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Abstract

In single photon emission computed tomography (SPECT), accurate attenuation maps are needed to perform essential
attenuation compensation for high quality radioactivity estimation. Formulating the SPECT activity and attenuation
reconstruction tasks as coupled signal estimation and system parameter identification problems, where the activity
distribution and the attenuation parameter are treated as random variables with known prior statistics, we present a
nonlinear dual reconstruction scheme based on the unscented Kalman filtering (UKF) principles. In this effort, the dynamic
changes of the organ radioactivity distribution are described through state space evolution equations, while the photon-
counting SPECT projection data are measured through the observation equations. Activity distribution is then estimated
with sub-optimal fixed attenuation parameters, followed by attenuation map reconstruction given these activity estimates.
Such coupled estimation processes are iteratively repeated as necessary until convergence. The results obtained from
Monte Carlo simulated data, physical phantom, and real SPECT scans demonstrate the improved performance of the
proposed method both from visual inspection of the images and a quantitative evaluation, compared to the widely used
EM-ML algorithms. The dual estimation framework has the potential to be useful for estimating the attenuation map from
emission data only and thus benefit the radioactivity reconstruction.
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Introduction

Single photon emission computed tomography (SPECT) has

become an indispensable tool in clinical trials and medical

practice. Attenuation correction in SPECT has significant values

to better understand the physiological processes associated with

the disease (i.e. cancers, heart diseases) and to provide improve-

ment in patient diagnosis and treatment. However, even with

ample efforts devoted to the development of various attenuation

estimation and compensation techniques, it remains one of the key

open issues in SPECT imaging [1–11].

Tissue attenuation map is usually estimated based on transmis-

sion data by scanning the patient with a rotating external

radionuclide source [3,5,6,12], or obtained from X-ray computed

tomography (CT) system [10,11,13–16]. However, transmission

based attenuation correction clearly increases the patient’s dose,

and requires maintaining additional radioactive sources. Further,

if multiple imaging sessions are needed, it may be difficult for some

patients to tolerate for a longer scan at one time, and leads to co-

registration problem in emission image reconstruction, especially

for deformed tissues and organs. In addition to the added

equipment cost and the well-known beam hardening problem,

similar registration issue exists for CT attenuation data.

It has been the goal of many recent research efforts to

simultaneously estimate the activity and attenuation distributions

from emission data. Iterative statistical methods have been

extensively studied, with the main incentive being that they

explicitly take into account the specific SPECT data statistics.

Some of the most notable works include the use of differential

attenuation method [17], gradient ascent [18], Tikhonov regular-

ization [19], and expectation maximization (EM) [20–23]. With

the SPECT imaging and measurement processes in state space

representation, a recent work has adopted the extended Kalman

filtering (EKF) procedures to linearize the augmented state

representation to provide the joint estimates in the minimum-

mean-square-error sense [24]. Such EKF based framework,

however, has several potential drawbacks. First, the derivation of

the Jacobian matrices, the linear approximations to the nonlinear

functions, often leads to filter instability. Furthermore, it has been

shown that estimation bias may originate from a coupling between

the state variables and the model parameters, which suggests that
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if the system parameters can be separated from the system state

variables, the precision of the estimation could be improved.

Following the same spirit while addressing the limitations, we

present a robust unscented Kalman filter framework for the joint

estimation of SPECT activity and attenuation parameters. Instead

of linearizing using the Jacobian matrices and thus overcoming the

associated shortcomings, our effort deals with the nonlinear

estimation process by using a deterministic sampling approach

to capture the mean and covariance estimates [25]. In addition,

two iteratively coupled filters are used to sequentially estimate the

activity variables (with fixed attenuation estimates from the last

iteration) and the attenuation map (with fixed activity values from

the previous estimation). Furthermore, such framework can

explicitly recognize the uncertainties in the measurement data

and the model structure, thus has the potential to produce more

robust reconstructions.

Materials and Methods

SPECT Emission Scan Model
In SPECT imaging, once radio-tracers are injected into the

subjects, they are delivered to the tissues/organs by the blood flow

and participate in the related physiologic/metabolic processes.

