =
1
n
∑n

i=1
Ci 
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Modularity characterizes the degree to which nodes are partitioned 
into a set of modules or communities having dense interconnected nodes 
and less communication with nodes of the other modules (Newman, 
2006). Here, we use the Louvain method for community detection 
(Blondel et al., 2008) to find the optimal partition that maximizes the 
modularity value. The measure of modularity is defined as: 

Q =
1

2m
∑

i,j

[

Ai,j −
kikj

2m

]

δ
(
CiCj

)

where ki =
∑

jAi,j is the number of connections attached to the ith node 
(or node degree), Ci is the partition the ith node belongs to and δ(x) = 1 
is × >= 1 and δ(x) = 0 otherwise. 

2.6. Statistical analysis 

Statistical analysis was performed in R (v3.6.2). Neurobehavioral 
and clinical measures (NSI, PCL, DASS-21) were assessed using general 
linear models, testing for the main effects of group, time and a time ×
group interaction. Graph metrics were analyzed using a hierarchical 
linear modeling approach using the nlme package (Pinheiro et al., 
2020). In the final model, we included the main effects of group (TBI vs. 
HC), time (baseline vs. follow-up), and the interaction between group 
and time. We also included age (age at baseline scan) and the number of 
flagged volumes (for image quality) in the final model. Subject-specific 
random intercepts were included to account for repeated measures 
across time for each subject within each group. The model selection 
process involved the inclusion of additional data features in the initial 
model, including, gender, time since injury, TBI severity, PTSD symp-
toms, and level of education. However since these factors were not 
significant and did not improve model fit (based on Akaike information 
criterion Akaike, 1974), they were excluded from the final model. 
Normality of model residuals was confirmed by visual inspection of 
residual distribution (Casson and Farmer, 2014) and the shapiro-wilks 
test for normality (Shapiro et al., 1965) (p = 0.13). 

Planned contrasts were used to further explore significant main 

effects and interactions. Contrasts were computed using the least-square 
mean approach for each level of group and time, resulting in 6 orthog-
onal post-hoc tests; FDR correction was used to adjust for multiple 
comparisons in all tests. 

3. Results 

3.1. Clinical demographics & measures 

A total of 42 veterans in the mTBI group and 33 in the HC group were 
included in the final analysis. The mTBI and HC groups were similar 
with regard to age, gender, education level, and prevalence of hyper-
tension, diabetes, hazardous drinking/alcohol use disorder, and PTSD 
(Table 1). The average time from injury in the mTBI group was 20.7 
years, with a large standard deviation of 15.6 years. As expected, we 
observed a significant difference across groups for neurobehavioral 
symptomatology (χ(Hyder et al., 2007) = 5.94, p = 0.011), with the 
mTBI group showing worse symptoms on the NSI total score. There was 
no change across time in either group. There was a trend level group 
effect on the PCL total score (χ2 = 3.41, p = 0.063), with increased 
scores in the mTBI group compared to controls. PCL total score did not 
change as a function of time (χ2 = 0.083, p = 0.773). Similarly, we found 
no significant differences between groups on the DASS-21 subscales 
measuring stress, anxiety, and depression (p > 0.05 for all comparisons). 

3.2. Global integration 

With respect to network density (the fraction of present connections 
to all possible connections), we observed a significant effect of group (χ2 

= 5.16, p = 0.022) and a significant group × time interaction (χ2 = 7.15, 
p = 0.007; Fig. 2; Supplementary Table 2). At the baseline scan, there 
was a trend towards a group difference in density (t = 2.31, p = 0.064), 
with a sparser network topology in the mTBI group. Within the mTBI 
group, we found a significant difference across time (t = − 3.82, p =
0.002; d = 0.630), with density increasing over time. There was no 
significant change in density in HC (t = 0.152, p = 0.879). We also found 

Fig. 1. Schematic representation of graph theoretical analysis using resting-state functional MRI data. After data acquisition (A) and preprocessing (B), the fMRI data 
was parcellated (C) and time course data was extracted from each region of interest (D). A 419 × 419 matrix containing functional connectivity data was computed 
by taking the absolute value of the Pearson’s correlation between all possible pairs of time series (E). To reduce complexity and generate sparse graphs for network 
analysis, a threshold was applied to the functional connectivity matrix which kept only significant links (connections) between nodes. Links which survived 
thresholding were assigned a value of 1, and those that did not were assigned 0′s to generate unweighted binarized networks (F). Binarized networks were used to 
compute network topology metrics (H). 
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a significant main effect of age on network density (χ2 = 13.2, p >
0.001). 

