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There is an urgent need to identify new therapies that prevent SARS-CoV-2 infection and improve the
outcome of COVID-19 patients. This pandemic has thus spurred intensive research in most scientific areas
and in a short period of time, several vaccines have been developed. But, while the race to find vaccines
for COVID-19 has dominated the headlines, other types of therapeutic agents are being developed. In this
mini-review, we report several databases and online tools that could assist the discovery of anti-SARS-
CoV-2 small chemical compounds and peptides. We then give examples of studies that combined in silico
and in vitro screening, either for drug repositioning purposes or to search for novel bioactive compounds.
Finally, we question the overall lack of discussion and plan observed in academic research in many coun-
tries during this crisis and suggest that there is room for improvement.
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1. Introduction

Since the occurrence of the Coronavirus Disease 2019 (COVID-
19), a pathological process mediated by SARS-CoV-2, several mil-

lions of deaths worldwide (https://www.worldometers.info/coron-

avirus/) have been monitored. On top of this situation, we are
witnessing a major crisis that is affecting the entire world economy
and that is also devastating. SARS-CoV-2 is a coronavirus similar to
SAR-CoV-1 (emerged in 2002) and MERS-CoV (emerged in 2012)
that infect vertebrates. It is a large, enveloped, single-stranded
positive-sense RNA virus [1]. Its genome comprises several open
reading frames (ORFs), two-thirds of which encode nonstructural
proteins (Nsp) that make up the replicase complex. The remaining
encodes nine accessory proteins (ORF) and four structural proteins:
Spike (S), Envelope (E), Membrane (M), and Nucleocapsid (N), of
which the Spike protein mediates entry into host cells via binding
to the angiotensin-converting enzyme 2 (ACE2) receptor [2–6]. The
Spike, an oligomeric transmembrane protein, can be cleaved and
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further activated by several enzymes [7,8], including the host sur-
face serine protease, TMPRSS2 [3] (Fig. 1). The severity of the host
response depends on numerous factors, including an innate
response to viral recognition [9,10]. If the antiviral response is
delayed or inhibited, viral proliferation can lead to the large-scale
recruitment of neutrophils and monocyte-macrophages to the
lungs, creating a hyper-inflammatory environment [10]. It has
been found, in some COVID-19 patients, that there is an intense
release of pro-inflammatory cytokines, i.e., cytokine storm (CS)
[11–14], and in some patients, rapid progression to Acute Respira-
tory Distress Syndrome can occur [15–17].
Fig. 1. The virtual screening workflow for the identification and development of
COVID-19 treatments using different drug discovery tools. This figure was inspired
by the study reported here [215].
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Many different strategies can be used to identify disease pre-
vention drugs and/or treatments. In the present context, consider-
ing the virus life cycle, one may aim at drugs acting at different
stages of the infection (e.g., entry, replication, and dissemina-
tion. . .) [7,18–24]. The drugs could be small chemical compounds
and (stapled) peptides [21,25–32], therapeutic proteins including
antibodies or nanobodies [33–45], vaccines [46,47] and cells [48–
50]. These drugs could interfere with the functioning of viral
macromolecules and/or with the host proteins and/or complex
not fully understood molecular mechanisms and pathways (e.g.,
many cationic amphiphilic drugs act on specific targets but also
on endocytosis [51–65].

As in all drug discovery project involving small molecules (but
also often for other types of therapeutic agents), there are many
ways to prioritize targets depending on the goal (hit one target,
several targets in a pathway. . .) [66–74]. Once some targets are
selected, experimental high-throughput and in silico screening
can be performed. If 3D structures are known or can be predicted
by homology modeling [75–77], a critical step for target prioritiza-
tion usually involves the identification of druggable or ligandable
pockets (binding cavities, hot-spots, and cryptic sites) [78–84].
For SARS-CoV-2, major efforts have indeed been made in the field
of structural biology (e.g., mainly X-ray and Cryo-EM considering
the size of the macromolecules) [85] while homology modeling
and related structural bioinformatics servers have in general
launched a special service on ‘‘Covid-19” (i.e., pages dedicated to
SARS-CoV-2 protein prediction and/or analysis). Further, knowl-
edge about the SARS-CoV-2/human interactome is critical to assist
the selection of targets and/or the discovery of drug candidates
[86–89]. Comparisons with other viruses can obviously give impor-
tant insights about the molecular mechanisms at play and about
valuable targets [90]. Taken together, about 20 proteins directly
linked to the disease and involved at different stages of the
SARS-CoV-2 virus life cycle could be druggable, including entry
into the host cells (e.g., the viral Spike and the host ACE2 and
TMPRSS2 proteins), RNA replication, and transcription (e.g., heli-
case and RNA-dependent RNA polymerase (RdRp)), and translation
and proteolytic processing of viral proteins (e.g., viral main pro-
tease (Mpro), 3CLpro and the papain-like (PLpro) protease)
(Fig. 1). Clearly, many other host proteins and protein–protein
interactions can also be considered (e.g., possibly the CD147-
Spike interaction and a few hundred others).