The general mathematical model for the emission scan can be

stated as

y(t)~Gx(t)zeo ð1Þ

where column vector x(t)~fxj Dj~1,:::,Ng is the radiopharma-

ceutical concentration of the object, eo is the background noises

(e.g. scatter events), and y is the emission measurement data that is

acquired by a rotating detector head around the patient at each

angle and represented lexicographically as a column vector

y(t)~fyi Di~1,:::,Mg. Here, i indicates different projection

defined by rotating angle and different detector bin, and M is

the total number of projections. G represents the emission system

matrix including attenuation effects, and its element indicates the

probability that a photon emitted from pixel gets detected in a

specific detector bin.

Let the attenuation map be given by column vector

m~fmk Dk~1,:::,Ng, we may explicitly account for the attenuation

effects in the system matrix G by factoring it as

G~(A:D)~ e{½Lm�:D
� �

ð2Þ

Here, The symbol ‘:’ means the dot product of two matrices.

½L�ijk~lijk represents the length of the ray through voxel k with

respect to a photon emitted from voxel i being detected in

projection bin j. The photon survival probability considering

attenuation can now be represented by a matrix A with elements

½A�ij~aij as

aij~exp {
X

k

lijkmk

 !
ð3Þ

The term D, with elements ½D�ij~dij , is the photon-detection

probability without taking into account the attenuation effects.

The mathematical model of the SPECT emission measurement

(Eqn. (1)) can now be rewritten as

y~Gxzeo~ e{½Lm�:D
� �

xzeo ð4Þ

or in discrete form

yi~
X

j

exp {
X

k

lijkmk

 !
dijxj

" #
zeo ð5Þ

In the following sections, we will present the dual estimation

method which works by alternating between using the UKF state-

filter to estimate the radioactivity based on fixed attenuation

parameters, and the UKF parameter-filter to estimate the

attenuation coefficients given previously estimated activity states.

Although two separate state-space representations are constructed

for the activity and attenuation estimation problems, both of them

use the same emission scan model (Eqn. (4) or (5)) as the

measurement equation.

Activity Estimation: UKF State Filter
State Space Representation for Radioactivity. In emis-

sion tomography, the goal is to reconstruct the radioactivity

distribution x(t) from the measurement data y(t). The system

equation of the SPECT imaging system, which describes the

radioactivity evolution of the pixels, can be written in the form of

x(tz1)~Sx(t)zus ð6Þ

with initial activity x0 and system noise us that accounts for the

statistical uncertainty of the imaging model. In general, Eqn. (6)

represents the dynamic changes of the state variable x(t), and it

reduces to the conventional static reconstruction problem when

the transition matrix S is an identity. The associated measurement

equation, which describes the observations provided by the

imaging data y(t), is given by Eqn. (4). And now we have the

following state space representation for radioactivity distribution:

x(tz1)~x(t)zus ð7Þ

y(t)~G(m(t))x(t)zeo~h(x(t),m(t))zeo ð8Þ

where us and eo, with covariance matrices Qs and Ro, model the

uncertainties of the imaging system and the measurement data

respectively.

Two important observations on the nonlinear SPECT imaging

system represented by Eqns. (7) and (8). First, since the noises in

emission sinogram are typically Poisson distributed, it is difficult to

perform standard estimation on such non-Gaussian system. By

applying the Anscombe transformation [26], however, the Poisson

noise could be converted into a Gaussian one, and various Kalman

filtering techniques become viable options. Secondly, the EKF,

probably the most widely used estimation algorithm for nonlinear

systems, has several drawbacks. EKF requires the system is almost

linear on the time scale of the updates, and is difficult to

implement and to set proper parameters due to the cross-talk

between state and parameter. To overcome such limitations, we

have adopted the unscented transformation (UT) to accurately

propagate mean and covariance information through nonlinear

transformations [25], with little additional computational cost.

Reconstruction of SPECT Activity and Attenuation
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UKF State-Filter. For the SPECT imaging system given by

Eqns. (7) and (8), the purpose of the UKF state-filtering is to search

for the optimal estimates of radio-tracer variable x(t), given fixed

attenuation values m(t). Since detailed discussion of the unscented

Kalman filtering is certainly beyond the scope of this paper [25],

we present here a more algorithmic description while ignoring

some theoretical considerations.