With global efficiency we found a significant interaction between 
group and time (χ2 = 6.95, p = 0.008), with global efficiency increasing 
over time in the mTBI group (t = − 3.75, p = 0.001; d = 0.590; Fig. 3, 
Supplementary Table 3). No change in global efficiency was seen in HC. 
A trend level difference in global efficiency between groups was 
observed at baseline scan (t = 2.51, p = 0.061). Interestingly, we also 
found a significant effect of age (χ2 = 13.7, p < 0.001), indicating that 
higher age was associated with reduced global efficiency. 

3.3. Functional segregation 

For clustering coefficient, we found a significant group effect (χ2 =

6.18, p = 0.012) and a significant group × time interaction (χ2 = 6.77, p 
= 0.009; Fig. 4). At baseline, the mTBI group showed reduced clustering 
compared to HC (t = 2.48, p = 0.030; d = 0.674). Over time however, 
clustering significantly increased in the mTBI group (t = − 3.90, p =
0.001; d = 0.665). There was no change in clustering in the brain net-
works of HC (t = − 0.015, p = 0.988). 

With modularity, we found a significant group effect (χ2 = 6.44, p =
0.011), and a significant group × time interaction (χ2 = 8.26, p = 0.004; 
Fig. 5). Contrasts revealed a significant between group difference in 
modularity at baseline (t = − 2.53, p = 0.027; d = 0.650), with the mTBI 
group showing elevated modularity compared to HC. In the mTBI group 
modularity decreased over time (t = 4.28, p < 0.001; d = 0.704), with 
no change in HC (t = − 0.015, p = 0.989). 

For both clustering coefficient and modularity, we found a signifi-
cant effect of age. For clustering coefficient (χ2 = 7.51, p = 0.006), 
increased age was associated with decreased clustering, whereas with 

Table 1 
Participant characteristics.   

Healthy 
controls 

mTBI Statistical test 

N 33 42 – 
Age: mean (SD) 47.0 (11.9) 50.9 

(12.1) 
t = − 1.59, p =
0.11†

Women: N (%) 9 (27%) 5 (12%) χ2 = 2.87, p =
0.09 

Mean Education Levela: mean 
(SD) 

6.5 (1.5) 6.7 (1.8) χ2 = 0.22, p =
0.78 

Diabetes: N (%) 7 (21%) 8 (19%) χ2 = 0.17, p =
0.83 

Hazardous Drinking/AUDb: N 
(%) 

13 (39%) 15 (36%) χ2 = 0.11, p =
0.74 

PTSDc: N (%) 1 (3%) 3 (9%) χ2 = 0.61, p =
0.43 

Years from TBI: mean (SD) – 20.7 
(15.5) 

– 

MN-BEST Severity Total Score: 
mean (SD) 

– 1.88 
(2.52) 

– 

TBI: Traumatic Brain Injury; AUD: Alcohol Use Disorder; PTSD: Post-Traumatic 
Stress Disorder 
a. Education level was coded as follows: 1 = <8 years, 2 = Some High School, 3 
= Graduated High School, 4 = GED, 5 = Work towards Associate’s Degree, 6 =
Completed Associate’s Degree, 7 = Work towards Bachelor’s Degree, 8 =
Completed Bachelor’s Degree or higher, 9 = Other. 
b. Rates of possible hazardous drinking/AUD were determined by the AUDIT-C 
(a score of ≥ 3 for women and ≥ 4 for men). 
c. Rates of PTSD were determined by meeting criteria for current (within the past 
month) PTSD on the M.I.N.I. 

