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Abstract

The V3 loop of human immunodeficiency virus type 1 (HIV-1) is critical for coreceptor binding and is the main determinant
of which of the cellular coreceptors, CCR5 or CXCR4, the virus uses for cell entry. The aim of this study is to provide a large-
scale data driven analysis of HIV-1 coreceptor usage with respect to the V3 loop evolution and to characterize CCR5- and
CXCR4-tropic viral phenotypes previously studied in small- and medium-scale settings. We use different sequence similarity
measures, phylogenetic and clustering methods in order to analyze the distribution in sequence space of roughly 1000 V3
loop sequences and their tropism phenotypes. This analysis affords a means of characterizing those sequences that are
misclassified by several sequence-based coreceptor prediction methods, as well as predicting the coreceptor using the
location of the sequence in sequence space and of relating this location to the CD4+ T-cell count of the patient. We support
previous findings that the usage of CCR5 is correlated with relatively high sequence conservation whereas CXCR4-tropic
viruses spread over larger regions in sequence space. The incorrectly predicted sequences are mostly located in regions in
which their phenotype represents the minority or in close vicinity of regions dominated by the opposite phenotype.
Nevertheless, the location of the sequence in sequence space can be used to improve the accuracy of the prediction of the
coreceptor usage. Sequences from patients with high CD4+ T-cell counts are relatively highly conserved as compared to
those of immunosuppressed patients. Our study thus supports hypotheses of an association of immune system depletion
with an increase in V3 loop sequence variability and with the escape of the viral sequence to distant parts of the sequence
space.
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Introduction

Host cell entry of HIV-1 is mediated by viral membrane-bound

proteins [1]. The initial contact between the viral envelope

glycoprotein gp120 and the cellular receptor CD4 is followed by a

second interaction between gp120 and one of the cellular coreceptors:

CCR5 or CXCR4 [2,3]. It has been shown that viruses binding to

CCR5 are almost exclusively present during the early asymptomatic

stage of the infection whereas CXCR4-binding viruses may emerge

in later phases of the infection and are associated with a CD4+ T-cell

decline and progression towards AIDS [4]. The specificity of the virus

to use one of the coreceptors is often termed tropism. Before the

coreceptors were identified, two phenotypic variants were recognized

according to the virus’ ability of forming syncytia in MT-2 cells.

Already at that time, syncytium-inducing (SI) and non-syncytium-

inducing (NSI) viruses were observed to have a different impact on

the disease progression in infected people [5]. There is a high

correlation between CCR5-tropic and NSI viruses, on the one hand,

and between CXCR4-tropic and SI viruses, on the other hand. The

question whether the emergence of CXCR4 and SI virus is a cause of

advanced progression towards CD4+ T-cell depletion and the rise of

AIDS symptoms or appears as a result of these phenomena (or both),

as well as the evolutionary reasons for the development of these

variants remain largely unresolved.

The capacity of HIV-1 to use a specific coreceptor resides

mainly in the sequence of the V3 loop of the viral envelope protein

gp120. Current coreceptor prediction methods (e.g. 11/25 rule,

WebPSSM, geno2pheno) [6,7,8] aim at revealing the relationship

between V3 loop sequence and viral coreceptor usage. However,

the overall reliability of sequence-based methods for coreceptor

prediction is still limited [8].

In this work, we present the results of a comprehensive analysis

of the viral V3 loop sequence space. Using different sequence

distance measures and visualization methods we describe the

arrangement of the sequences in sequence space. Our results

reveal a relatively high conservation of CCR5-tropic and NSI

strains as compared to more diverse CXCR4-tropic and SI strains

evolving in an apparently unconstrained manner. On the one

hand, we find that the arrangement of the sequences imparts one

of the reasons for the inaccuracy of sequence-based methods for

coreceptor prediction. On the other hand, we show how the

location of the V3 loop sequence in sequence space can be used to

improve the accuracy of the prediction of coreceptor usage. We

further investigate the relation between the location of V3 loop

sequences in sequence space and the associated clinical markers

such as CD4+ T-cell level. Sequences of patients with a functioning

immune system tend to be located close to each other in sequence

space and thus are likely to share common features whereas, with
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decreasing CD4+ T-cell counts the conservation of the V3 loop

among patients decreases and the diversity of possible viral

genotypes increases. These results support the hypothesis of the

immune system initially imposing strong selective pressure on the

viral envelope gene. Once the immune system is compromised,

this pressure diminishes which enables the virus to undergo less

restrained variation.

Materials and Methods

Data preparation
Using the Los Alamos database [9] we defined two sets of

labeled V3 loop protein sequences: the labels of the first set, which

we call NSI/SI are attributed according to the annotation of non-

syncytium-inducing (NSI) and syncytium-inducing (SI) strains.

Those of the second set which we call R5/X4 are attributed

according to the annotation of the sequences concerning

coreceptor usage – CCR5-, CXCR4- and dual-tropic (R5X4)

strains. In order to prevent samples from a single patient to

dominate any of the two sequence sets and to analyze viral

evolution among hosts rather than patient-specific selection

pressures, we limited our datasets to contain one randomly chosen

sequence from each patient. The two sets contain 1096 and 859

V3 loop amino acid sequences, respectively, with an 85%

prevalence of NSI and CCR5-tropic strains, respectively.

We used four sequence distance measures to compare the V3

sequences: Hamming distance, Blosum62 matrix [10], difference

in amino acid charge and size, and difference in amino-acid

composition at positions significant for the phenotype, as reported

by Sing et al. [8]. We noticed that different distance measures

result in the same pattern of sequence separation and therefore we

decided to apply the Blosum62 matrix as the distance measure in

other parts of this analysis.

