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ABSTRACT

The LOMETS2 server (https://zhanglab.ccmb.med.
umich.edu/LOMETS/) is an online meta-threading
server system for template-based protein structure
prediction. Although the server has been widely used
by the community over the last decade, the previ-
ous LOMETS server no longer represents the state-
of-the-art due to aging of the algorithms and un-
satisfactory performance on distant-homology tem-
plate identification. An extension of the server built
on cutting-edge methods, especially techniques de-
veloped since the recent CASP experiments, is ur-
gently needed. In this work, we report the recent
advancements of the LOMETS2 server, which com-
prise a number of major new developments, includ-
ing (i) new state-of-the-art threading programs, in-
cluding contact-map-based threading approaches,
(ii) deep sequence search-based sequence profile
construction and (iii) a new web interface design that
incorporates structure-based function annotations.
Large-scale benchmark tests demonstrated that the
integration of the deep profiles and new threading
approaches into LOMETS2 significantly improve its
structure modeling quality and template detection,
where LOMETS2 detected 176% more templates with
TM-scores >0.5 than the previous LOMETS server
for Hard targets that lacked homologous templates.
Meanwhile, the newly incorporated structure-based
function prediction helps extend the usefulness of
the online server to the broader biological commu-
nity.

INTRODUCTION

Template-based modeling (TBM) represents the most ac-
curate and reliable approach to protein structure predic-
tion. The core procedure of TBM is fold-recognition, also
known as threading, which aims to identify correct tem-
plates from the PDB with similar folds to the target pro-
tein and correctly align the target and template sequences.
There is evidence that indicates the structural space of the
current PDB library is complete and that TBM can be used
to solve the protein structure prediction problem, at least
for single-domain proteins (1). In reality, however, identifi-
cation of ideal templates with correct alignments remains
a major challenge, especially for protein targets that have
no closely homologous templates in the PDB (2,3). To ad-
dress this challenge, a large variety of threading methods
have been developed over the last two decades based on var-
ious scoring functions and alignment algorithms (4–12). Be-
cause each threading algorithm has its own inherent advan-
tages and disadvantages, there is no method that outper-
forms all others for every target protein (13,14). Thus, to
improve the quality and reliability of TBM, several meta-
server approaches were developed to combine threading
results from multiple complementary algorithms (15–17).
Early attempts at developing meta-threading-webservers,
such as 3D-jury (15), submitted prediction jobs to different
online servers and then combined the output results from
each server after-the-fact. Such dependency on external on-
line servers made these meta-servers difficult to maintain,
especially when the external servers updated their APIs or
stopped operating.

To improve the reliability of the meta-threading ap-
proach, we proposed LOMETS (16) which combined 9
locally-installed threading programs for protein structure
prediction. Due to the robustness of the server’s operation
and the advantages associated with combining the results of
multiple complementary algorithms over individual thread-

*To whom correspondence should be addressed. Tel: +1 734 647 1549; Fax: +1 734 615 6443; Email: zhng@umich.edu

C© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0001-7290-1324
https://zhanglab.ccmb.med.umich.edu/LOMETS/


W430 Nucleic Acids Research, 2019, Vol. 47, Web Server issue

ing programs for fold-recognition, LOMETS has been one
of the most widely used meta-threading servers for pro-
tein structure prediction. Since its initial release in 2007,
LOMETS has generated fold-recognition and full-length
structure modeling for more than 30,000 protein sequences
submitted by 15,201 users. With rapid developments in the
field, however, the previous LOMETS server no longer rep-
resents the state-of-the-art in protein threading. In partic-
ular, the recent CASP experiments (3,18) have witnessed
significant new progress in TBM, where contact-maps pre-
dicted through deep neural-network training, in conjunc-
tion with metagenomic sequencing, have been found to be
vitally useful for modeling distant- and non-homologous
protein sequences. Thus, integration of the new threading
methods and sequence and structural data resources is ur-
gently needed to further improve the quality of the meta-
threading approach. This is the major motivation for the de-
velopment of the second generation meta-threading server,
LOMETS2, in this work.

