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Abstract

We present a model of disease transmission on a regular and small world network and compare different control options.
Comparison is based on a total cost of epidemic, including cost of palliative treatment of ill individuals and preventive cost
aimed at vaccination or culling of susceptible individuals. Disease is characterized by pre-symptomatic phase, which makes
detection and control difficult. Three general strategies emerge: global preventive treatment, local treatment within a
neighborhood of certain size and only palliative treatment with no prevention. While the choice between the strategies
depends on a relative cost of palliative and preventive treatment, the details of the local strategy and, in particular, the size
of the optimal treatment neighborhood depend on the epidemiological factors. The required extent of prevention is
proportional to the size of the infection neighborhood, but depends on time till detection and time till treatment in a non-
nonlinear (power) law. The optimal size of control neighborhood is also highly sensitive to the relative cost, particularly for
inefficient detection and control application. These results have important consequences for design of prevention strategies
aiming at emerging diseases for which parameters are not nessecerly known in advance.
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Introduction

The network-based approaches are a common tool in epidemi-

ological studies [1]. These individual-based methodologies allow

incorporating the diverse patterns of interaction that underlie

disease transmission and have been proved to capture topology of

populations [2,3]. An interesting aspect of such studies, with an

obvious goal to target spread of the disease, is identification of

optimal strategies for the control of a disease under additional

constraints [4–6]. Network modelling has been successfully used

for many systems in order to design such control strategies [7].

However, there are only very few attempts to incorporate

economic factors in such realistic models. Conversely, bioeco-

nomic models usually ignore the spatial components of the disease

spread [8–10].

In this paper we present a combined epidemiological and

economic model to address the problem of optimization of disease

control on networks with incomplete knowledge. Two main

sources of costs can be associated with a disease outbreak and its

control: the palliative cost associated with disease case and costs of

measures aimed at preventing further cases [11,12]. The objective

of preventive actions is to lower the total cost by investing e.g. in

vaccination at the initial stages of the epidemic or culling of

infected/susceptible individuals.

In our approach, we define a measure of the total cost of the

epidemic (the severity index, X) and analyze the influence of the

parameters on its minimum. Work so far has shown that it is

possible in such models to find an optimal control strategy [12].

Three optimal control scenarios (Global Strategy (GS), Local

Strategy (LS), Null Strategy (NS)) emerge from the cost-

effectiveness analysis. However, the relationship between the

details of the Local Strategy and the model parameters is still

elusive [7,12]. Establishing such a relationship is an essential step

in designing control strategies for emerging diseases and hence we

have concentrated on this task in the paper. We investigate

propagation of the disease in a small-world network. The basic

topology represents a regular lattice, with additional long-range

bonds between randomly chosen pairs of sites. Inclusion of

shortcuts into a regular lattice enhances communication of the

disease and causes proliferation of epidemics at locations far apart

from the original infected source.

Our principal objective is to identify optimal strategies for

eradication of the disease by determining the threshold size of the

control neighborhood. In the proposed model, the neighborhood

order z is introduced as a measure of either the distance that the

disease can spread (epidemic neighborhood), or the spatial

extension of the control measures in a single ‘‘event’’ (control

neighborhood). To investigate how limited resources should be

balanced between disease detection and eradication, we analyze

combined effects of the average time until detection and the

treatment rate on optimal control size of the neighborhood.
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We have found that the scale of control matches the scale of

dispersal of a disease and so the larger the infection neighborhood,

the further the control has to be extended. This relationship can be

approximated by a linear function which coefficients depend

algebraically on the detection and treatment rates following a

power law. Small change in the relative cost of preventive to

palliative treatment may result in big changes in this relationship.

Addition of small world links narrows the range where the scaling

(power) law is valid but the scaling persists for small values of

detection and treatment times.

Methods

Model
We assume that individuals are located at nodes of a regular

(square) lattice that represents geographical distribution of hosts.