Sequence clustering
Both datasets were clustered hierarchically, using complete

linkage clustering. We analyzed the tendency of viral sequences of

different phenotypes to form clusters depending on the cluster

diameter i.e. the distance between the two most distant elements of

the cluster. Clustering with a given upper limit for the diameter

was achieved in an iterative procedure of merging two closest

clusters in each step of the procedure until no two clusters can be

merged without generating clusters of a diameter above the

predefined limit. In complete linkage clustering, the distance

between two clusters is defined as the largest distance between two

elements, one in each cluster. Only clusters containing at least 1%

of all sequences in the dataset were considered, we define the

sequences belonging to smaller clusters as well as singletons as

unclustered. We additionally use a weighted notion of a cluster size

such as to compensate for the imbalance between the amount of

CCR5/NSI and CXCR4/SI sequences. The number of sequences

of a given type in a cluster is multiplied by the ratio of the number

of sequences of all other types in the full dataset over the number

of sequences of the same type. This reweighting allows for

considering smaller clusters of an underrepresented phenotype as

significant.

The notion of silhouette value [11] was used to choose one

clustering whose individual cluster structures should be investigat-

ed. The silhouette value of a sequence in a cluster is defined as the

difference between the average distance of the sequence to

sequences in other clusters and to sequences in the same cluster.

The silhouette value of a cluster is the average silhouette value of

its sequences. The silhouette value of a collection of clusters is the

average of the silhouette values of its clusters. This measure can be

used as a quantitative indicator of the coherence of a collection of

clusters - larger values represent clusterings containing clearly

separated, coherent clusters. We calculated the average silhouette

values for clusterings obtained in successive steps of the

hierarchical clustering and selected the clustering exhibiting a

maximal silhouette value, among those clusterings that cluster

more than 50% of the sequences in a dataset and contain more

than one cluster. We call the clustering resulting from this

procedure the selected clustering.

For analyzing the selected clustering we used an unsupervised

learning method of data density estimation via classification [12].

This method allows for determining regions in sequence space in

which the sequence density is significantly higher than average.

For this purpose, we augmented the datasets with 500000 random

reference data points distributed uniformly over the high-

dimensional sequence space. The number of the reference data

points was chosen as a balance between the computational load

and sufficient space fill for accurate density estimation. A binary

logistic regression model where true data points are assigned the

value 1 and the generated reference data points have the value 0,

was fitted using maximum likelihood estimation. The value

returned by the fitted logistic regression for each of the true data

points is treated as the probability of a point to be sampled by a

distribution producing the analyzed dataset. The log-odds of this

probability for each data point represent the local density of the

original data relative to the generated reference data. Data density

of a single cluster was calculated as the mean of log-odds of the

cluster sequences. The larger the density of a cluster is, the more

highly concentrated set of data points it contains.

We additionally measured the amount of positive selection

among sequences in each cluster. For this purpose each of the

protein sequences has been assigned its corresponding DNA

sequence from the Los Alamos database. We define the cluster

center to be the location of a sequence with minimal distance to all

other sequences in the cluster. The amount of positive selection vk

exerted on a sequence k in a cluster is in terms of the mean of the

ratio of non-synonymous to synonymous substitution rate vik [13]

of the given sequence and other sequences i having a smaller

distance Di to the cluster center:

vk~

Pn
i~1 qikvikPn

i~1 qik

,

where n is the number of sequences in the cluster, qij~1 if DivDj

and 0 otherwise. Non-synonymous to synonymous substitution

rates are calculated using the Yang and Nielsen method [13]

implemented as a part of PAML software package [14].

Phylogenetic analysis
The phylogenetic analysis was performed using the Splitstree

software [15]. The split decomposition method [16] relaxes the

usual requirement of representing the data in tree form, in order to

elicit where the underlying distance matrix does not reflect a tree

structure. A Splitstree network is tree-like, in general, but also

represents the divergence of the phylogenetic data from the tree

form by sets of parallel edges that expand the tree to a more

complex network. The Blosum62 matrix was used as the distance

measure in the Splitstree analysis.

Accuracy of genotypic coreceptor prediction in sequence
space

There is a range of computational methods that aim at

distinguishing NSI/CCR5-only from SI/CXCR4-capable se-
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quences based on the V3 loop sequence. We checked the

accuracies of several sequence-based coreceptor prediction

methods (11/25 rule, Web PSSM, geno2pheno) [6,7,8] on both

V3 loop datasets. Sequences that are incorrectly classified by all

considered methods were identified and localized in sequence

space using the same sequence distance, clustering and phyloge-

netic analysis. We performed a test of the dependency of the

accuracy of the predictions on the amount of data. In this test we

used support vector machine (SVM) with linear kernel imple-

mented in the package libsvm and position-specific scoring matrix

(PSSM) implemented according to the description in [7].

In the search of possible reasons for errors in the V3 loop-based

coreceptor prediction we analyzed an additional dataset of

phenotyped sequence spanning both V2 and V3 regions. The

dataset was retrieved from the Los Alamos database [9] and

contains 280 sequences with 212 CCR5-, 34 CXCR4- and 34

dual-tropic. We compared the distribution of distances between

sequences of the same and opposite tropisms of the full sequences

and their V2 and V3 parts separately.