As mentioned above, developing (antiviral) drugs (from small
molecules to vaccines) is extremely challenging [91,92] and thus,
selecting a strategy is obviously critical (e.g., designing a novel
compound, a peptide, targeting the enzymes catalytic sites or exo-
sites including allosteric sites. . .use approved drugs, virtual com-
pounds, etc.). For example, while it might seem easier to identify
small molecules inhibiting the catalytic site of viral enzymes as
compared to finding inhibitors of protein–protein interactions,
mutations in the viral genome can lead to amino acid changes in
catalytic centers and possibly drug resistance, thereby making
the compound totally or partially ineffective in a short period of
time [93,94]. This situation is less likely at protein–protein interac-
tion (PPI) interfaces [94–97]. Also, covalent binders [98] can be of
interest, definitively to act on viral enzymes [99] but also to block
PPIs as seen in the field of cancer [100]. Further and obviously, to
find drugs, it is necessary to understand as much as possible the
molecular mechanisms at play, and thus, important biochemical
and biological studies have to be performed with associated effi-
cient in vitro assays and animal models. These might be very diffi-
cult for complex diseases in general and definitively for this virus
[101,102]. Thus, each drug discovery strategy, each selection of tar-
gets or pathways, has strengths and weaknesses (e.g., in infectious
diseases it could be interesting to target the host proteins to reduce
resistance, in oncology the selection of the right therapeutic agents
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has to be consider early in the process if for instance the drug
needs to penetrate some tumors, in such a case, some biologics
are not appropriate). Along the same line of reasoning, it is well-
known that time factor and cost have to be considered. The search
for drug candidates can take years (e.g., the design of novel antivi-
ral compounds starting from the screening of a large compound
collection with various optimization steps including Absorption,
Distribution, Metabolism, Excretion and Toxicity (ADMET) proper-
ties) while other approaches are in general quicker such as drug
repurposing or repositioning (e.g., [103–114]). Vaccine and anti-
body development can also be a long and difficult process with
potential additional problems for microorganisms with moderate
and high mutation rates not even mentioning, manufacturing,
shipping, and storage problems and overall public acceptance
[115,116] when it comes to administration to billions of people.
What is also obvious from the above is that to design and find
treatments, a large number of skills and methodologies are
required. Altogether, to face a pandemic (or a global health) crisis,
it would seem, at least in academia and at a national level if easier
to implement at first, that all the interested scientists should be
involved in the process, and that a roadmap should be collectively
decided, avoiding as much as possible silo mentality, silo working
and related devastating human behaviors commonly seen during a
crisis.

In this mini-review, we are interested in computational meth-
ods that can assist the so-called early stages of drug discovery.
We will focus on tools dedicated to the identification of low molec-
ular weight drug candidates. First, we will briefly introduce some
of the computational/data science approaches that can be used to
gain insights to search for drug candidates. This first section will
also present several online resources and databases that have been
used or developed to study SARS-CoV-2. Readers specifically inter-
ested in computational approaches that facilitate the development
of vaccines or antibodies can find many recent articles and reviews
on the topic (e.g., [92,117–126]. Then, we will give examples of
studies that combined in silico and experimental approaches to
identify putative chemical probes. Finally, we discuss the way
research, essentially in academia, has been organized in several
countries and suggest possible avenues for improvement.
2. Virtual screening methods and online resources to assist the
study of SARS-CoV-2