† Statistical test used were either students t-test or a chi-square test. 

Fig. 2. Network density represents the fraction of total connections in a network compared to the total number of possible unique connections. Average network 
density across the two timepoints is plotted for healthy controls (left panel) and for individuals with mTBI (right panel). Asterisks represent a significant time effect 
within groups. 

E. Boroda et al.                                                                                                                                                                                                                                 



NeuroImage: Clinical 31 (2021) 102691

6

modularity (χ2 = 11.7, p < 0.001), increased age correlated with 
increased modular network structure. 

For all graph metrics, we found a significant main effect of the 
number of flagged volumes (see Supplementary tables). There was no 
difference in the number of flagged volumes across groups (χ2 = 0.176, 
p = 0.674), or across time (χ2 = 0.919, p = 0.337). 

4. Discussion 

We utilized graph theory analysis to examine how resting state 
functional connectivity would change over time in a large sample of 42 
veterans with mTBI and 33 controls. To the best of our knowledge, this is 
the first study to longitudinally track changes in brain network topology 
in chronic mTBI. The unique aspect of our sample was that individuals 
with mTBI were, on average, 20.7 years removed from the time of injury. 
No studies have examined brain network changes in mTBI at such 
chronic timescales. Our results demonstrate three main findings: i) brain 
networks of individuals with mTBI remain plastic decades after injury 
and undergo significant changes in network topology, ii) global inte-
gration increased over time in mTBI group to the level of HC, and iii) 
brain networks of individuals with mTBI became more clustered and less 
segregated into modules over time. 

Global integration metrics, such as global efficiency and network 
density, characterize the brain’s ability to rapidly combine specialized 
information from distributed brain regions, and disruptions in these 
metrics have been observed in both functional and structural networks 
in TBI (Caeyenberghs et al., 2017; Caeyenberghs, et al., 2012; Han et al., 
2016). Alterations in global integration have been tied to disruptions in 
long range fibers that can result from traumatic axonal injury as 
demonstrated in diffusion studies (Kuceyeski et al., 2016; Pandit et al., 

2013). For example, Pandit et al. (2013) found that individuals with TBI 
who showed greater levels of white matter damage (specifically to long- 
range connections), exhibited longer characteristic path lengths as well 
as reductions in network density and global efficiency. Previous longi-
tudinal studies examining global integration in TBI have reported 
diverging results. In a small study of severe TBI (n = 6), global inte-
gration metrics (global efficiency and path length) were higher in TBI 
compared to controls at 3 months post injury but decreased significantly 
over the course of 6 months (Nakamura et al., 2009). In a larger study of 
mTBI (n = 17), no differences between healthy controls and mTBI were 
found in respect to global integration (Messé et al., 2013). 

Given the differences in population and late phase of injury, it be-
comes difficult to compare these findings to our own results. In our 
sample, when assessing global efficiency, we found a trend level dif-
ference at baseline (p = 0.06), with the mTBI group showing reduced 
efficiency compared to HC. Over time, we saw a significant positive shift 
in global efficiency in the mTBI group, with no change in HC. A similar 
pattern emerged with network density, where individuals with mTBI 
showed lower network density at baseline but a significant increase over 
time. The increase in overall connectivity could help explain why global 
efficiency increased in the mTBI group, since more connections (i.e., 
higher density) might result in more routing paths and possibly more 
efficient information propagation. Because global efficiency mainly re-
flects integrative information processing across distal brain regions 
(Sporns, 2018; Ajilore, 2014; Desikan et al., 2006), the observed in-
crease in efficiency may imply an adaptation that results in a higher 
degree of long range connections in mTBI (Bassett and Bullmore, 2009). 
Though this pattern of change serves to “normalize” levels of global 
integration to the level of controls, increased integration should not 
automatically be seen as supporting positive compensation in brain 

Fig. 3. Global network efficiency is based on characteristic path length (defined as number of steps, or links, between network nodes) and measures how efficiently a 
network can exchange information. Global efficiency across the two timepoints is plotted for healthy controls (left panel) and for individuals with mTBI (right panel). 
Asterisks represent a significant time effect within groups. 
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injury. Rather, it can be hypothesized that increases in long range con-
nections are likely metabolically costly and thus potentially maladaptive 
(Casson and Farmer, 2014; Shapiro et al., 1965; Caeyenberghs, et al., 
2012). Indeed, this line of thinking is supported by research that asso-
ciates functional hyperconnectivity with reduced cognitive performance 
in TBI (Bassett and Bullmore, 2009; Newman, 2006). 