Sequence space-based coreceptor prediction
The study described above – distance, clustering and phyloge-

netic analysis reveals a clear separation between NSI/CCR5-

tropic and SI/CRCX4-tropic sequences in terms of the distance

distribution, clustering steps and locations in splitstrees. NSI/

CCR5-tropic sequences appear to be more conserved and to form

clusters while SI/CXCR4 diverge in an apparently unconstrained

manner and occupy distant parts of sequence space. Based on the

above observations we tested if the position of a sequence relative

to conserved NSI/CCR5-tropic V3 loop sequences in sequence

space conveys sufficient information for the effective coreceptor

prediction. We investigated the predictive power of the three

aforementioned methods of characterizing sequence space based

on distances, clustering and phylogeny on the NSI/SI and R5/X4

datasets separately. The proposed classification methods aim at

distinguishing NSI/CCR5-only from SI/CXCR4-capable se-

quences. The score of each classifier is based on the separation

of the sequence from the NSI/CCR5-tropic sequences in sequence

space. Low scores characterize sequences less separated from NSI/

CCR5-tropic sequences and therefore more conserved and

probable to be NSI/CCR5-tropic. High scores indicate divergent

sequences that, according to our sequence space analysis, are more

likely to be SI/CXCR4-capable.

The classifiers were evaluated on both the NSI/SI and R5/X4

datasets using ten times ten-fold (10610) cross-validation. In the

following steps of the cross-validation procedure training and test

sets are derived from the analyzed datasets.

The first classifier is based on the distance measures and predicts

the tropism of a sequence depending on its average distance from

all NSI/CCR5-tropic sequences in the training dataset. We

constructed classifiers using three distance measures – Blosum62

matrix, Hamming distance and differences on positions significant

for the coreceptor tropism according to Sing et al. [8]. As the

coreceptor prediction score we use the mean distance of a

sequence to all the NSI/CCR5-tropic sequences in the training

set.

The second classifier predicts the coreceptor of a sequence

according to the step of the hierarchical clustering algorithm in

which the sequence ceases to be a singleton (called the clustering

step for short). In order for the score to reflect the divergence of a

sequence from the NSI/CCR5-tropic sequences, only these

sequences from the training set are used in the prediction

procedure.

The third classifier uses the Splitstree method for estimating the

phylogenetic distance between pairs of sequences. Due to the high

computational cost of a large splitstree construction, the

phylogenetic distance between two sequences of a large dataset

is calculated as an average distance between those two sequences

in trees of randomly sampled sequence subsets composed in half of

NSI/CCR5-only and in half of SI/CXCR4-capable sequences.

The training procedure consists of 100 iterations of sequence

sampling, tree construction and tree distances extraction. First,

subsets of 100 sequences of the training dataset (50 NSI/CCR5-

tropic and 50 SI/CXCR4-capable) are sampled. Then a splitstree

is constructed for each of the sampled sets and for each sequence

pair in the trees the information on phylogenetic distance between

the two sequences is extracted. We tested the predictive power of

two different measures of phylogenetic distance: the sum of the

lengths of the splits separating two sequences and the number of

splits between them. After the iterative sampling and tree

construction procedure, additional trees are constructed contain-

ing the sequences in the training dataset that did not appear in any

of the sampled trees. The distance between two sequences is the

mean of distances between those two sequences in the trees in

which both sequences appeared. This way a phylogenetic distance

matrix of the training set is assembled. For the prediction step we

select from the distance matrix a subset of 90 sequences: 45 NSI/

CCR5-tropic that are most conserved (have the least number of

splits or shortest splits separating them from other sequences) and

45 SI/CXCR4-tropic that are the most diverse (have the largest

number of splits or longest splits separating them from other

sequences). These sequences are used in the prediction procedure

on the test set. In the prediction procedure subsets of 10 sequences

from the test set are added to the selected 90 sequences of the

training set and a splitstree is constructed for the merged set. The

proportion of the test to train set sequences on this tree was chosen

as the optimal after testing several other proportions for the

accuracy of predictions. The mean number of splits and the mean

sum of lengths of splits between a sequence and the NSI/CCR5-

tropic sequences on the tree are used as the score predictive of the

coreceptor usage.

All three classifiers were tested on both the NSI/SI and R5/X4

datasets using ten times ten-fold (10610) cross-validation. We

compared the performance of sequence space classifiers to three

existing methods - SVM, PSSM and 11/25 rule. SVMs were

trained using the package libsvm with linear kernel. PSSMs were

implemented according to the description in [7]. All methods were

evaluated using receiver operating characteristic (ROC) curves

focusing on the trade-off between false positive (FPR) and true

positive rates (TPR) which can be controlled by choosing a

prediction cutoff for turning the continuous scores into actual class

predictions. The area under ROC curve (AUC) was taken as a

cutoff-independent class separation criterion. Averaged ROC

curves were estimated from the 10610 individual cross-validation

curves using vertical averaging. In the analysis we used the ROCR

package [17].

After comparing the performance of each of the proposed

prediction methods individually, we additionally tested if adding

the sequence space information to the SVM or combining several

prediction methods into one can result in improved predictions. In

the first approach we added to the binary feature vector coding the

given sequence for the SVM the description of its location in

sequence space. As the description of the location in sequence

space we tested both the output score of the proposed classifiers,

thus the separation of a sequence from the NSI/CCR5-tropic

sequences, as well as the sequence and phylogenetic distance to

each of the NSI/CCR5-tropic sequences. In the second approach

HIV-1 V3 Loop Sequence Space
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we combined scores of several predictors, trained on the same

training set, into one score. The scores of each predictor were

normalized to the 0-1 interval with the higher scores representing

CXCR4-capable sequences. We tested several methods of

combining prediction scores, such as min, max, mean and

Euclidian distance from the origin of the score space. We

restricted the classifier combination methods to the simple, non-

trainable combiners, bearing in mind their generally good

performance [18].