In modern days, many different in silico approaches can be used
to assist the design of a drug candidate or drug, from data (e.g., text
and image) mining (e.g., annotated drug databases, antiviral pep-
tide databases, electronic health patient records. . .), genome anal-
ysis, comparative genomics, multiple sequence alignments,
visualization tools for epidemiological studies, analysis of macro-
molecular interaction networks, structural predictions (e.g., com-
parative modeling, protein folding. . .), antibody-drug conjugate,
analysis of point mutations, protein docking, various types of
molecular simulation engines (e.g., for proteins, peptides, small
molecules, cell membrane, DNA, RNA, glycans, and interactions
among these molecules. . .), binding pocket predictions, PROTACs
(e.g., degradation of viral protein capsids), transcriptomic profile
analysis, virtual screening (from small collections of approved
drugs as in drug repositioning or repurposing projects to the
screening of ultra-large virtual libraries), hit to lead optimization,
drug combination, computational polypharmacology and com-
pound profiling, ADMET prediction, multiparameter optimization
methods associated with novel data visualization approaches, sys-
tems biology, systems pharmacology, with or without the use of
machine learning and artificial intelligence (AI) algorithms
depending on the type of methods, available data and the stage
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of the projects [19,77,80,127–180]. Clearly, at present, some com-
putational approaches are more mature than others and some are
not realistic [181–183].

With regard to the search for bioactive anti-SARS-CoV-2 mole-
cules, a starting point could involve gathering information about
SARS-CoV-1 and related viruses (e.g., molecular mechanisms,
potential targets, structural predictions of SARS-CoV-2 proteins in
3D via homology modeling. . .) in parallel to the generation of
new data, experimental or theoretical [184]. For example, numer-
ous antiviral molecules are known [90] and could be used as start-
ing points to explore the almost infinite chemical space [185].
These molecules act on different targets and on different types of
molecular mechanisms. From such knowledge, different types of
algorithms can be used, such as virtual screening (VS) approaches.
Indeed, these methods are known to play a direct role in drug dis-
covery by enabling the identification/optimization of hit or lead
compounds that can exert therapeutic effect by binding to one or
more targets (mainly proteins but other macromolecules are also
considered, such as RNA and DNA) (e.g., [186,187]). Virtual screen-
ing methods allow for the screening of large databases of com-
pounds (e.g., real or virtual small chemical molecules, approved
and investigational drugs, short peptides. . .) [134,141,188–190].
A short list of molecules selected after the VS computations are
then validated experimentally, providing insights into the underly-
ing mechanism of action and providing interesting starting points
for further developments. The two prominent strategies used for
VS are ligand-based virtual screening (LBVS) and structure-based
virtual screening (SBVS). The main approaches for LBVS are
similarity-based (shape or chemical fingerprint) approaches and
pharmacophore-based methods [191–194]. Quantitative struc-
ture–activity relationship (QSAR, employing various types of
machine learning and artificial intelligence algorithms, but these
approaches can also be used in docking, binding pocket prediction,
scoring. . ..) methods represent other types of powerful ligand-
based techniques [107,127,132,137,138,142,195]. SBVS involves
molecular docking of chemical libraries into one or several binding
pockets, followed by qualitative and quantitative estimation of the
docking poses [141,196]. With such approaches, it is possible to
target a catalytic site, an allosteric site, or a pocket present at
macromolecular interfaces [80,81,151,197]. The most appropriate
pockets can be selected, either for docking or de novo compound
generation taking into account properties of the cavity [198–
202]. In most cases, flexibility of these putative targets/pockets
have to be investigated [147,148,156]. The compound collections
can be, like in LBVS studies, approved, investigational or experi-
mental molecules [203], purchasable compounds and virtual com-
pounds [204], covalent binders [130,205] or small fragments [206].
Different types of scoring functions can then be used to select the
molecules for experimental assays [155,157,160,207–211]. LBVS
and SBVS can be combined if the right data are available [134].
Then, as new knowledge is being reported, various types of data
mining approaches and workflows can be developed and used
[212]. It becomes possible to, for instance, develop statistical pre-
dictive models based on experimental screening data so as to pre-
dict the bioactivity of a novel compound [213] while, as the 3D
structures of many potential targets are now known, SBVS can be
performed on different binding pockets with, for instance, ultra-
large compound collections [150].

During the Covid-19 pandemic, in wet and dry laboratories
alike, numerous projects were initiated and supported by short-
term research grants. In the field of computational and data
sciences, a tremendous amount of work has been accomplished
(e.g., online tools, open databases) in a short period of time
[152]. These developments are of high interest as these approaches
can help to design chemical probes, drug candidates, therapeutic
peptides or proteins and generate new ideas [214]. Further, if these
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tools and databases are properly maintained (thus the question
about short-term funding), they should be also essential for future
research projects and for teaching purposes. What was also
impressive, during this crisis, was the amount of computer power
available. Most computer groups could have access to super com-
puters and the difficulties were elsewhere, the lack of funding to
employ scientists with a proper training in both, computer/data
sciences and drug discovery (small molecules and/or biologics).