Compared to the previous LOMETS server, LOMETS2
introduces three major new extensions: (i) the server now in-
tegrates a new and more comprehensive set of state-of-the-
art threading programs, including contact-guided threading
approaches; (ii) it utilizes deep profiles which are generated
using a novel deep Multiple Sequence Alignment (MSA)
construction method to improve the profile-based align-
ment accuracy; (iii) it adopts a re-designed, user-friendly
interface and adds structure-based function annotations for
a more comprehensive results report. The benchmark tests
demonstrated that the LOMETS2 structure model quality
is significantly better than any of its component threading
programs as well as the previous meta-threading approach,
LOMETS (16).

MATERIALS AND METHODS

Overview of the LOMETS2 pipeline

The LOMETS2 server pipeline consists of four consecutive
steps: generation of deep sequence profiles, fold-recognition
through its component threading programs, template align-
ment selection, and full-length model construction (Figure
1). Starting from a target protein sequence provided by the
server user, a deep MSA is generated by iterative sequence
homology searches against multiple sequence databases.
The resulting deep MSA is used to calculate deep profiles
in the form of sequence profiles (or position-specific scor-
ing matrices) and profile Hidden Markov Models (HMMs).
The deep profiles are then used by the 11 LOMETS2 thread-
ing programs, which are all locally installed on our com-
puter cluster, to identify template structures from the tem-
plate library, where deep profiles are pre-built for each tem-
plate. Next, 220 templates (the top 20 templates per pro-
gram) are combined to give the final LOMETS2 thread-
ing results. These 220 templates are ranked by a scoring
function that integrates Z-score, confidence score for each
method, and sequence identity between the identified tem-
plates and query sequence (see the detailed description in
Text S1 in the Supporting Information, SI). Meanwhile, the
function annotations associated with each template are col-
lected from the BioLiP structure-function database (19). Fi-
nally, full-length models are constructed by MODELLER

(20) utilizing the multiple distance restraints collected from
the top-ranked templates identified by LOMETS2.

New developments in LOMETS2

DeepMSA method. The profiles (sequence profiles or
profile HMMs), which are derived from MSAs for the
query/template sequences, are one of the most important
features for template recognition and threading-based se-
quence alignment. General MSA generation methods, such
as PSI-BLAST (21) and HHblits (22), sometimes cannot
collect a sufficient number of homologs in an MSA, es-
pecially for Hard targets, which can result in poor align-
ment quality when using profile-based threading algo-
rithms. LOMETS2 employs a new composite approach,
called DeepMSA, to create sensitive MSAs with higher
numbers of diverse sequences than general MSA generation
methods.

Starting from a query sequence, a deep MSA is gener-
ated by a three stage procedure (Supplementary Figure S1).
In Stage 1, HHblits from the HH-Suite package is used to
search the query against UniClust30 (23) to generate the
first-level MSA. If the number of effective sequences (Neff,
defined in Text S2) generated by Stage 1 is <128, Stage 2 will
be performed. In Stage 2, Jackhmmer from the HMMER
package (24) is used to search the query sequence against
UniRef90 (25) to extract full-length sequences (hits). These
hits are then converted into a custom HHblits-formatted
database. Jump-starting it from the first-level MSA, HH-
blits is again applied to search this custom database to
generate the second-level MSA. If the Neff of the second-
level MSA is still <128, Stage 3 will be performed, where
the second-level MSA is converted into a profile HMM
by HMMbuild from the HMMER package. This HMM is
then searched against the Metaclust (26) metagenome se-
quence database by HMMsearch from HMMER to extract
full-length hits. Similar to Stage 2, hits from HMMsearch
are built into a custom HHblits database. The second-level
MSA is used to jump-start an HHblits search against this
new custom HHblits database to get the third-level MSA.
Using these three Stages, we generate deep MSAs, which in
turn are utilized to build the final sequence profiles used by
each of the LOMETS2 threading methods.