The unscented transformation is a method for calculating the

statistics of a random variable. Given a random variable x
(dimension L) with mean �xx and covariance Px through a nonlinear

function y ~ f(x). To compute the statistics of y, we form a sigma

point matrix X and their weights according to the following:

X0~x

X i~xz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Lz )Px

p� �
i
,i~1,:::,L

X i~x{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Lz )Px

p� �
i{L

,i~Lz1,:::,2L

w0
(m)~

Lz
,i~0 ð9Þ

w0
(c)~

Lz
z(1{a2zb),i~0

wi
(m)~wi

(c)~
1

2(Lz )
,i~1,:::,2L

where ~a2(Lzk){L. The parameter a[½0,1� determines the

spread of the sigma points, b§0 is used to incorporate any prior

knowledge about the distribution of x, and k is a scaling parameter

and is often set to be zero. Once having the above definitions, the

UKF state-filter is initialized with x̂x(0)~x̂x0 and covariance matrix

Px(0), the state estimates and their error covariance matrices are

computed sequentially until convergence:

1. Calculate the sigma point weights as in (9);

2. Project the state variable x(t) ahead:

x̂x(tDt{1)~x̂x(t{1) ð10Þ

3. Project the error covariance Px(t) ahead:

Px(tDt{1)~Px(t{1)zQs ð11Þ

4. Calculate the sigma points as defined in Eqn. (9):

X (tDt{1)~½x̂x(tDt{1),x̂x(tDt{1)z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Lz )Px(tDt{1)

p
,x̂x(tDt{1){

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Lz )Px(tDt{1)

p
� ð12Þ

5. Filtering of the measurement equations:

Y(tDt{1)~h(X (tDt{1),m̂m(t{1)) ð13Þ

ŷy(tDt{1)~
X2L

i~0

w
(m)
i Y(i,tDt{1) ð14Þ

Pyx(t)~
X2L

i~0

w
(c)
i (Y(i,tDt{1)

{ŷy(tDt{1))(Y(i,tDt{1)

{ŷy(tDt{1))TzRo

ð15Þ

Figure 1. Simulated and physical phantom used in the experiments. From left to right: activity (left) and attenuation (middle) distributions of
simulated Zubal phantom, physical imaging phantom with three different material rods inside. (right)
doi:10.1371/journal.pone.0106951.g001
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Figure 2. Synthetic Data. Top: Attenuation maps recovered by the EKF (left) and dual UKF (right) frameworks for low count measurements. Bottom:
Horizontal profiles along the 13th (left) and 19th (right) rows of the recovered attenuation maps.
doi:10.1371/journal.pone.0106951.g002

Figure 3. Synthetic Data. From left to right: activity maps recovered by FBP, EM-ML, and UKF methods for high count measurements.
doi:10.1371/journal.pone.0106951.g003
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6. Compute the Kalman Gain:

Px(t)y(t)~
X2L

i~0

w
(c)
i (X (i,tDt{1)

{x̂x(tDt{1))(Y(i,tDt{1)

{ŷy(tDt{1))T

ð16Þ

Kx(t)~Px(t)y(t)P
{1
yx(t) ð17Þ

7. Update the estimate with the measurement:

x̂x(t)~x̂x(tDt{1)zKx(t)(y(t){ŷy(tDt{1)) ð18Þ

8. Update the error covariance:

Px(t)~Px(tDt{1){Kx(t)Pyx(t)Kx(t)T ð19Þ

Here, the previously stored information in the prediction step is

combined with the new information coming from the next

measurement y(t) and the Kalman gain matrix to refine x̂x(t)
and Px(t) in the correction step. The covariance of the

measurement error Ro and system error Qs is assumed to be

known and set to time-invariant.