We have collected several of these online tools/databases, espe-
cially those dedicated to drug design (see Supplement Table 1). Yet,
some of these are not directly concerned by drug design per se but
can be used to gain knowledge about SARS-CoV-2, from genome
analysis, visualization tools for epidemiological studies,
approaches to study potential therapeutic targets, or to map vari-
ants on the 3D structures of the viral proteins (e.g., in binding
pockets, in neutralizing antibody binding regions, to design vacci-
nes that would still be effective against Covid-19 variants. . .). With
regard to drug design, the online tools allow to run different types
of virtual screening computations (e.g., already synthesized or vir-
tual compounds, drug repositioning, peptide docking). At present,
several annotated compound databases are available and can be
used to develop predictive statistical models that should facilitate
the selection or design of more active molecules. As new tools are
reported basically every week, we also implement all the URLs on
our website, https://www.vls3d.com/, Shortlist page, and all are
flagged by the word ‘‘Covid-19” such that users can carry out a
simple search using, for instance, the Google Chrome Find utility.
3. In silico and in vitro screening to search for novel anti-SARS-
CoV-2 compounds

Many different types of computations have been carried out and
combined with experimental approaches to search for anti-SARS-
CoV-2 molecules. As thousands of articles have been reported, it
is only possible to mention some here. For example, we will not
cover the following studies to save space [216–227].

Jin et al. identified a mechanism-based peptidomimetic inhibi-
tor N3 1 (Fig. 2) using computer-aided drug design (CADD) tech-
niques [228]. They solved the crystal structure of the Mpro of
SARS-CoV-2 in complex with this compound. The crystal structure
revealed that N3 was covalently bonded to the catalytic cysteine
(C145) of Mpro. Eight additional compounds, Ebselen 2, Disulfiram
3, Tideglusib 4, Carmofur 5, Shikonin 6, PX-12 7, TDZD-8 8, and
Cinanserin 9 (Fig. 2) were identified through a combination of
structure-based virtual and high-throughput screening of over
10,000 compounds, including approved drugs, drug candidates in
clinical trials, and other pharmacologically active compounds.
Out of eight compounds, 2–8 showed half-maximal inhibitory con-
centrations (IC50) ranging from 0.67 to 21.4 lM, whereas com-
pound 9 (Cinanserin) has an IC50 value of 125 lM for Mpro. One
of these compounds (Ebselen) also exhibited promising antiviral
activity in cell-based assays. Yet, some of these molecules like
Ebselen have to be considered with caution as suggested to be a
nonspecific promiscuous protease inhibitor [229].

Dai et al. designed two inhibitors, 10 and 11, by analyzing the
substrate-binding pocket of SARS-CoV Mpro [230]. Both com-
pounds strongly inhibited the activity of Mpro (IC50 values of 0.0
53 ± 0.005 lM and 0.040 ± 0.002 lM for 10 and 11, respectively)
and showed good antiviral activity in cell culture. They also deter-
mined the crystal structures of SARS-CoV-2 Mpro in complex with
these inhibitors, which revealed that the aldehyde groups of 10
and 11 are covalently attached to C145 of Mpro.

In another study [231], a consensus docking-based virtual
screening protocol was applied to ~ 2000 approved drugs to find
inhibitors of Mpro of SARS-CoV-2 using Glide SP, AutoDock Vina,
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and AutoDock 4.2. The predicted poses of the compounds were
extensively scrutinized in terms of consensus docking score, inter-
molecular contacts, conformation, stability in molecular dynamics
simulations, and potential for synthetic modification. Seventeen
compounds were evaluated for Mpro inhibition, in which 14 com-
pounds showed a reduction of Mpro activity at 100 lM concentra-
tion. Among these 14 compounds, five compounds, manidipine 12,
boceprevir 13, lercanidipine 14, efonidipine 15, and bedaquiline
16, exhibited the IC50 values of 4.8, 5.4, 16.2, 38.5, and 18.7 lM,
respectively.

Gimeno et al. performed docking-based virtual screening of two
different libraries of approved drugs against the Mpro structure
using Glide, FRED, and AutoDock Vina [232]. The study led to the
identification of Carprofen 17 and Celecoxib 18 as weak noncova-
lent binders of Mpro, showing 3.97% and 11.90% inhibition at
50 lM concentration, respectively.