New threading methods. The LOMETS2 server integrates
predictions from 11 different state-of-the-art threading al-
gorithms, which can be classified into three types: the
contact-based method CEthreader; sequence profile-based
methods, including FFAS3D (10), MUSTER (9), Neff-
MUSTER, PPAS (16), PROSPECT2 (6), SP3 (27) and
SparksX (8); and profile HMM-based methods, consist-
ing of HHsearch (11), HHpred (28) and PRC (29). Among
them, CEthreader, FFAS3D, HHpred, MUSTER, Neff-
MUSTER and SparksX are newly added to the LOMETS2
server. HHpred is a profile HMM-based threading method
extended from HHsearch. SparksX and FFAS3D are both
based on profile-profile comparison and use similar fea-
tures, but FFAS3D employs a template re-ranking strat-
egy. MUSTER, Neff-MUSTER and CEthreader are our in-
house threading programs. MUSTER and Neff-MUSTER
are profile-profile alignment algorithms that use dynamic
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Figure 1. The flowchart of the LOMETS2 server pipeline consists of four steps: generation of deep profiles, fold-recognition by 11 individual threading
programs, template selection and full-length model construction.

programming together with a myriad of features, including
sequence profiles, secondary structures, structure fragment
profiles, solvent accessibility, dihedral torsional angles, and
hydrophobic scoring matrices for fold-recognition. The ma-
jor difference between MUSTER and Neff-MUSTER is
that MUSTER uses a set of fixed weights for the se-
quence profile term while Neff-MUSTER employs dynamic
weights derived from the Neff of the MSA used to build
the sequence profile. Lastly, CEthreader is a contact-driven
threading method, which first predicts the contact-map for
a query sequence using our in-house, deep learning-based
contact-map prediction method, ResPRE (30) (see Text
S3). From the predicted contact-map, CEthreader gener-
ates single-body contact eigenvectors through the eigen-
decomposition technique, and finally searches and aligns
the query to templates using dynamic programming based
on the contact eigenvectors as well as secondary structure
and sequence profile comparison (see Text S4). A more de-
tailed description for each of the 11 LOMETS2 threading
methods is provided in Text S5.

A unified deep profile-based template library. In the previ-
ous version of the LOMETS server, the template libraries
were collected from the original developers of each individ-
ual threading program, which negatively impacted its per-
formance since some libraries were not comprehensive or
were not updated regularly. In LOMETS2, a unified library
of non-redundant protein structure templates is regularly
collected for each of the threading methods. This library
currently consists of 71 684 structures with a pair-wise se-
quence identity <70%. In addition to the structures and
structure-based feature files, the DeepMSA program is used
to create MSAs and then pre-build the deep sequence pro-
files and deep profile HMMs for each template. The library
is updated weekly in accordance with the update cycle of
the PDB database and has been made publicly available at
https://zhanglab.ccmb.med.umich.edu/library/.

Re-designed server output. The output page of the
LOMETS2 server was re-designed to make the server more
convenient to use and to incorporate more comprehensive
function annotations. The 3Dmol (31) applet is used to visu-
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alize the modeled structures. Moreover, we added function
annotations derived from threading templates, including
Gene Ontology (GO) terms for Molecular Function (MF),
Biological Process (BP) and Cellular Component (CC) as
well as the Enzyme Commission (EC) numbers.