CD4+ T-cell counts in sequence space
In the last part of the study we related the location of a V3 loop

sequence in sequence space to the corresponding patient CD4+ T-

cell count. From the Los Alamos database we selected a set of 7003

V3 loop sequences with a reported CD4+ T-cell count. We

additionally selected sequence samples and the corresponding

CD4+ T-cell counts of 88 patients (225 sequences) from the

University of Cologne. Since both Los Alamos and Cologne

sequence sets exhibited similarities in the sequence space

arrangement we merged them into a single dataset which we call

the full dataset. For the purpose of the longitudinal study we allowed

this dataset to contain more than one sequence of the same

patient. From the full dataset we selected therapy-naı̈ve patient

samples (2213 sequences). We call this subset of the full dataset the

therapy-naı̈ve dataset. In both the full and the therapy-naı̈ve datasets

we distinguished longitudinal (time-series) data comprising sample

sequences of the same patient spanning several years (72 patients

in the full dataset, 16 therapy-naı̈ve patients with an average of 3.1

and 3.9 sequences per patient respectively). We analyzed the

longitudinal patient data in both datasets to see how sequences of

viral variants inside an individual patient trace paths in sequence

space in association with the progression of the disease. Finally, as

in the initial part of this study (see Sequence clustering) we selected

a clustering of the full and therapy-naı̈ve sequence sets using the

silhouette value and associated a single cluster sequence compo-

sition to the CD4+ T-cell counts.

Results

Sequence distance distribution
For all considered sequence distance measures we observed the

following pattern among the V3 loop sequences. CCR5-tropic and

NSI sequences cluster strongly while, in contrast, CXCR4-tropic

as well as SI sequences are much more widely spread out in

sequence space. Figure 1A shows the distribution of Blosum62

distances between pairs of sequences from the NSI/SI dataset of

the same and of different phenotypes. The mean distance of pairs

of SI sequences (red curve) is almost twofold larger than the mean

distance of the NSI sequences (blue curve). The distribution of the

distances for pairs of SI sequences has also a larger variance than

the one of the NSI sequences. The fact that the mean distance

between pairs of sequences of opposite phenotypes is smaller than

the mean distance of pairs of SI sequences implies that the SI

sequences are widely spread out throughout sequence space and

show no apparent common pattern of evolution. Distances

between sequences in the R5/X4 dataset exhibit a similar pattern

(Figure 1B) with the dual-tropic sequences spread out less, on

average, than the CXCR4 sequences and more than the CCR5

sequences. The different distance measures result in the same

pattern of sequence separation we therefore chose the Blosum62

matrix as the distance measure in all other parts of this analysis.

Sequence clustering
Clustering of the NSI/SI and R5/X4 datasets displays a more

pronounced grouping trend of the NSI and CCR5-tropic

sequences than of the SI and CXCR4-tropic sequences. In the

initial steps of the iterative clustering procedure (see Sequence

clustering part of the Materials and Methods section) only tight

clusters of highly similar sequences are formed. In our dataset

these clusters contain mainly CCR5-tropic and NSI sequences.

The CXCR4/SI sequences are clustered only if we allow for

clusters of a relatively large diameter – clusters of diameter large

enough to contain 90% of the NSI sequences group only 50% of

the SI sequences in the NSI/SI dataset (Figure 2A). The clustering

Figure 1. V3 loop sequence distance distribution. Shown is the distribution of Blosum62 distances between pairs of sequences of the same (SI
vs SI, NSI vs NSI) and different (SI vs NSI) phenotypes (A) and of the same (CCR5 vs CCR5, CXCR4 vs CXCR4, R5X4 vs R5X4) and different (CCR5 vs
CXCR4) tropisms (B). The mean value and standard deviation of each of the distributions are indicated in the inserted boxes.
doi:10.1371/journal.pone.0007387.g001
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of the R5/X4 dataset shows that dual-tropic sequences cluster

relatively less than CCR5 but more than CXCR4 sequences – a

clustering containing from 50% to 80% of the CCR5 sequences

includes on average 10% less of the dual-tropic sequences

(Figure 2B).

The selected clustering of both the NSI/SI and R5/X4 datasets

was found according to the silhouette value described in the

Materials and Methods and inspected in detail. In the NSI/SI

dataset we obtained one major cluster containing 60% of all

sequences, most of them of the NSI phenotype, and two smaller

clusters each one containing 15% of all sequences, the first

including solely NSI sequences, the second including equal

percentage of sequences of both phenotypes. In the R5/X4

dataset the clustering contains two main clusters comprising 35%

and 32% of all sequences respectively, containing mainly CCR5-

and dual-tropic sequences, in the range of 19 to 38% of the

sequences of each type in the R5/X4 dataset. Details of individual

clusters are listed in Table 1. We observe that clusters containing

mainly CXCR4/SI sequences are rare (only cluster 4 and 5 in the

NSI/SI dataset); sequences of this phenotype tend to associate

predominantly with CCR5 clusters. Additionally, in both datasets

CXCR4/SI are highly over-represented among the unclustered

sequences (p-value ,0.001, chi-square test).

Subsequently, we used the data density estimation method to

examine the structure of individual clusters in the selected

clustering. Data density is an indicator of how much more are

the sequences concentrated in a given part of sequence space

relative to the rest of the space. The relation of the cluster size and

the sequence space density is illustrated in Figure 3. Unclustered

sequences occur in less dense parts of sequence space and are

predominantly SI/CXCR4-tropic. Detailed inspection of the

individual cluster structure allows for relating data density and

the amount of positive selection on a sequence to the position of a

given sequence within its cluster. Positive selection is a measure of

the amount of change in the amino acid sequence and reflects the

rate of evolution of a sequence. The sequence position in a cluster

is characterized in terms of its distance from the cluster center.