White et al. targeted the SARS-CoV2 helicase (Nsp13), which is
critical for viral replication and the most conserved nonstructural
protein within the coronavirus family [233]. By combining homol-
ogy modeling and molecular dynamics approaches, they generated
structural models of the SARS-CoV2 helicase in its apo- and ATP/
RNA-bound conformations. The subsequent high-throughput vir-
tual screening of ~970,000 chemical compounds against the ATP
binding site of Nsp13 led to the identification of two drugs, Luma-
caftor 19 and Cepharanthine 20, that displayed significant activity
in inhibiting Nsp13 ATPase activity in purified recombinant SARS-
CoV-2 helicase with estimated IC50 values of 0.3 and 0.4 mM,
respectively.

Richardson et al., by applying artificial intelligence algorithms,
identified Baricitinib (21) as a potential drug for COVID-19 infec-
tion [234,235]. Baricitinib is a potent and selective inhibitor of
the Janus kinases 1/2 (JAK1/JAK2) and is currently used in the ther-
apy of rheumatoid arthritis. Based on the results of the Benevo-
lentAI’s knowledge graph tool, Baricitinib has been proposed to
exert anti-cytokine effects as well as it was predicted to alter virus
entry by inhibiting AP2-associated kinase 1 (AAK1) and cyclin G-
associated kinase (GAK), which are likely involved in SARS-CoV-2
endocytosis. The BenevolentAI’s knowledge graphical method uti-
lizes machine learning to integrate the scientific information on
the biological processes involved in viral infection with that on
the mechanisms of action of available drugs in order to identify
potential new therapeutic targets and agents [236]. Stebbing
et al. validated the AI-prediction by performing the in vitro phar-
macology of Baricitinib across relevant leukocyte subpopulations
coupled to its in vivo pharmacokinetics, which revealed that Baric-
itinib inhibited signaling of cytokines implicated in COVID-19
[237,238]. In addition, the inhibitory effects of baricitinib were also
evaluated on human numb-associated kinase (hNAK) members,
such as AAK1, BIKE, and GAK, for which it showed affinities in
the nanomolar range (8.2 nM, 20 nM, and 120 nM, respectively).
The NAK enzymes are believed to facilitate the propagation of
coronavirus in epithelial cells [234,239,240]. Baricitinib triggered
inhibition of NAKs led to reduced viral infectivity in human pri-
mary liver spheroids [235,237]. Besides the use of AI in drug dis-
covery, it was recently applied to improve the diagnosis or early
warning signs of COVID-19 infection [241]. For instance, research-
ers at King’s College London, in collaboration with Massachusetts
General Hospital, designed the COVID Symptom Tracker, devel-
oped an AI-based smartphone app that monitors viral transmission
and symptoms [242]. This tool identified the importance of anos-
mia as an early warning symptom. The AI-powered NHSX contact
tracing app warns users about viral exposure and so dramatically
reduces transmission rates. Alerts are triggered when users self-
report symptoms or test positive while respecting anonymity.

Wu et al. used the fact that the Spike protein of SARS-CoV-2
contains a furin cleavage site and proposed that furin could be a

https://www.vls3d.com/


Fig. 2. Chemical structures of small molecule inhibitors and peptides that are active against the SARS-CoV-2 virus. 1, N3, 2, Ebselen 3, Disulfiram 4, Tideglusib 5, Carmofur 6,
Shikonin 7, PX-12 8, TDZD-8 9, Cinanserin 10, N-((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)propan-2-yl)-1H-indole-2-carbox-
amide 11, N-((S)-3-(3-fluorophenyl)-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)propan-2-yl)-1H-indole-2-carboxamide 12, Manidipine 13,
Boceprevir 14, Lercanidipine 15, Efonidipine 16, Bedaquiline 17, Carprofen 18, Celecoxib 19, Lumacaftor 20, Cepharanthine 21, Baricitinib 22, Diminazene 23, 4,40-((Z)-6-
(((E)-3-methylbenzylidene)hydrazono)-3,6-dihydropyrimidine-2,4-diyl)dimorpholine 24, Hypericin 25, Cyanidin-3-O-glucoside 26, SRT2104 27, Amiodarone 28, Bosutinib
29, Clofazimine 30, Entecavir 31, Fedratinib 32, Gilteritinib 33, Lactoferrin (the peptide segment expected to be important) 34, Lomitapide 35, Metoclopramide 36,
Niclosamide 37, Remdesivir 38, S1RA 39, Thioguanine 40, Verapamil 41, Z-FA-FMK, 42, GC376 43, Quercetin. It is important to note that some of these molecules (e.g.,
Ebselen, Disulfiram, Carmofur, PX-12, Tideglusib, and Shikonin) could be nonspecific promiscuous compounds (see [229]).
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reason behind the high infectivity of SARS-CoV-2 [243]. By per-
forming structure-based virtual ligand screening of a library of
4,000 compounds, including approved drugs and natural products,
followed by in vitro enzyme-based assay, they discovered an anti-
parasitic drug Diminazene 22, that showed competitive inhibition
of furin, with an IC50 of 5.42 ± 0.11 lM.