The increased global efficiency of functional brain networks in mTBI 
may not be entirely due to more connections, but may also reflect an 
intrinsic alteration in brain wiring patterns. Examining changes in 
functional segregation may provide insights to how these alterations 
emerged. Functional segregation refers to the ability of networks to 
segregate neuronal processing amongst functionally related regions that 
are arranged in modules (Sporns, 2018, 2013). The clustering coefficient 
is a common measure of functional segregation and serves to charac-
terize the density of a node’s connections to its neighbors. At the base-
line scan, we found a significant group difference in clustering, with the 
mTBI group showing reduced clustering compared to HC. Over time 
however, clustering increased in the mTBI group to the level of controls 
(no significant time effect in HC). Several studies have shown increased 
clustering in TBI compared to controls (Bassett and Bullmore, 2009; 
Newman, 2006; Han et al., 2016), and these findings have been inter-
preted to support a ‘hyperconnectivity’ hypotheses of recovery from TBI 
(Caeyenberghs et al., 2017). However, still other studies have failed to 
find differences in clustering (Nakamura et al., 2009; Pinheiro et al., 
2020), challenging the validity of this claim. Our findings do not directly 
support a hyperconnectivity hypothesis since clustering increased only 
to the level of controls. 

Modularity is another useful tool to characterize network topology. 
Modularity describes the propensity of a network to subdivide into 
modules that are defined by a high density of intra vs. inter modular 

connections. Individuals with mTBI had higher modularity compared to 
controls at baseline, but underwent a significant negative shift over 
time. These findings suggest that at baseline, the brain networks in mTBI 
were less interconnected (lower global integration, lower clustering) 
and more subdivided into modules compared to HC. Over time, how-
ever, there was a shift in topology to a more interconnected and less 
modular structure. The shift is especially striking given the lack of 
change in the networks of HC. 

The negative shift in modularity is consistent with the positive shift 
in global efficiency, as less modular networks tend to have more long- 
range connections that subserve global information transfer (Bullmore 
and Sporns, 2012; Di et al., 2013). The economic theory of brain 
network topology (Bullmore and Sporns, 2012; Zhou, et al., 2020) im-
plies that long range connections between functional modules are more 
costly, and thus increased inter-modular connectivity should only be 
present in response to heightened computational demands. This theory 
is supported by studies which show that brain networks exhibit higher 
modularity and lower global efficiency at rest compared to when a task 
is being performed (Di et al., 2013; Kitzbichler et al., 2011), as well as 
during sleep compared to the awake state (Boly, 2012). 

Past studies in TBI have shown that measures of functional segre-
gation can be predictive of clinical and cognitive symptoms (Caeyen-
berghs et al., 2017; Kuceyeski et al., 2016). For example, Messé et al. 
(2013) demonstrated that modularity was inversely correlated with 
post-concussive symptoms in a cohort of individuals with mTBI at 6 
months post injury, with higher modularity predicting more severe 
symptomatology. Similarly, Caeyenberghs et al. (2012) showed that 
individuals with severe TBI with higher connectivity degree and clus-
tering coefficient displayed lower switching performance and more se-
vere TBI symptoms. We did not find any significant correlations between 

Fig. 4. The average clustering coefficient quantifies the abundance of connected triangles in a network and characterized how densely connected nodes are to their 
immediate neighbors. Average clustering coefficient across the two timepoints is plotted for healthy controls (left panel) and for individuals with mTBI (right panel). 
Asterisks represent a significant time effect within groups. 
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symptom measures and graph metrics, possibly due to the late stage and 
mild nature of TBI in our cohort (1.88 total score out of a maximum of 12 
on the TBI severity ranking). 