On this lattice, we define a local neighborhood of order z as a von

Neumann neighborhood in which we include z shells and

w(z)~2z(zz1) individuals, excluding the central one. According-

ly, z~0 corresponds to a single individual, which means that this

individual is not in contact with anyone, z~1 corresponds to 4

nearest neighbors while z~? corresponds to the whole popula-

tion in the limit of infinite size of the system. For the small world

model a fixed number of long range links has been added to the

regular network described above. Those links span the whole

population, but otherwise behave like local links.

The epidemiological model is a standard SIR (Susceptible-

Infected-Removed) model [13], modified to include pre-symp-

tomatic and symptomatic stages of the disease and to account for

detection and treatment (cf. fig. 1). All individuals are initially

susceptible (S) and the epidemic is initiated by introduction of

several infected (I), pre-symptomatic individuals. Each of infected

individuals (symptomatic and pre-symptomatic) stays in contact

with a given (fixed) number of other individuals in its infection

neighborhood of order zinf : After infection, the susceptible

individual moves first to infected, pre-symptomatic class, (I)

compartments. It can further infect its neighbors with probability

f per a contact but cannot be treated yet. As symptoms develop

with probability q, individual moves to D class and can be

detected. It is still infectious but can spontaneously recover with

probability r and accordingly, move to a recovery class, (R) and

cannot be further infected or treated.

Figure 1. Block diagram illustrating transitions in the model: transitions performed at each time step (blue solid lines) and
transitions triggered by treatment (orange thin lines).
doi:10.1371/journal.pone.0036026.g001
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Figure 2. Severity index, X, as a function of the infection rate per contact f and the control neighborhood size z. Simulation
parameters: q~0:5, v,r~0:1 with 40 initial foci and infected neighborhood size set to zinf ~1, cost c~1:
doi:10.1371/journal.pone.0036026.g002
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Detection triggers the control process which becomes activated

with probability v. In consequence, all individuals (except R)

within control neighborhood of size z centered at the detected

host, transfer to the treated class V. The order of control

neighborhood z may be different from the order of infectious

neighborhood zinf and is typically larger. Accordingly, the group

of individuals subject to the treatment is composed of at least one

symptomatic and a mixture of susceptible and infected pre-

symptomatic individuals. For convenience, we extend the defini-

tion of the neighborhood z to capture situations when no spatial

control is applied (z~{1), or when the treatment is applied solely

to the detected individual (z~0).

Numbers of individuals in each class are denoted by S, I, D, R

and V, respectively with N = S+I+D+R+V being the total constant

number of individuals in the population.

In order to investigate the optimal control strategy, we need to

compare value of future benefits (reduction of infection cases) with

the value of future and current costs associated with a particular

choice of measures in disease control and treatment. In this paper

we allocate the costs to two groups:

X (z,t~?)~R(z,t~?)zcV (z,t~?): ð1Þ

The first term represents the palliative cost and is associated

with individuals who are not treated and therefore spontaneously

move into the R class. The second term describes costs associated

with treatment of detected individuals and their neighbors and is

assumed to be proportional to the number of treated individuals V.

In the above formula c represents a cost of treatment relative to the

cost of infection and z stands for the control neighborhood size.
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Figure 3. Control neighborhood size as a function of treatment cost c and infectiousness of the disease f for regular network and
small world model. Simulation parameters: q~0:5, v,r~0:1, with 40 initial foci and zinf ~1: Control size zcw0 represents local strategy (LS), zc~0
corresponds to the strategy when only the detected individual is treated and zc§30 denotes GS (more than 99% of individuals are treated). Null
strategy corresponds to zc~{1: Top figure denotes results for disease spreading on regular networks, whereas bottom to small world model with
inclusion of additional 2000 number of long range links (5%).
doi:10.1371/journal.pone.0036026.g003
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Both estimates of R and V are evaluated at the end of each

simulation run (t??).

Simulations
Monte Carlo simulations have been performed on a regular grid

of 200 by 200 cells with periodic boundary conditions with and

without long-range links. This choice of size has been dictated by a

trade off between numerical efficiency and avoidance of small-size

effects which could influence results. Additional numerical tests

proved the consistency of results for different system sizes [12].