Huang et al. applied a novel biological activity-based modeling
(BABM) approach to discover a compound inhibiting the SARS-
COV-2 [244]. The BABMmethod relies on the hypothesis that com-
pounds with similar activity patterns tend to share similar targets
or mechanisms of action. In the BABM method, compound activity
profiles established on a massive scale across multiple assays were
used as signatures to predict compound activity in a new assay or
against a new target. They first trained and validated this approach
by identifying new antiviral lead candidates for Zika and Ebola
based on data from ~ 0.5 million compounds screened
against ~ 2,000 assays. Subsequently, BABM models were then
applied to predict ~ 300 compounds not previously reported to
have activity for SARS-CoV-2, which were then tested in a live virus
assay exhibiting high (>30%) hit rates. The most potent compound
23 showed an IC50 value of 0.5 lM.

Pitsillou et al. targeted the SARS-CoV-2 Mpro by performing a
molecular docking screen of 300 small molecules [245], which
included phenolic compounds and fatty acids from the OliveNetTM

library [246], and an additional group of curated pharmacological
and dietary compounds. The study led to the identification of three
inhibitors, hypericin 24, cyanidin-3-O-glucoside 25, and SRT2104
26 that showed the IC50 values of 63.6 ± 5.7 lM, 65.1 ± 14.6 lM
and 85.0 ± 16.8 lM, respectively, in the enzyme-linked
immunosorbent assays. Also, molecular dynamics simulations fur-
ther demonstrated that the lead compounds formed stable interac-
tions with the Mpro active site.

Mirabelli et al., by using quantitative high-content morpholog-
ical profiling and artificial intelligence-based machine learning
strategy to classify features of cells for infection and stress, identi-
fied several efficacious single agents as well as combination thera-
pies against SARS-CoV-2 [247]. This hybrid technique detected
multiple antiviral mechanisms of action (MOA), including inhibi-
tion of viral entry, propagation, and modulation of host cellular
responses. From a library of 1,441 FDA-approved compounds and
clinical candidates, they identified 15 compounds with antiviral
effects: Amiodarone 27 (EC50: 52 nM), Bosutinib 28 (20 nM), Clo-
fazimine 29 (84 nM), Entecavir 30 (42 nM), Fedratinib 31
(24 nM), Gilteritinib 32 (224 nM), Lactoferrin 33 (308 nM), Lomi-
tapide 34 (766 nM), Metoclopramide 35 (468 nM), Niclosamide
36 (142 nM), Remdesivir 37 (97 nM), S1RA 38 (222 nM), Thiogua-
nine 39 (22 nM), Verapamil 40 (533 nM), and Z-FA-FMK 41
(107 nM).

Hung et al. reported GC376 42 as a potent inhibitor for the Mpro

encoded by SARS-CoV-2, with an IC50 of 26.4 ± 1.1 nM, and inhib-
ited SARS-CoV-2 replication with an EC50 of 0.91 ± 0.03 lM. Dock-
ing analysis revealed that the recognition and binding groups of
GC376 were within the active site of SARS-CoV-2 Mpro [248].

Abian et al., by screening a small chemical library consisting of
about 150 compounds, identified quercetin 43, a natural product,
as a reasonably potent inhibitor of SARS-CoV-2 Mpro (Ki ~ 7 mM).
Quercetin was shown to interact with Mpro using biophysical
techniques, and molecular docking simulations were performed
to clarify the interaction of quercetin with Mpro [249].

In a recent and innovative study, Cao et al. targeted the interac-
tion between the SARS-CoV-2 spike protein and the human ACE2
using de novo design approaches [250]. Computer-generated scaf-
folds were built around an ACE2 helix that interacts with the spike
receptor-binding domain (RBD) or docked against the RBD to
identify new binding modes, and subsequently, their amino acid
sequences were designed to optimize the target binding, folding,
2542
and stability. Ten designed miniprotein inhibitors were found to
be binding to the RBD and exhibited affinities ranging from
100 pM to 10 nM. These molecules blocked SARS-CoV-2 infection
of Vero E6 cells with the IC50 values between 24 pM and 35 nM
(Table 1).
4. Preparation for the next global health crises

Numerous problems about the present Covid-19 crisis have
been reported by different groups [91,251–253]. We add below
some of our observations.