We did find significant correlations between participant age and 
several of our graph metrics. There was a negative correlation between 
age and both global efficacy and clustering coefficient (these metrics 
decreased with older age). With modularity we saw the opposite trend, 
with higher baseline modularity being associated with aging. While we 
did not find a significant interaction between age and group (TBI vs. HC) 
for any network metric, these findings are in line with literature which 
has shown that network properties such as global efficiency and clus-
tering coefficient are strongly correlated with aging and may predict the 
onset of dementia (Behfar, 2020; Sala-Llonch, 2014). 

The present study does have some limitations that are worth dis-
cussing. The fact that this is the first investigation of its kind into chronic 
mTBI makes it difficult to compare our findings with other studies, 
limiting the context that can be used to facilitate a thorough interpre-
tation of the data. It is important to note that the severity of mTBI in our 
cohort was on the mild end of the spectrum, and it is known that there 
are significant pathophysiological differences even within mild forms of 
TBI (Ettenhofer and Abeles, 2009; Konrad, 2011). Had our sample been 
more impaired, it is possible that we would have seen significant asso-
ciations between clinical symptomatology and changes in network to-
pology. Even so, few reports to date have directly correlated graph 
metrics with behavioral and clinical measures in TBI (Caeyenberghs 
et al., 2017). While there is some emerging evidence that certain 
network metrics, such as modularity, are associated with post concus-
sive symptomatology (Caeyenberghs et al., 2017; Messé et al., 2013), the 
reported correlations are weak to moderate, and there are still other 
reports which found no relationships between graph metrics and clinical 

symptom scores (Kuceyeski et al., 2016; Hillary et al., 2014). Further 
work, perhaps using larger sample sizes and more advanced statistical 
analyses, are required to uncover what may be a complex, non-linear 
relationship between changes in network connectivity and behavior. 

The heterogeneous nature of graph theory analysis methods is also 
an important source of variability in studies analyzing changes in 
network topology. The validity of any graph-based model of a complex 
system depends on the extent to which its nodes and edges represent true 
networks of the system under investigation. For some use cases, defining 
nodes and links is intuitive and straightforward. In social networks for 
example, nodes represent people and links are simply the connections 
between them (Lewis et al., 2008). In the case of brain networks how-
ever, defining nodes and links is much more complex (Fornito et al., 
2013). Researchers can justify using a number of different parcellation 
schemes to define nodes, and methods for selecting significant connec-
tions can also vary widely (Sporns, 2018; Fornito et al., 2013). Small 
methodological differences can often yield divergent findings, making it 
difficult to compare results across studies. Compounding this issue is the 
fact that blood oxygen level-dependent (BOLD) signals are highly sen-
sitive to noise artifacts, and that motion related noise can introduce a 
high degree of artificial correlation into graph-based metrics. For 
instance, in our study we found a significant main effect of the number of 
flagged volumes (a marker for image quality) on each of our outcome 
measures. While found no significant differences in the number of 
flagged volumes between groups or across time, it remains unclear the 
degree to which noise artifacts influenced the observed effects. Main-
taining high data quality standards and using advanced preprocessing 
streams are important steps in mitigating the issue of nose contamina-
tion. Further sophistication of these methods would serve to improve the 
utility of network metrics as clinical and research tools. Despite its 

Fig. 5. Modularity characterizes the degree to which nodes are partitioned into a set of modules or communities which have dense interconnected nodes and less 
communication with nodes of the other modules. Modularity across the two timepoints is plotted for healthy controls (left panel) and for individuals with mTBI (right 
panel). Asterisks represent a significant time effect within groups. 
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drawbacks however, graph theory analysis remains one of the most 
powerful tools with which to examine neural topology and characterize 
pathophysiology at the level of brain networks. 
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Glasser, Matthew F., Griffanti, Ludovica, Smith, Stephen M., 2014. Automatic 
denoising of functional MRI data: combining independent component analysis and 
hierarchical fusion of classifiers. Neuroimage 90, 449–468. 