RESULTS

Dataset

To test the LOMETS2 server, we constructed a non-
redundant benchmark set of 614 proteins from the PDB
with pairwise sequence identities <30%. The proteins in the
benchmark set had lengths ranging from 57 to 500 residues
and included 141 α-, 187 β- and 286 αβ-proteins. To make
it relevant to TBM, each target protein was required to have
at least one template with sequence identity <30% and TM-
score >0.5 to the target as identified by TM-align structural
alignment searches through the template library (32). Based
on LOMETS classification, which categorizes proteins into
different classes based on the significance scores of multiple
threading programs, this dataset contained 403 Easy targets
(for which at least one threading program in LOMETS de-
tected a significant template hit) and 211 Hard targets (for
which no program in LOMETS identified a significant hit).
To remove bias caused by homologous sequences, a uniform
sequence identity cutoff of <30% between the target and
template sequences was enforced when the threading tests
were conducted for each of the programs.

Overall comparison between LOMETS and LOMETS2

Figure 2A presents a head-to-head comparison between the
TM-scores of the first templates identified by LOMETS and
those identified by LOMETS2. The average TM-scores for
the first templates identified by LOMETS2 for All, Easy
and Hard targets were 0.62, 0.71 and 0.46, respectively,
which were 9%, 4% and 31% higher than those identi-
fied by LOMETS. Out of the 614 targets, LOMETS2 suc-
cessfully detected correct templates with a TM-score >0.5
for 479 targets, which was 17% higher than the number
of targets with correct templates identified by LOMETS.
For Hard targets in particular, LOMETS2 detected cor-
rect templates for 94 targets, while LOMETS only success-
fully detected correct templates for 34 targets. In Figure 2B,
we show a comparison between the average TM-scores for
the full-length models constructed by MODELLER based
on templates identified by either LOMETS or LOMETS2.
The average TM-scores of the first models generated by
LOMETS2 for All, Easy and Hard targets were 11%, 5%
and 35% higher than those by LOMETS.

Why does LOMETS2 outperform LOMETS?

The data in Figure 2 demonstrates that LOMETS2 sig-
nificantly outperforms LOMETS in terms of identifying
higher quality templates and generating better full-length
models, especially for Hard targets that lack homologous
templates. This improvement can be mainly attributed to
three new developments in LOMETS2. First, the newly de-
veloped DeepMSA program detects more homologous se-
quences compared to traditional methods, thereby improv-
ing the accuracy of profile-based alignment algorithms. In

Supplementary Figure S2, we list a comparison between the
number of effective sequences detected by DeepMSA for
the 614 targets versus the numbers detected by PSI-BLAST
and HHblits, where the latter (PSI-BLAST and HHblits)
were used as the default profile construction methods for
the previous threading programs in LOMETS. On average,
DeepMSA detected 6,500 sequences per protein (or Neff =
307), which is 8 (or 5) times higher than the number detected
by HHblits and 10 (or 9) fold higher than the number iden-
tified by PSI-BLAST. In Figure 3, we present a compari-
son of the performance of each individual threading pro-
gram using either the deep or default profiles, where the
performance is improved by deep profiles for all threading
programs. The specific TM-score values for each thread-
ing program are listed in Supplementary Table S1 in the SI,
which shows that the improvements are statistically signif-
icant (with P-values < 10−5 in Student’s t-test) for nearly
all of the programs (except for FFAS3D for which the use
of deep MSAs increased the TM-score by 1%, but the dif-
ference is not statistically significant). Since the only differ-
ence between the two sets of programs was the sequence and
HHM profiles that were used, the data demonstrates that
the deep MSA generation method has a remarkable impact
on improving the performance of nearly all individual meth-
ods as well as the overall meta-threading approach.