Working in silos. Since the beginning of this crisis, hundreds/
thousands of scientists in academia (e.g., in Europe) have been puz-
zled by the lack of a roadmap with a clear, collectively planned def-
inition of research priorities and distribution of tasks. As a result,
many projects got started in uncoordinated ways, squandering
scare resources. Many researchers, supposed to be working
towards the same objective, often on the same campus, could not
share information nor (precompetitive) data because nobody was
clearly in charge. These, most likely, led to many missed opportu-
nities. Along the same line of reasoning, if we take the specific case
of drug repositioning, in several countries in Europe, no strategies
were discussed among the teams and the combination of in silico
and in vitro approaches insufficiently used (or not used at all). This
would have been important as compounds missed in vitro could
have been identified in silico and vice versa. Definitively the lack
of discussions with decision makers and the fact in silico drug
designer teams were essentially ignored during this crisis is
frightening.

Pain but no gain and lost in the grant application jungles
while the world was dying. Another point in many countries
(not directly related to Covid-19 but) and at least in academic
research, has been the realization that for over 20 years, financial
supports for drug discovery have been very limited. Further, drug
discovery skills are often not considered in academia and thus,
the scientists working in this field have usually even less chance
to move on with their careers [254]. During this crisis, it was sur-
prising to have to spend so many precious hours in writing low
success-rate grants while thousands of people were dying every
day. Changes seem needed.

Education and information. Explanations about drug discov-
ery to the general population, the strengths and weaknesses of
each approach (silico, vitro, animal models) and about the thera-
peutic agents have been essentially lacking.

Rigidity versus agility and so many unclear entry points.
Delays and unnecessary bureaucracy are well-known in acade-
mia, but scientists have been told, for several decades already,
that processes were going to be improved (less bureaucracy,
encouraging teamwork, self-organization. . .). Also, in many coun-
tries (e.g., in Europe), millions of euros were spent in a myriad of
fragmented projects but definitively not enough were dedicated
to the development of in vitro screening platforms (i.e., the cost
of developing such platforms to quickly test hypotheses is negli-
gible as compared to the social and economic turmoil caused by
the pandemic). Animal model platforms were even less available
to drug hunters, even more so for computer teams. The process, if
any, to test a candidate molecule with the help of an experimen-
tal platform was thus very complex with no clear entry point.
This suggests that many interesting compounds (or drug combi-
nations) could not be explored in a timely manner. Along the
same line, the procedure to initiate (or to build on the results
of) clinical trials, at least for approved drugs, was also very frus-
trating and many interesting drugs or drug combinations could
not be explored in some countries because of unnecessary
bureaucracy.



Table 1
Biological activity values against the SARS-CoV-2 virus of some small molecules with the corresponding protein targets.

Cpd. Target Biological activity Ref. (PMID)