Robinson, Emma C., Jbabdi, Saad, Glasser, Matthew F., Andersson, Jesper, 
Burgess, Gregory C., Harms, Michael P., Smith, Stephen M., Van Essen, David C., 
Jenkinson, Mark, 2014. MSM: a new flexible framework for Multimodal Surface 
Matching. Neuroimage 100, 414–426. 

Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic 
Functional Connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018). 

Desikan, Rahul S., Ségonne, Florent, Fischl, Bruce, Quinn, Brian T., Dickerson, Bradford 
C., Blacker, Deborah, Buckner, Randy L., Dale, Anders M., Paul Maguire, R., 
Hyman, Bradley T., Albert, Marilyn S., Killiany, Ronald J., 2006. An automated 
labeling system for subdividing the human cerebral cortex on MRI scans into gyral 
based regions of interest. Neuroimage 31 (3), 968–980. 

Frazier, J.A., et al., 2005. Structural brain magnetic resonance imaging of limbic and 
thalamic volumes in pediatric bipolar disorder. Am. J. Psychiatry 162, 1256–1265. 

Makris, N., et al., 2006. Decreased volume of left and total anterior insular lobule in 
schizophrenia. Schizophr. Res. 83, 155–171. 

Rubinov, Mikail, Sporns, Olaf, 2010. Complex network measures of brain connectivity: 
uses and interpretations. Neuroimage 52 (3), 1059–1069. 

Latora, V., Marchiori, M., 2001. Efficient behavior of small-world networks. Phys. Rev. 
Lett. 87, 198701. 

Watts, Duncan J., Strogatz, Steven H., 1998. Collective dynamics of ‘small-world’ 
networks. Nature 393 (6684), 440–442. 

Newman, M.E.J., 2006. Modularity and community structure in networks. Proc. Natl. 
Acad. Sci. U.S.A. 103 (23), 8577–8582. 

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of 
communities in large networks. J. Stat. Mech. 2008, P10008. 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear 
Mixed Effects Models. (2020). 

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Automat. 
Contr. 19 (6), 716–723. 

Casson, R.J., Farmer, L.D.M., 2014. Understanding and checking the assumptions of 
linear regression: a primer for medical researchers. Clin. Experiment. Ophthalmol. 
42, 590–596. 

Shapiro, S. S. & Wilk, M. B. An Analysis of Variance Test for Normality (Complete 
Samples). Biometrika 52, 591–611 (1965). 

Caeyenberghs, K. et al. Graph analysis of functional brain networks for cognitive control 
of action in traumatic brain injury. Brain 135, 1293–1307 (2012). 

Han, K., Chapman, S. B. & Krawczyk, D. C. Disrupted Intrinsic Connectivity among 
Default, Dorsal Attention, and Frontoparietal Control Networks in Individuals with 
Chronic Traumatic Brain Injury*. J. Int. Neuropsychol. Soc. 22, 263–279 (2016). 

Kuceyeski, A., Shah, S., Dyke, J.P., Bickel, S., Abdelnour, F., Schiff, N.D., Voss, H.U., 
Raj, A., 2016. The application of a mathematical model linking structural and 
functional connectomes in severe brain injury. Neuroimage Clin. 11, 635–647. 

Pandit, A.S., Expert, P., Lambiotte, R., Bonnelle, V., Leech, R., Turkheimer, F.E., 
Sharp, D.J., 2013. Traumatic brain injury impairs small-world topology. Neurology 
80 (20), 1826–1833. 

Bullmore, Ed, Sporns, Olaf, 2012. The economy of brain network organization. Nat. Rev. 
Neurosci. 13 (5), 336–349. 

Di, X., Gohel, S., Kim, E.H., Biswal, B.B., 2013. Task vs. rest-different network 
configurations between the coactivation and the resting-state brain networks. Front. 
Hum. Neurosci. 7, 493. 