Epidemics have been initiated by addition of 40 infected

individuals to an otherwise susceptible population. Each simula-

tion run has been continued until I(t)zD(t)~0 (i.e. up to the

time when no further infection can occur). Subsequently the

severity index X has been evaluated from the formula eq.(1). The

optimal strategy is then determined by the minimal value of the

severity index Xc: The corresponding value of z gives the optimal

size of the control neighborhood, zc (see fig. 2 for illustration). In

the simulations, the minimization of the severity index is achieved

by sweeping through different values of the control neighborhood

size z, while keeping other parameters fixed. For each value of z

only a single simulation has been performed. Collections of this

results yield a dependence of X on z. A minimum value of X in this

collection gives an estimate of Xc and the corresponding z gives an

estimate of zc: This procedure has been repeated 100 times to

yield representative average values of zc and Xc and their

corresponding standard deviations.

Results

The long time (t??) behavior of the model in the absence of

control (Null Strategy, NS, i.e. z~{1) is determined by the

probability f of passing the infection to a susceptible node from any

of its neighbors within the neighborhood size ranging from 4

(z~1) to 144 (z~8). For small f, the infection quickly dies out.

Disease spreads invasively over the population for large f, when no

control is applied, X (z,?)!R(z,?)^N: When z§1, the ratio

R=N declines with the order of the control neighborhood.

However, at the same time the number of treated individuals V

increases, contributing to the total cost X, cf. eq.(1). For c=0, X (z)
is either a monotonic function of z for small values of f or a non-

monotonic function for highly contagious disease (large f), see fig. 2.

Three regions can be identified in the dependence of zc on c and

f, see fig. 3. For small values of c, Global Strategy (GS) is

dominating, whereas for large c, it is best to refrain from treatment,

Null Strategy (NS), fig. 3.

Although the location of the minimum of X (z) varies with

increasing f and c values (see figs. 2, 3), a relatively wide plateau

region with an almost constant zc develops for intermediate values

of c and f and corresponds to the local strategy (LS), fig.3. The

structure in fig. 3 is partially deformed by addition of long-range

links, however, the plateaux persists for small values of f.

We have therefore focused on the plateaux region (LS) of zc and

have explored its dependence on epidemiological parameters:

zinf ,q,v, with constant f and c. We have first explored dependence

of zc on the size of infection neighborhood for c~1, see fig. 4. The

relationship can be accurately approximated by a linear function

for a wide range of parameters, infectiousness f (fig.4a), the rate at

which symptoms appear, q (fig.4b) and the treatment rate, v (fig.4c)

for zinf [ ½1,8�:
As already seen in fig. 3, infectiousness f hardly affects the slope

and intercept of the linear relationship, fig.4a. Increasing q and v

causes the lines to shift towards lower values of zc, with major

changes in the intercept but slope only slightly affected (cf.

fig.4b,c). In contrast, the relationship between zc and q (or v) for

fixed zinf is non-linear. It is more convenient to consider 1=q

instead of q as tq~1=q has an interpretation of average time till

detection of symptoms. Similarly, tv~1=v can be interpreted as an

average time till treatment.

Broadly speaking, zc increases with tq and tv, fig. 5. This is

consistent with the following mechanism. Consider a single

infected but pre-symptomatic individual. The disease focus

centered on it will spread until appearance of symptoms after

time tq: Thus, the longer it takes to discover symptoms of the

disease, the farther the disease would spread from its original

focus. As a consequence, the infected area becomes larger and so

does zc: Similarly, the longer time from detection until treatment,

the further the disease moves away from original focus. As a result,

the control size grows with increasing treatment time.

Figure 4. Relationship between zc and zinf for treatment cost c~1: Points mark the simulation results whereas lines correspond to fitted linear
function zc~zinf � azb: From top to bottom, the following sets of constant kinetic parameters have been assumed: (a) q~0:5,v~0:1, (b)
v~0:1,f ~1, (c) q~0:5,f ~1: Errors (standard deviation from the mean) are too small to be visible.
doi:10.1371/journal.pone.0036026.g004
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Intriguingly, it appears that zc scales algebraically with tq (and

with tv) following a power law: zc~aqtb
q and zc~avtb’

v eq.(3) (see

fig. 5) with exponents well below 1.