The two largest clusters of the R5/X4 dataset are depicted in

Figure 4. In the case of cluster 2 we observe a strong correlation of

the sequence distance from the cluster centre with the data density

Figure 2. Clustering of the V3 loop sequences. The plot illustrates clustering trends of sequences of the NSI and SI phenotype (A) and of CCR5-,
CXCR4- and dual-tropic sequences (B). The diameter limit, plotted on the x-axis, is defined as the distance between the two most distant elements of
a cluster. The y-axis indicates the fraction of sequences in the dataset falling into any of the clusters below the diameter limit. Minimal cluster size is
1% of all sequences in the dataset, sequences of clusters of a smaller size as well as singletons are considered as unclustered and are not counted.
doi:10.1371/journal.pone.0007387.g002

Table 1. Five largest clusters in the NSI/SI and R5/X4 dataset clustering.

dataset NSI/SI R5/X4

cluster all NSI SI all R5 X4 dual

1 0.59 0.65 0.33 0.35 0.38 0.09 0.30

2 0.15 0.17 0.06 0.32 0.37 0.05 0.19

3 0.14 0.14 0.15 0.06 0.07 0 0.04

4 0.02 0 0.07 0.05 0.06 0 0.01

5 0.01 0.01 0.03 0.05 0.06 0 0

Numbers indicate what fraction of the whole dataset is grouped in a given cluster (column ‘‘all’’) and what is the ratio of the sequences of a given phenotype to all
sequences in the respective cluster.
doi:10.1371/journal.pone.0007387.t001

HIV-1 V3 Loop Sequence Space
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at the location of the sequence as well as with the amount of

positive selection exerted on the sequence (correlation coefficient

of -0.76 and 0.71, respectively). The results reveal that there is a

dense center in cluster 2 grouping most of the cluster sequences

and sparse brims where the concentration of sequences is smaller.

The selection pressure in the center of such cluster is greater and

reduced farther from its center. CXCR4- and dual-tropic

sequences preferentially occupy the outer regions of the cluster

(Figure 4). However, no such cluster pattern is observed in the case

of cluster 1. Data density analysis shows that this cluster groups

sequences spread over a similar density range independently of

their position within the cluster. There is no clear distribution of

variation in selection pressures in cluster 1 either.

Phylogenetic analysis
The visualization of the V3 loop data via the Splitstree diagrams

illustrates the separation of viral strains of different coreceptor

usage. Since both datasets are too large to be displayed by a single

diagram, the diagrams are generated on randomly sampled subsets

of sequences. Figure 5A shows an example Splitstree of a

randomly sampled set of 25 sequences of each phenotype in the

NSI/SI dataset. Both the lengths of splits (sets of parallel edges in

the centre of the graph) and of single branches connecting data

nodes to the rest of the tree clearly discriminate between these two

types of sequences. SI sequences (represented by red dots in

Figure 5A) are located on long tree branches that reflect the larger

evolutionary distance between them and other sequences in the

dataset. NSI sequences (blue dots) are located on shorter branches

and grouped in more tree-like clades. A similar tree generated for

a sample of 20 sequences of each tropism from the R5/X4 dataset

is shown in Figure 5B. The dual-tropic sequences (represented by

magenta dots) have an intermediate character between the CCR5-

(blue dots) and CXCR4-tropic (red dots) sequences. Both their

branch lengths and localization on the tree support the view of the

dual-tropic sequences combining characteristics of the two other

sequence types or being an intermediate form in their evolution. A

test consisting of generating random trees of sequences in both

datasets shows that in the R5/X4 dataset the average path joining

two CXCR4-tropic sequences on a tree is about 1.35 times longer

than the one joining two CCR5-tropic sequences. In the NSI/SI

dataset an average path joining two SI sequences is 1.1 times

longer that the one joining two NSI sequences.

The above analysis indicates that both CCR5-tropic and NSI

sequences share common features and form coherent groups in

sequence space. In the selected clustering 99% and 98% of the

NSI and CCR5-tropic sequences from each dataset, respectively,

are clustered. In the following part of this study, we therefore used

these sequences as reference points in sequence space. The mean

distance of a sequence from all CCR5/NSI sequences was

considered as a measure of its conservation.

Accuracy of genotypic coreceptor prediction in sequence
space

Even though the distance distributions as well as the Splitstree

diagrams exhibited discernable differences between sequences with

different phenotypes, still some exceptions could be observed. We

examined the performance of common coreceptor prediction tools

(11/25 rule, WebPSSM, geno2pheno) [6,7,8] on the NSI/SI and

R5/X4 datasets and localized the incorrectly predicted sequences

in sequence space. We measured the average distance of sequences

in the NSI/SI dataset to a reference set composed of NSI

sequences from this dataset with a phenotype correctly predicted

by all three methods. Figure 6 shows the distribution of the

average distance of four different groups of sequences to this

reference set. The four groups of sequences are: (i) correctly

classified NSI sequences (A, blue curve), (ii) correctly classified SI

sequences (A, red curve), (iii) NSI sequences misclassified by all

three methods (B, blue curve) and SI sequences misclassified by all

three methods (iv) (B, red curve). Sequences that fail to be correctly

classified are located in untypical regions in sequence space – SI

sequences classified in discordance with the Los Alamos

annotation are closer to correctly predicted NSI sequences than

the correctly predicted SI sequences (p-value ,0.05) and, on the

other hand, the misclassified NSI sequences are further apart from

Figure 3. Data density in clusters of the selected clustering. Mean data density of sequences in clusters in the selected clustering of the NSI/SI
(A) and R5/X4 dataset (B) is plotted against the cluster size. Single unclustered sequences are represented by dots at the value 1 on the x-axis with
colors corresponding to their phenotype: NSI/CCR5 sequences in blue, SI/CXCR4 in red, R5X4 in magenta. Clusters are represented by black dots,
cluster sizes are displayed in log scale. Large clusters are formed in denser parts of the data space than unclustered sequences. SI/CXCR4 sequences
remain predominantly unclustered.
doi:10.1371/journal.pone.0007387.g003
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this reference set in sequence space than the correctly predicted

NSI sequences (p-value ,0.05). A similar significant pattern can

be observed for the R5/X4 dataset.