Second, the introduction of the new threading programs
improves the overall quality of the LOMETS2 server results.
In total, six new programs (CEthreader, HHpred, SparksX,
FFAS3D, MUSTER and Neff-MUSTER) were added to
LOMETS2 and four programs were retired due to poor per-
formance. As shown in Supplementary Table S1, all of the
new programs performed better, in terms of average tem-
plate TM-score, than the ones inherited from the LOMETS
server. In particular, the new CEthreader program iden-
tified templates with the highest TM-scores and detected
more correct templates than any other threading program.
Due to the utilization of de novo contact-map prediction,
CEthreader is especially useful for Hard targets that lack
homologous templates. This is demonstrated by the fact
that the average TM-score of the first templates identified by
CEthreader for Hard targets was at least 19% higher than
any other LOMETS2 threading program, including the best
sequence profile-based method SparksX (average TM-score
= 0.378) and the best profile HMM-based method HH-
pred (average TM-score = 0.374). Meanwhile, the number
of targets for which CEthreader identified correct first tem-
plates (TM-score > 0.5) was 61% and 74% more than the
number of targets for SparksX and HHpred, respectively.
The integration of the contact-guided threading method is
particularly important for improving the overall ability of
LOMETS2 to recognize distant-homology templates.

Finally, the new template-ranking score, which combines
Z-score, program-specific confidence scores and sequence
identity (Eq. S2 in Text S1), helps to select correct templates.
Although CEthreader significantly outperforms other in-
dividual programs, on average, the LOMETS2 meta-server
strategy still selects templates with higher TM-scores than
any of its individual programs, including CEthreader. In
Supplementary Table S2, we list the average TM-scores
for the first full-length models constructed by MOD-
ELLER using templates from different threading programs,
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Figure 2. The TM-scores of the first templates (A) and full-length models (B) predicted by LOMETS and LOMETS2 for 614 test proteins. Red and blue
points correspond to Hard and Easy targets, respectively. The red numbers represent the number of targets above or below the diagonal line, while the
black numbers correspond to the number of targets in each sub-square.

Figure 3. Average TM-scores of the first templates detected by LOMETS2 and its component threading programs based on default profiles versus those
based on deep profiles for 211 Hard targets. Nst represents the number of targets whose first template has a TM-score >0.5.

where the average TM-score for LOMETS2 (TM-score
= 0.6753) was 5.7% higher than its best threading pro-
gram, CEtheader (TM-score = 0.6391), with a P-value of
2.9 × 10−61. This demonstrates the efficacy of the com-
posite ranking score for template selection. Here, we note
that the difference in performance between LOMETS2 and
its best component program is more pronounced for full-
length model production (shown in Supplementary Table
S2) than for raw template selection/alignment (Supplemen-
tary Table S1). This is because LOMETS2 ranks the tem-
plates from CEthreader as first in most cases due to the
high confidence score given to the CEthreader program,
which results in a modest difference between LOMETS2
and CEthreader when only considering the TM-scores of
the first template alignments. For the full-length model con-
struction, however, the consensus distance restraints col-
lected from multiple complementary template alignments
from different threading programs help MODELLER con-
struct much more reliable full-length models than those pro-

duced by the restraints from individual threading programs;
the use of such complementarity of different threading algo-
rithms represents one of the major advantages of the meta-
server approach (14,17).

Performance on recent Critical Assessment of Structure Pre-
diction (CASP) experiments

The community-wide CASP experiments provide a
unique opportunity to stringently test structure prediction
methodologies (33). A preliminary version of LOMETS2
(without deep profiles) was used as the template identifi-
cation component of the ‘Zhang-Server’ and ‘QUARK’
groups, which were ranked as the top two structure pre-
diction algorithms in the automated Server Section in
CASP13 in terms of the Z-score of the GDT-TS score
(see http://www.predictioncenter.org/casp13/zscores final.
cgi?model type=first&gr type=server only). However,

http://www.predictioncenter.org/casp13/zscores_final.cgi?model_type=first&gr_type=server_only
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LOMETS2 did not participate in the CASP experiment as
an independent server.