1 (N3) Mpro not reported [228]
2 (Ebselen) Mpro 0.67 lM [228]
3 (Disulfiram) Mpro 9.35 lM [228]
4 (Tideglusib) Mpro 1.55 lM [228]
5 (Carmofur) Mpro 1.82 lM [228]
6 (Shikonin) Mpro 15.75 lM [228]
7 (PX-12) Mpro 21.39 lM [228]
8 (TDZD-8) Mpro 2.15 lM [228]
9 (Cinanserin) Mpro 125 lM [228]
10 Mpro 0.053 lM [230]
11 Mpro 0.04 lM [230]
12 (Manidipine) Mpro 4.8 lM [231]
13 (Boceprevir) Mpro 5.4 lM [231]
14 (Lercanidipine) Mpro 16.2 lM [231]
15 (Efonidipine) Mpro 38.5 lM [231]
16 (Bedaquiline) Mpro 18.7 lM [231]
17 (Carprofen) Mpro 3.97% [232]
18 (Celecoxib) Mpro 11.97% [232]
19 (Lumacaftor) Nsp13 0.3 mM [233]
20 (Cepharanthine) Nsp13 0.4 mM [233]
21 (Baricitinib) AAK1 8.2 nM [234,235,237]
21 (Baricitinib) BIKE 20 nM [234,235,237]
21 (Baricitinib) GAK 120 nM [234,235,237]
22 (Diminazene) Furin and Spike protein cleavage 5.42 lM [243]
23 Phenotypic screening 0.5 lM [244]
24 (Hypericin) Mpro 63.6 lM [245]
25 (Cyanidin-3-O-glucoside) Mpro 65.1 lM [245]
26 (SRT2104) Mpro 85.0 lM [245]
27 (Amiodarone) Phenotypic screen (SARS-CoV-2) 52 nM [247]
28 (Bosutinib) Phenotypic screen (SARS-CoV-2) 20 nM [247]
29 (Clofazimine) Phenotypic screen (SARS-CoV-2) 84 nM [247]
30 (Entecavir) Phenotypic screen (SARS-CoV-2) 42 nM [247]
31 (Fedratinib) Phenotypic screen (SARS-CoV-2) 24 nM [247]
32 (Gilteritinib) Phenotypic screen (SARS-CoV-2) 224 nM [247]
33 (Lactoferrin) Phenotypic screen (SARS-CoV-2) 308 nM [247]
34 (Lomitapide) Phenotypic screen (SARS-CoV-2) 766 nM [247]
35 (Metoclopramide) Phenotypic screen (SARS-CoV-2) 468 nM [247]
36 (Niclosamide) Phenotypic screen (SARS-CoV-2) 142 nM [247]
37 (Remdesivir) Phenotypic screen (SARS-CoV-2) 97 nM [247]
38 (S1RA) Phenotypic screen (SARS-CoV-2) 222 nM [247]
39 (Thioguanine) Phenotypic screen (SARS-CoV-2) 22 nM [247]
40 (Verapamil) Phenotypic screen (SARS-CoV-2) 533 nM [247]
41 (Z-FA-FMK) Phenotypic screen (SARS-CoV-2) 107 nM [247]
42 (GC376) Mpro 26.4 nM [248]
43 (Quercetin) Mpro 7 lM [249]
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Hope for the future. Definitively, we believe that these obser-
vations call for changes in the management of research in many
countries. With regard to academic drug discovery, important
efforts have been done, for example in the USA, with the creation
of the Academic Drug Discovery Consortium or dynamic maps to
develop small molecules or biologics proposed by the National
Center for Advancing Translational Sciences [255–257], in UK
[258,259] or in Sweden [260], to mention only a few. Of course,
we are all aware that academic drug discovery is challenging and
difficult to organize [261]. Yet, instead of a fragmented and very
costly academic drug discovery research as presently operated in
many countries, it should be possible to develop true interdisci-
plinary (including computational groups and many other skills
required for drug discovery endeavors), coordinated and agile drug
discovery networks that recognize all actors along the value chain.
5. Concluding remarks

The COVID-19 pandemic has severely affected the everyday life
of humans [262]. In this mini-review, we first reported some online
in silico approaches and databases that can assist the study of
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SARS-CoV-2. Although the race to find vaccines has been dominat-
ing the headlines, it is important to note that the search for other
types of anti-viral agents is also critical. Overall, computational
approaches have assisted numerous projects and in several cases
proposed interesting compounds that have been validated
in vitro. When time is a critical factor, combined in silico and
in vitro repurposing approaches can indeed be a possible avenue
but efforts on the prediction of the potential benefit of drug com-
bination will be needed. In parallel, screening large (and high qual-
ity) compound collections (including virtual small chemical
compounds and peptides) can be extremely valuable but of course
the process is more time consuming. Novel, more efficient tools to
predict ADMET properties and to predict the best possible targets
or pathways are still needed and so are strategies that can help
selecting the best treatments for a given population. These chal-
lenges do not only apply to infectious diseases but to most disease
conditions. Besides assisting the identification of putative drugs,
computational approaches combined with molecular biology and
medicine and with biophysical methods helped to improve our
understanding of several mechanisms involved in the virus life
cycle, in some cases, at the atomic level. Hit-to-lead optimization
of the discovered chemotypes using various in silico including
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multi-parameter optimization strategies and medicinal chemistry
skills are ongoing and may lead to superior ligands that could be
brought to the clinics in a near future.

But to be prepared to face future global health challenges, we
believe that establishing integrated academic in silico-in vitro-in
vivo early drug discovery networks has to become a priority in
many countries. At present, academic drug discovery research is
often fragmented, while collaborations between the public and pri-
vate sectors remain most of the time, in many countries, wishful
thinking. Breaking silos is also going to be a major challenge for
the years to come as so many skills and technologies/knowledge
are needed to cost-effectively discover new drug candidates. Are
we prepared for the next global health crisis (plans, structures
and resources)? For the time being, the answer is no. The scientific
community has done outstanding work during this crisis but the
top-down management seen in many (nonprofit) organizations
and in many countries has often stifled researchers’ creativity
and destroyed engagement.
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