The exponents b, b’ are similar for a range of zinf within the

plateaux regime of an optimal control radius of the epidemic, (see

fig.3), i.e. for zint [ ½1,8�, b [ ½0:14,0:25� and b’ [ ½0:10,0:27�:.
While fig. 5 is representative of results for cƒ1, moving c just

beyond c~1 causes a dramatic change in the zc(tv) dependence

for large values of tq and tv, corresponding to detection and

vaccination time comparable with duration of epidemics (approx-

imately 104 time steps for large values of tv and tq). The control

neighborhood zc decays abruptly for increasing times tq, tv, as

illustrated in fig. 6. This change is associated with very inefficient

control (long time till detection, tq&1 and long time from

detection to treatment, tv&1). If the cost of control is lower or

equal to the cost of palliative care, it is still better to treat, even

though we are not very efficient with treatment and most

individuals are spontaneously removed. However, if the cost of

vaccination is only marginally higher than the cost of untreated

case, prevention is no longer cost-effective. We also note that it is

only a combination of very long values of tq and tv that leads to a

limited range of application of the scaling formulas (zc~aqtb
q and

zc~avtb’
v ).

The scaling region of zc as a function of tq and tc also depends

on c in a fashion reminiscent of fig. 3. For small values of c, Global

Strategy of treating everybody is optimal regardless of the

parameters, cf. fig. 3 with fig. 7. In contrast, Null Strategy is

optimal for large c (figs. 3 and 7). The region where Local Strategy

is optimal occupies the region near c~1, but it becomes narrower

when the disease is more infectious (fig. 3) or when the control is

less efficient (for increasing values of tq (fig. 7a) and tv (fig. 7b).

Within this region, zc is given by scaling formulas. As seen before,
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c~1 is a special case asymptotically associated with a breakdown

of LS for very large or very small f (fig. 3) and very large values of

tq and tv (fig. 7).

The addition of long range links shitfs the optimal radius of

control towards larger values, figs. 3, 8. The scaling behaviour (cf.

fig.5 ) is characteristic for a regular network and changes when

long-range bonds is added (see fig.8). With 400 random long-range

contacts (corresponding to 1% of all links) the scaling relation

between zc and tq (tv) breaks down for detection (treatment) times

exceeding 10. This is clearly indicated by deviation of the results

from red bottom line (in fig.8) denoting simulation data for regular

networks (the same as in fig. 5). Altogether, addition of small world

links reduces the range of detection tq and treatment tv times for

which the power law relationship is valid. This is caused by long

range links allowing disease to escape from the local control. In

contrast, if we are able to detect disease quicker, it has not much

chance to escape and the disease spread is effectively short range.

Consequently, the scaling can be observed for small values of

detection and treatment times, tq,tv: In summary, with increasing

degree of randomness of networks (larger number of links) not only

the control radius rises but also the scaling disappears. Note that

the dashed black line, zc~40 in fig. 8, represents Global Strategy.

Discussion

In order to design a successful strategy for controlling a disease

we need to take into account not only epidemiological and social

factors (including the topology of the social network of contacts

and in particular zinf ), but also economic considerations. Some of

these factors might be unknown or hard to estimate, particularly in

real time as the epidemic unfolds. It is therefore crucial to

understand the relationship between the optimal control strategy

and parameters, for a wide range of possible values. It is even more

important to establish those processes and parameters to which a

selection of optimal strategy is not particularly sensitive, as this

allows us to find strategies that can be designed in advance, even

without knowing their actual values for a given emerging disease.