The above observations were confirmed by the Splitstree analysis

(Figure 7A). The misclassified sequences show evolutionary relation-

ships characteristic for the opposite phenotype – NSI sequences

occupy longer branches and are located among SI sequences on the

tree while the misclassified SI sequences are evolutionarily less distant

from NSI clades or lie on boundaries between both phenotypes.

Figure 7B illustrates the clustering patterns of sequences misclassified

by geno2pheno as compared to those correctly classified. As observed

in the previous analysis the misclassified sequences show clustering

trends uncommon for their phenotype.

To investigate whether the classification error is due to data

scarceness, we examined the performance of two classification

methods trained on datasets with various sizes. We tested the

classification accuracy of support vector machine (SVM) and

position specific score matrix (PSSM) – the computational

methods used by geno2pheno and WebPSSM respectively. We

sampled subsets of the original NSI/SI dataset, used them as

training sets for the SVM and PSSM, and then verified the

number of prediction errors of the trained model on the same

sequence set. With the increasing size of the training and test

dataset we could observe no tendency of a decreasing prediction

error. Both methods failed on a similar percentage of sequences

independently of the size of the underlying dataset.

On the one hand, a possible reason for the errors of the

coreceptor prediction tools might be the complexity of factors

determining coreceptor usage. On the other hand, other parts of the

gp120 protein beside the V3 loop may play a role in coreceptor

Figure 4. Structure of two largest clusters in the R5/X4 dataset. Cluster 2 shows a clear correlation of the distance of a sequence to the cluster
center with the amount of positive selection on this sequence (diagram B) and with the data density of its sequences (diagram D). Dots on diagrams
are colored according to sequence tropism (CCR5 - blue, CXCR4 – red, R5X4 - magenta). The plots indicate that cluster 2 has a dense center
composed of similar, CCR5 sequences and sparser brims composed of CXCR4 and R5X4 sequences that are subject to weaker selection pressures. No
such pattern can be observed in the case of cluster 1 (diagrams A and C) that seems not to have a coherent centre but group a medium density
region of sequences of various tropisms.
doi:10.1371/journal.pone.0007387.g004

HIV-1 V3 Loop Sequence Space

PLoS ONE | www.plosone.org 7 October 2009 | Volume 4 | Issue 10 | e7387



attachment. We repeated a similar study on the V2 loop. However,

the results showed no clear separation of the two phenotypes in

sequence space. Diagrams in Figure 8 illustrate the distance

distribution among the sequences spanning over both V2 and V3

regions as well as between their V2 and V3 parts separately. V2

sequences do not show the same pattern of distribution with highly

divergent CXCR4-tropic and more conserved CCR5-tropic

sequences as the V3 sequences show. The joint V2 and V3 regions

have a lower difference in distance distribution between both

sequence types than their V3 part separately.

Figure 5. Splitstrees of sampled subsets of the NSI/SI and R5/X4 datasets. (A) The splitstree was generated on a randomly sampled set of 25
sequences of each phenotype. NSI sequences are represented by blue dots, SI by red dots. (B) The splitstree was generated for a randomly sampled
set of 20 sequences of each tropism (CCR5 - blue dots, CXCR4 -red dots, R5X4 – magenta dots). Branch lengths, the number and width of splits (set of
parallel edges in the graph) illustrate the evolutionary distance between the parts of the tree that they separate. An example split is indicated by two
arrows in panel A. In both cases the SI/CXCR4 sequences are located on branches relatively longer than those of the NSI/CCR5 sequences and
separated by wide splits from NSI/CCR5 phenotype (e. g. indicated by arrows). NSI/CCR5 sequences tend to form dense tree-like parts of the Splitstree
network containing few short splits (example shown in dashed circle in panel B) which indicates their evolutionary proximity.
doi:10.1371/journal.pone.0007387.g005

Figure 6. Distance distribution of incorrectly predicted V3 loop sequences. The plot contains the distribution of distances of the average
distance of correctly (A) and incorrectly (B) predicted sequences to the set of NSI sequences with a phenotype correctly predicted by all analyzed
coreceptor prediction methods (11/25 rule, Web PSSM, geno2pheno). NSI sequences are represented by the blue curve, SI by the red curve.
doi:10.1371/journal.pone.0007387.g006
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Sequence space-based coreceptor prediction
Based on the observations gathered from the sequence space

analysis we suggested sequence space-based coreceptor prediction

methods. The predictors are derived from a description of the

localization of a sequence in sequence space in terms of either

distance measures, phylogenetic distance estimated from splitstrees

or clustering step. We compared the predictive performance of the

proposed classifiers with the existing methods such as SVM, PSSM

and 11/25 rule. The comparison has been done in the framework

of ROC analysis [17] in order to analyze the tradeoff between true

positive rate (TPR) and false positive rate (FPR) across the range of

all possible cutoffs. The ROC curve is a plot of TPR and FPR

when varying the score cutoff for classification over all possible

values. We additionally use the size of the area under ROC curve

as a cutoff-independent quality measure of classification.