Attenuation Estimation: UKF Parameter Filter
Once the UKF state-filter converges, it is followed by the

estimation of a coupled UKF parameter-filter aiming to recover

the attenuation map of the object being imaged, given the

estimated radioactivity map. The system equations for the

parameter-filter are

m(tz1)~m(t)zup ð20Þ

y(t)~h(x(t),m(t))zeo ð21Þ

Here, up is the process noise with covariance matrix Qp, and we

assume that the attenuation parameter vector m is temporally

Figure 4. Synthetic Data. Top: Horizontal profiles along the 13th (left), 18th (middle), and 23rd (right) rows of the recovered activity maps for low

count measurements. Bottom: Horizontal profiles along the 13th (left), 18th (middle), and 23rd (right) rows of the recovered activity maps for high count
measurements.
doi:10.1371/journal.pone.0106951.g004

Table 1. RMSE values of estimated activity maps for the synthetic data.

FBP EM EKF UKF

low count measurement 0.6724 0.5469 0.4152 0.3660

high count measurement 0.5252 0.3933 0.3710 0.3575

doi:10.1371/journal.pone.0106951.t001
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constant. Initializing the unscented parameter filter with m̂m(0)~m̂m0

and covariance matrix Pm(0), the parameter-filter follows similar

recursion steps as the state-filter (Eqns. (9)–(17)) until convergence,

given the sigma point calculation scheme of Eqn. 9.

The coupled radioactivity state and attenuation parameter

estimation processes are iteratively repeated as necessary, until

stable results are achieved. The final optimal estimates then

become the reconstructed SPECT activity and attenuation maps.

Results

Validation with Synthetic Data
Synthetic Zubal phantom is used to quantitatively evaluate the

accuracy and robustness of the framework, where a simplified

human thorax with two lungs is represented by 32|32

attenuation and activity (Fig. 1). Specifically, while both lungs

have average attenuation coefficient of 0.04/cm, attenuation of

the left lung is nonuniform but that of the right lung is uniform.

SPECT projection data have been generated for a parallel beam

geometry and 90 views uniformly spaced over 360 degrees. To

generate realistic data, simulations in our study are performed

using toolbox GATE [27], which can provide a relatively accurate

reference for the assessment of new image reconstruction

algorithms. And we have performed two studies, one with mean

activities of 50 counts/pixel (low count), and the other with 200

counts/pixel (high count).

For these two sets of synthetic projection data, the radioactivity

maps are reconstructed using four reconstruction methods: FBP

Figure 5. Reconstructed activity map of the physical phantom by FBP (top left), EM-ML (top right), EKF (bottom left) and UKF(bottom
right) (arrows indicate cold areas), and the associated color scale.
doi:10.1371/journal.pone.0106951.g005
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[28], EM-ML [29], EKF [24], and dual UKF (The attenuation

maps are also reconstructed for the EKF and UKF methods). For

the UKF framework, the state (activity map) is estimated by the

UKF state-filter, where, for the first iteration, the attenuation

parameters come from the initial guess. Otherwise, we use the

values estimated in the last iteration from the UKF parameter-

filter. Consequently, these state estimates are used by the UKF

parameter-filter to recover the attenuation coefficients. This

process is executed iteratively until it meets the convergence

criterion, which is defined using two consecutive normalized errors

x(tz1) and x(t) through Ex(tz1){x(t)Evz with z being a small

constant, and x defines the normalized error between the

estimated and the exact value (J~x for the state-filter process,

J~m for the parameter-filter process) with

x~
1

N

P
N
i~1DJ

t
i{Jr

i D
2P

N
i~1DJ

t
i D

2

 !0:5

ð22Þ

where Jt
i is the estimated value, Jr

i is the corresponding true value,

and i indicates the pixel.

A detailed statistical analysis on the estimation results against

the ground truth phantom map is performed. Let Np and x̂x be the

total number of pixels in the region of interest(ROI), e.g. body

anatomy, and the final reconstruction results respectively, and xtr

be the ground truth, we have the following error definitions:

RMSE~
1

Np

X
(x̂x{xtr)

2

� �0:5

ð23Þ

The results for the reconstruction of the attenuation maps are

shown in Fig. 2 for the low count case. Visually, the UKF-

reconstructed attenuation image clearly shows all relevant

anatomical structures, where the lungs are easily seen with clear

shape and size. The RMSE values in ROI of body anatomy using

the UKF method are 0:0190 (low counts) and 0:0187 (high

Figure 6. Reconstructed attenuation map of the physical phantom by EKF (left) and UKF (right), and the associate color scale.
doi:10.1371/journal.pone.0106951.g006