To examine its performance, we ran the LOMETS2
program (with deep profiles) for the CASP13 targets,
where all templates released after May 1, 2018 were ex-
cluded. Supplementary Figure S3 lists the average TM-
score of the new LOMETS2 models for the 121 re-
leased domains, in comparison to the top server groups
in CASP13. Overall, LOMETS2 ranked No. 4, following
‘Zhang-Server’ and ‘QUARK’, which used LOMETS2 tem-
plates as input templates, and ‘RaptorX-DeepModeller’.
‘RaptorX-DeepModeller’ is an integration of two pipelines,
namely, ‘RaptorX-TBM’, which generates models using
a distance-guided threading program DeepThreader (34),
and ‘RaptorX-Contact’, which is a distance-based ab ini-
tio folding method (35). In Supplementary Figure S4, we
show a head-to-head comparison between models produced
by LOMETS2, RaptorX-TBM and CEthreader for the 121
CASP13 domains. While LOMETS2 showed an overall
comparable performance with RaptorX-TBM, RaptorX-
TBM outperformed CEthreader; this latter difference prob-
ably reflects the advantage of distance over contact predic-
tion for the improvement of threading performance. Ad-
ditionally, RaptorX-TBM uses a combination of MOD-
ELLER and Rosetta for full-length model construction,
while CEthreader and LOMETS2 only use MODELLER
here.

In Supplementary Table S3, we further present a com-
parison of the models produced by LOMETS2 and its
component threading programs for the 121 CASP13 do-
mains. While CEthreader again outperformed other indi-
vidual programs, LOMETS2 had a significantly higher TM-
score than all of its component threading programs, with
P-values <10−6 for all the TM-score differences. This re-
sult is consistent with the large-scale benchmark tests shown
above (Figure 3) and demonstrates the robustness and ef-
fectiveness of LOMETS2 for template identification and
model construction.

WEB SERVER

Server input

The input to the LOMETS2 server is a single-chain amino
acid sequence file in FASTA format. After submitting
a job, a URL link with a random job ID is generated
which allows the user to view the results while main-
taining the user’s data privacy. The user can optionally
provide an email address and LOMETS2 will automati-
cally send a notification email with a link to the results
page upon job completion. This email address can also be
used to retrieve the list of all previously submitted jobs
by the user through https://zhanglab.ccmb.med.umich.edu/
LOMETS2/check.html. Users will usually receive the pre-
diction results in less than 24 h after submitting a sequence
(protein size ≤ 1500 AA). However, the running time de-
pends on the protein size, where a smaller protein takes less
time than a larger protein. Additionally, if too many se-
quences are accumulated in the queue, the procedure may
take a longer time (see Supplementary Figure S5 for the
practical response time of the LOMETS2 server for 1,433
recently processed jobs). By default, LOMETS2 keeps all

identified templates, while an advanced option is provided
that enables users to remove templates sharing >30% se-
quence identity with the input sequence.

Server output

The LOMETS2 results page consists of six sections, in-
cluding (i) the user input sequence, (ii) predicted secondary
structure, (iii) predicted solvent accessibility, (iv) summary
of the top 10 template alignments identified by LOMETS2,
(v) full-length models built by MODELLER using the top
five templates and (vi) function annotations associated with
the top templates from the component threading programs.
As an illustration, Figure 4 presents an example from the
FokI restriction endonuclease (PDB ID: 2fokA) to explain
the major sections (iv–vi) of the results page. When we ran
this example, we removed templates with >30% sequence
identity to the input sequence.

Section iv lists the top 10 templates identified by
LOMETS2 (Figure 4A). For each template, the left panel
displays the template’s PDB ID, sequence identity to the
query, alignment coverage, normalized Z-score, and the
threading method that detected the template. Here, the nor-
malized Z-score is equal to Z/Z0, where Z0 is a program
specific cut-off (see Text S1). The normalized Z-score sig-
nifies the confidence of the template alignment, where a
normalized Z-score ≥1 indicates a good alignment by the
corresponding threading program. Users can download the
alignment by clicking the threading program name. The
right panel of this table shows the predicted secondary
structure, predicted solvent accessibility and the query-
template alignments by LOMETS2. The bottom panel dis-
plays 3D structures of the templates, together with the
threading methods that detected them.