Zhou, D. et al. Efficient Coding in the Economics of Human Brain Connectomics. Cold 
Spring Harbor Laboratory 2020.01.14.906842 (2020) doi:10.1101/ 
2020.01.14.906842. 

Kitzbichler, M. G., Henson, R. N. A., Smith, M. L., Nathan, P. J. & Bullmore, E. T. 
Cognitive effort drives workspace configuration of human brain functional networks. 
J. Neurosci. 31, 8259–8270 (2011). 

Boly, M., et al., 2012. Hierarchical clustering of brain activity during human nonrapid 
eye movement sleep. Proc. Natl. Acad. Sci. U.S.sA. 109, 5856–5861. 

Behfar, Q., et al., 2020. Graph theory analysis reveals resting-state compensatory 
mechanisms in healthy aging and prodromal Alzheimer’s disease. Front. Aging 
Neurosci. 12, 355. 

Sala-Llonch, R., et al., 2014. Changes in whole-brain functional networks and memory 
performance in aging. Neurobiol. Aging 35, 2193–2202. 

Ettenhofer, M.L., Abeles, N., 2009. The significance of mild traumatic brain injury to 
cognition and self-reported symptoms in long-term recovery from injury. J. Clin. 
Exp. Neuropsychol. 31, 363–372. 

Konrad, C., et al., 2011. Long-term cognitive and emotional consequences of mild 
traumatic brain injury. Psychol. Med. 41, 1197–1211. 

Hillary, Frank G., Rajtmajer, Sarah M., Roman, Cristina A., Medaglia, John D., Slocomb- 
Dluzen, Julia E., Calhoun, Vincent D., Good, David C., Wylie, Glenn R., 
Stamatakis, Emmanuel Andreas, 2014. The rich get richer: brain injury elicits 
hyperconnectivity in core subnetworks. PLoS One 9 (8), e104021. 

Lewis, Kevin, Kaufman, Jason, Gonzalez, Marco, Wimmer, Andreas, Christakis, Nicholas, 
2008. Tastes, ties, and time: a new social network dataset using Facebook.com. Soc. 
Netw. 30 (4), 330–342. 

Fornito, Alex, Zalesky, Andrew, Breakspear, Michael, 2013. Graph analysis of the human 
connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444. 

E. Boroda et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S2213-1582(21)00135-2/h0205
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0205
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0205
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0205
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0210
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0210
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0210
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0210
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0215
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0215
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0215
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0215
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0215
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0220
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0220
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0225
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0225
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0225
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0230
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0230
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0230
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0235
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0235
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0235
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0240
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0240
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0245
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0245
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0245
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0250
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0250
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0250
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0250
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0250
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0250
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0250
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0250
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0255
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0255
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0255
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0255
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0255
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0255
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0260
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0260
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0260
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0260
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0265
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0265
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0265
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0265
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0275
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0275
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0275
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0275
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0275
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0280
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0280
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0285
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0285
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0290
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0290
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0295
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0295
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0300
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0300
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0305
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0305
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0310
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0310
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0320
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0320
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0325
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0325
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0325
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0345
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0345
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0345
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0350
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0350
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0350
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0355
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0355
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0360
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0360
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0360
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0375
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0375
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0380
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0380
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0380
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0385
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0385
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0390
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0390
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0390
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0395
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0395
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0400
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0400
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0400
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0400
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0405
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0405
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0405
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0410
http://refhub.elsevier.com/S2213-1582(21)00135-2/h0410

	Network topology changes in chronic mild traumatic brain injury (mTBI)
	1 Introduction
	2 Methods
	2.1 Participant demographic and clinical information
	2.1.1 Mild TBI severity scoring

	2.2 Neuropsychological assessment
	2.3 Image acquisition and preprocessing
	2.4 Brain network construction
	2.5 Graph theory analysis
	2.6 Statistical analysis

	3 Results
	3.1 Clinical demographics & measures
	3.2 Global integration
	3.3 Functional segregation

	4 Discussion
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Supplementary data
	References