Regular networks have been traditionally used for modelling

epidemic outbreaks of human, animal and plant diseases [14,15]

and many variants of such an approach (with e.g. constant or
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randomized probabilities of infection passed to neighbouring

nodes on a grid) have been studied. However, an accumulated

experimental evidence demonstrates that real systems rarely follow

this kind of idealization being neither completely random nor

located on regular lattices. Among other types of networks that

have been the object of intense studies are the small-world and

scale-free networks. In particular, the small world network with

randomly chosen shortcuts between the nodes, is considered a

model well extrapolating between extremes like regular and

random network. It has been also preferentially used by modellers

discribing outbreaks of disease starting simultaneously in different

regions of the world (propagation of the SARS virus, [16].

Accordingly, in order to assess the occasional long distance

dispersal of the disease, we have also considered small world links,

representing e.g. random transport by wind or by plane.

In our previous paper we have shown that for a given set of zinf ,
q and v, the broad choice of the strategy is determined by the

relative cost of the treatment, c. For small values of c, GS is

optimal, for large values of c, NS. Close to c~1, a LS dominates

and the detailed value of the control neighborhood zc depends on

the epidemiological parameters, although not on f in a wide range.

In this paper we extend this analysis to include other epidemio-

logical parameters. In particular we show that the broad division

between GS (for c%1), NS (for c&1) and LS (for c^1) holds for a

wide range of parameters q and v (inverse of time to detection and

inverse of time to treatment, respectively), fig. 7.

Three other key results emerge from our analysis. Firstly, it is

very important to match scale of control to the scale of infection

dispersal. This has already been seen in other papers [17], but this

is the first time we show it for spatial control on networks in the

presence of economic evaluation. However, we also show that the

size of the control neighborhood is not just simply equal to the size

of the infection neighborhood (see fig. 4 and compare the scale of

horizontal and vertical axes). In the presence of pre-symptomatic

individuals (tq&0) and in the face of delays associated with

application of control (tv&0) we need to extend zc well beyond

zinf : The relationship between zinf and zc is one of the key

formulas for planning response to epidemics. It enables authorities

to plan actions aiming at eradication of the disease by setting a

sufficiently large – but not too large – zone of eradication around

each detected case. Traditionally, such recommendations are

based on the dispersal patterns of the disease, although increas-

ingly simulation models are used. This procedure has led to

establishment of the 1,900ft rule for citrus canker [18] whereby all

citrus trees are cut down within this radius from every affected tree

and the 3 km/10 km rule for foot-and-mouth disease [19].

However, our results show that the relationship between zc and

zinf is non-trivial and in particular it involves non-linear functions

of tq and tv: Although we are still far from being able to provide a

formula relating zc to all epidemiological parameters, our result

stresses importance of using models to design control strategies

[20].

We also show that c~1 is a special case. In particular, we show

high sensitivity of zc to changes in c for large values of tq and tv:
Thus, if the symptom detection time (tq) and reaction time (tv) are

both long, small change in c leads to very big changes in zc, see

fig. 6 and 7. Without knowing the exact value of c it is therefore

very difficult to design the strategy in this case. Suppose we believe

that cw1 and therefore we chose a small value of zc based upon

fig. 6b. However, if in reality cƒ1 (although very close to 1), zc

should be close to 50 (fig. 6a). This shows the importance of

knowing what the actual value of c is [12] estimated that for

vaccination c~0:01–0.85, but can be larger than 1 for culling.

In this paper we have used regular and small wold networks to

describe the topology of interaction between individuals. Addition

of small world links into population narrows the range where the

scaling (power law) relationship of zc on tq and tv is valid but the

scaling persists for small values of detection and treatment times.

Our studies can also be extended in other ways. The current

work assumes relatively short overall time length of each epidemic

and so no discounting is applied when the costs and benefits are

estimated. We also assumed that the strategy is unchanged

throughout the epidemic and that the network structure is static

and relatively simple. Each of these assumptions can be relaxed.

Discounting is often used in economics, but we expect for it to

have a small impact on our results. Adapting the strategy to the

current status of the epidemic often leads to a bang-bang solution

[21], similar to our distinction between NS and GS.

Finally, a lot of attention have been recently given to non-local

and random networks (small-world or scale-free networks) [12,22],

to dynamic networks [23], and networks with random parameters

[24]. Further extension of this work to include static and dynamic

disorder is in progress.
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