All distance-based classifiers exhibit similar performance. At the

FPR of the 11/25 rule (0.05 in the NSI/SI and 0.04 in the R5/X4

dataset) the distance methods have the TPR between 0.51 and

0.56 in both the NSI/SI and the R5/X4 dataset. The areas under

the ROC curve (AUC) reach from 0.85 to 0.88 in both datasets.

This performance is slightly worse than SVM and PSSM methods

that show TPR between 0.71 and 0.76 at the FPR of 11/25 rule

and the AUC of about 0.90 and 0.92 (SVM and PSSM

respectively) in both datasets (Figure 9A).

The cluster-based classifier performs similarly to the distance

based ones with the TPR of 0.54 and 0.53 and AUC 0.86 and 0.87

in the NSI/SI and R5/X4 datasets respectively.

The classifier based on the number of splits separating a

sequence from the CCR5-only class of sequences performs

significantly worse than the distance-based methods. It yields an

AUC of 0.65 and 0.62 in the NSI/SI and R5/X4 dataset,

respectively, and a TPR of 0.19 and 0.07 respectively at the FPR

of the 11/25 rule. This suggests that similar ranges of split

numbers can separate the sequences of both classes from the

Figure 7. Location of the incorrectly predicted sequences in sequence space. (A) The splitstree was generated for a sample of sequences
containing misclassified NSI sequences represented by blue crosses and misclassified SI nodes by red crosses. Correctly classified sequences are
represented by dots, colors are in accordance to the coloring scheme in Figure 3. (B) Clustering patterns of sequences misclassified (dashed curves)
by geno2pheno are plotted against to those correctly classified (solid curves).
doi:10.1371/journal.pone.0007387.g007

Figure 8. Distance distribution of V2-V3 sequences. Shown is the distribution of Blosum62 distances between pairs of V2 (A), V3 (B) and V2V3
(C) parts of sequences of the same (CCR5 vs CCR5, CXCR4 vs CXCR4) and different (CCR5 vs CXCR4) tropisms. The mean value and standard deviation
of each of the distributions are indicated in the inserted boxes.
doi:10.1371/journal.pone.0007387.g008
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conserved CCR5 class of sequences. A better prediction

performance is achieved with the use of the sum of lengths of

splits that separate a sequence from these CCR5 sequences – TPR

of 0.47 and 0.45 in NSI/SI and R5/X4 datasets respectively with

the AUC of 0.74 and 0.76 respectively. However, this result is still

much lower then other sequence space-based methods.

No sequence space-based methods achieved the performance

level of the commonly used methods such as SVM and PSSM (see

Figure 9A). However, we tested if combining different prediction

methods could improve the results. First, we used the description

of the position of a sequence in sequence space, either in terms of

the score of each of the sequence space prediction methods or in

terms of a vector of distances to each NSI/CCR5-tropic sequence,

and added it to the binary feature vector coding the given

sequence for the SVM. However, none of the resulting enriched

SVMs showed better performance than the one based on the

sequence only.

Next, we combined the scores of several predictors into a single

score. We started by comparing the scores returned by different

classification methods within the same cross-validation run. All the

methods show a high correlation in the scoring (Pearson

correlation coefficient .0.8) with the exception of phylogeny-

based and SVM classifiers (correlation of about 0.25 and 0.7,

respectively). Despite the low prediction power of the phylogeny-

based method, we observed several sequences (about 15 in both

datasets in each cross-validation run) where the score returned by

this classifier is 50% more accurate than the score of the SVM.

However, since the phylogeny-based classifier contains a stochastic

step, the scores returned by this method have a high variation

between different cross-validation runs and this result is not

reproducible in each run. We then tested several methods for

combining scores and found the Euclidian distance from the origin

of the score space to be the combiner achieving the best

discrimination between the two sequence classes. Finally, we

examined all possible subsets of predictors and found that

combining classifiers improves their performance in general.

Three distance-based classifiers coupled together achieve better

results than each one individually (Table 2). Joining the

phylogeny-based method with another classifier improves the

predictive power the most - up to 0.03 increase in the AUC in the

case of SVM (Figure 9B). The largest predictive power was

achieved by merging the distance and phylogeny scores with the

SVM methods (Table 2).

CD4+ T-cell counts in sequence space
In the last part of this study we aimed at relating the position of

V3 loop sequences in sequence space to the CD4+ T-cell count.

We performed this part of the analysis on the full dataset – the set

of sequences with a reported CD4+ T-cell count. As in the analysis

of misclassified sequences in the NSI/SI and R5/X4 datasets, we

used the mean distance to the sequences annotated as NSI or

CCR5-tropic in the full dataset (653 sequences) as a measure of

sequence conservation. For each sequence in the full dataset, we

calculated this distance and plotted it against the CD4+ T-cell

count (Figure 10A and B). Among sequences collected from highly

immunosuppressed patients (T-cell count below 200 cells/mm3)

we observe a large range of sequence conservation spanning

conserved, NSI/CCR5-like, as well as highly divergent sequences.

Among the patients with higher T-cell counts this range is

narrower and includes only conserved sequences.

We next analyzed the longitudinal patient data in the full

datasets to see how divergence of viral variants inside an individual

patient can change in association with the disease progression. In

the full dataset we counted 76 patients (both therapy-naı̈ve and

therapy-experienced) with data occupying several time points. We

examined the conservation of sequential measurements of each of

the selected patients against the corresponding CD4+ T-cell count.