Section v (Figure 4B) shows the top five full-length mod-
els generated by LOMETS2. Users can drag, rotate or zoom
in on the structure to check the model. PDB-formatted
structure model files can be downloaded by clicking the link
under the figures of the models. The last section (Figure 4C)
displays up to 10 top templates from the component thread-
ing programs, where function annotations (Gene Ontology
terms and Enzyme Commission numbers) curated from the
BioLiP database are listed in the right panel, next to the
corresponding template alignments in the left panel. Taking
the CEthreader results as an example, the 8th–10th columns
show the GO terms for the Molecular Function (MF), Bio-
logical Process (BP) and Cellular Component (CC) aspects.
The four-digit EC number is shown in the 11th column,
which indicates the type of enzyme to which the template
belongs. The GO terms and EC number are hyperlinked
to the QuickGO (36) Gene Ontology and the ExPASy (37)
ENZYME databases.

CONCLUSION

In this work, we report a significantly extended version of
the LOMETS server for template-based protein structure
prediction and function annotation. The new LOMETS2
server contains 11 state-of-the-art threading programs,
which are powered by a new deep MSA pipeline for en-
hanced profile- and HMM-based template alignment. To

https://zhanglab.ccmb.med.umich.edu/LOMETS2/check.html
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Figure 4. Illustration of the LOMETS2 server output using FokI restriction endonuclease (PDB ID: 2fokA) as an example. The three main sections of the
LOMETS2 output are (A) summary of the top 10 templates identified by LOMETS2, (B) five models predicted by LOMETS2 and (C) the top templates
identified by each threading program.

provide a solid foundation for template-based modeling, a
unified template library has been developed which helps fa-
cilitate the maintenance and upkeep of the library for all
component threading methods. Meanwhile, the output in-
terface was re-designed to enable interactive visualization of
the structure models and function annotations.

The large-scale benchmark tests showed that the new de-
velopments significantly improve the accuracy of the meta-
threading server, especially for Hard targets that lack ho-
mologous templates, where LOMETS2 detected 176% more
templates with correct folds (TM-score > 0.5) (38) than
LOMETS. Detailed data analyses showed these improve-
ments are mainly due to the integration of the new cutting-
edge threading algorithms, including those that incorpo-
rate deep convolutional network-based contact-map predic-
tions. Meanwhile, the deep MSA-based profiles systemati-
cally improve the alignment accuracy for nearly all of the
component threading algorithms.

The LOMETS2 server indirectly participated in the
CASP experiment as it was used as the template identifi-
cation component of the top-ranking ‘Zhang-Server’ and
‘QUARK’ groups in the Server Section of the most re-
cent CASP13 experiment. Although LOMETS2 represents
one of the most accurate servers for structure prediction,
it is still outperformed by I-TASSER and QUARK, which
implement far more intensive structure assembly simula-
tions. Nevertheless, LOMETS2 has unique value to serve
as a robust resource for entry-level template recognition
and template-based function annotation with reasonable
modeling accuracy; this is particularly important for large-
scale structure and function modeling for which folding and
refinement simulations are prohibitively expensive. More-
over, based on the feedback from our server system users,
many biological users are interested in knowing the orig-
inal templates used to construct the final structural mod-
els. This knowledge is often useful in order to better inter-
pret and understand the characteristics and functional im-
plications of the structural models. The detailed template
information is typically lost in the composite models pro-
duced by I-TASSER and QUARK, but is well-preserved in
the LOMETS server models and the output data, which in-
clude the rich functional annotations for the templates and

multiple template alignments from the different threading
programs. Overall, with constant effort on the development
and extension of the methodology, we expect LOMETS2
will continue to serve as an important, unique and reliable
structure and function modeling resource for the broader
biological community.
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