Figure 7. Reconstructed attenuation (left, by UKF) and activity maps of the patient by UKF (middle) and FBP (right), and the
associated color scales.
doi:10.1371/journal.pone.0106951.g007
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counts), which, though not as impressive, are still somewhat

smaller than the corresponding values of 0:0204 (low counts) and

0:0199 (high counts) obtained by the EKF method (note that the

true average attenuation coefficient is 0.04). The worse perfor-

mance of the EKF strategy could be caused by the first-order

Taylor approximations of state transition that provided insuffi-

ciently accurate representations.

The results for the reconstruction of the activity maps are

presented in Fig. 3, and the quantitative tabulation of the

reconstruction accuracy is in Table 1. These figures and results

illustrate that traditional EM-ML and FBP methods, with

unknown attenuation map settings, produce some noticeable

errors. The dual UKF estimation framework, on the other hand,

consistently yields the best quality radioactivity estimates for both

high and low count data. Same conclusion can be drawn from the

visual examples of the selected horizontal profiles, as shown in

Fig. 4.

Reconstruction from Physical Phantom Scanning Data
The second data set used for validation has been on a real

cylinder phantom. The dimension of the phantom is 200 mm

(diameter) | 290 mm (depth). A Teflon rod and two hollow

PMMA cylinders with diameters of 50mm are inserted in the

phantom’s volume, as shown in Fig. 1. The phantom is filled with
99mTc concentration with a total radioactivity of 20mCi (100kBq/

cc) and the two hollow cylinder rods are filled with air and pure

water respectively. The phantom was scanned with a Siemens

ECamduet ECT scanner by two detector head rotating at total 64

angle position around 180 degree and the acquiring time at each

position is 30 seconds. The final sinogram data has 64|128
projections for each slice. Once again, FBP, EM-ML, EKF and

dual UKF strategies have been used to reconstruct activity maps

from the measurement data, as shown in Fig. 5. Visually, it is

evident that the UKF method produces the best reconstruction

results, especially for the three cold areas. The results of EKF and

UKF reconstructed attenuation map are shown in Fig. 6, with

RMSE values of 0:0007 for UKF and 0:0044 for EKF.

Reconstruction from Real Patient Scanning Data
The dual reconstruction strategy has also been evaluated on

clinical studies, where the patients are undergoing 99mTc sestamibi

stress tests. Using a Siemens ECamduet scanner, all projections are

acquired over 120 angles covering a circular 360 degrees

acquisition orbit in a continuous step-and-shoot mode. With an

acquisition time of 16s/frame, the total photon counts for each

slice are 148761. The dual reconstruction of activity and

attenuation maps are shown in Fig. 7, and the clinically standard

FBP reconstruction (without attenuation correction) is also shown

for comparison. Since the transmission data is not available from

this imaging site, we can only make qualitative visual inspection of

the images. It is quite clear, however, that the estimated

attenuation map agrees with general knowledge of the imaged

area, and the UKF estimated activity map exhibits improved

contrast between heart and soft tissue.

There is usually a considerable increase in computation for

improved performance. The computational load increases when

moving from the EM to the UKF. However, as the UKF gives a

better approximation in time update step, the UKF estimate is

able to converge quite faster comparing to the EM. Furthermore,

this proposed approach runs efficiently on graphics processing

units(GPUs) since large amounts of computations are done in

matrix forms. Further investigations on the implementation with

GPUs are underway.

Conclusions

A dual UKF strategy has been derived for joint reconstruction

of the attenuation map and activity distribution solely from

SPECT emission sinograms. Constructing the state transition of

the activity distribution through state space evolution equations

and the photon-counting measurements through observation

equations, we rely on the unscented Kalman filter principles to

first generate estimates of activity maps with sub-optimal

attenuation parameter estimates, and then recover the attenuation

maps given these activity estimates. These coupled iterative steps

are repeated as necessary until convergence. Simulated and

physical phantoms, as well as real patient data, are used to

evaluate the proposed strategy.
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