For 21 patients we could observe an increase in sequence

divergence with decreasing CD4+ T-cell count to the immunode-

ficiency level - below 200cells/mm3 (example in Figure 10A). Five

patients show an opposite trend with a decrease in mutations co-

occurring with a decrease of the number of CD4+ T-cells (see

example in Figure 10B). Remaining patients showed no or various

conservation change with varying CD4+ T-cell count level.

Figure 9. Performance of sequence space-based coreceptor prediction methods. Performance of the individual coreceptor prediction
methods (A) and their selected combinations (B) on the R5/X4 dataset is illustrated by the ROC curves. The AUC of each method is indicated in the
inserted box.
doi:10.1371/journal.pone.0007387.g009
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In order to see how drug therapies can influence the

relationship between sequence conservation and CD4+ T-cell

levels, we performed the same study on the data of untreated

patients included in the therapy-naı̈ve dataset. This dataset

contains 2213 sequences, 112 of which are annotated as NSI or

CCR5-tropic. Other sequences are annotated as SI/CXCR4-

tropic or have no annotation. The NSI/CCR5 sequences were

used as a reference set in the sequence space. In the therapy-naı̈ve

dataset the lack of conservation of the sequences of patients with

an impaired immune system is more pronounced. Among severely

immunosuppressed patients (CD4+ T-cell count below 200 cells/

mm3), almost no highly conserved sequences can be observed

(Figure 10C and D). Again, patients with higher T-cell counts do

not exhibit highly divergent viral strains.

The longitudinal data analysis revealed that among 16 patients

with more than one time point measurement, four show an

increase in the sequence divergence with the transition to the

immunodeficiency state (T-cell count below 200 cells/mm3)

(example in Figure 10C). However, none of the patients shows

the opposite trend.

As in the previous part of this study, we used the silhouette value

to determine the selected clustering of the full and the therapy-

naı̈ve datasets. Both sequence sets contain one major cluster

containing 86% and 52% of all sequences, respectively, and three

smaller clusters of about 3% and 5% in each set respectively. We

observed an important overrepresentation of samples collected

from ill patients (T-cell count below 500 cells/mm3) among the

unclustered sequences (p,0.001, chi-square test) which reflects

their high evolutionary divergence.

Discussion

By means of different distance measures, clustering and

phylogenetic methods, the present study illustrates and interprets

patterns in V3 loop sequence space of the HIV-1 envelope gene.

The analysis confirms a relatively high conservation of CCR5-

tropic and NSI viral sequences as compared to more highly

divergent CXCR4-tropic and SI sequences. According to our

study, the CCR5/NSI sequences appear to share common

features and the CXCR4/SI sequences to be highly divergent

and not showing a unique mutation pattern. Other studies detect

at least several possible V3 loop mutation pathways [19] and

indicate the twofold larger heterogeneity of the X4-tropic viruses

over the R5-tropic. The lack of common features among the

CXCR4 sequences, as well as their high divergence, render these

sequences impossible to group in coherent clusters. A statistical

model of CXCR4 sequences is therefore difficult to obtain. This

divergence pattern has already been reported in previous studies

[20,21,22], in contrast to these analyses done on small data

samples, we support these hypotheses with a large-scale analysis of

V3 loop sequence data.

The analysis of cluster structure revealed the existence of dense

regions of sequence space occupied by CCR5-tropic sequences

sparsely surrounded and interspersed by CRCX4- and dual-tropic

sequences. The sparse outer boundaries of these regions are less

highly conserved and are under positive selection. The finding of

such regions suggests that the coreceptor usage switch which is

correlated with high sequence divergence might be driven by the

lack of selective pressure on the viral V3 loop. This finding

supports other studies that report presence of selective pressure

maintaining the relative homogeneity of the CCR5 viruses as well

as the correlation of the emergence of the CXCR4-tropic strains

with the accelerated V3 loop [20,23].

Localization of the misclassified sequences in sequence space

revealed a possible reason for errors of V3 loop sequence-based

coreceptor prediction tools. These sequences are located in parts

of the sequence space untypical for their phenotype and show an

inverse pattern in their distances distribution as compared to the

distances among correctly predicted sequences (Figure 6). Only the

sequences misclassified by the 11/25 rule do not exhibit such a

distance inversion (data not shown) which suggests that in certain

cases mutations at positions 11 and 25 are insufficient for the

Table 2. Performance of coreceptor prediction methods and their combinations on the NSI/SI and R5/X4 datasets.

R5/X4 NSI/SI

Predictor TPR at 0.04 FPR AUC TPR at 0.05 FPR AUC

Blosum 0.5544 0.8747 0.5606 0.8647

Hamming 0.5241 0.8842 0.5144 0.8644

Significant Positions 0.5524 0.8765 0.5499 0.8532

Split Number 0.0712 0.6245 0.1932 0.6486

Split Length 0.4262 0.7591 0.4722 0.7449

Clustering 0.5510 0.8725 0.5399 0.8606

SVM 0.7607 0.9038 0.7407 0.8887

PSSM 0.7276 0.9199 0.7140 0.9131

Blosum-Hamming-Significant Positions 0.6014 0.8990 0.5808 0.8745

Blosum-Split Lengths 0.5986 0.9063 0.6076 0.8768

Blosum-SVM 0.7517 0.9062 0.7313 0.8944

Split Length-SVM 0.8062 0.9355 0.7929 0.9156

Blosum-Split Length-SVM 0.8076 0.9420 0.7778 0.9224

All Methods 0.7607 0.9404 0.7369 0.9178

The performance of the analyzed prediction methods is assessed with the TPR at the FPR of the 11/25 rule (0.05 in the NSI/SI and 0.04 in the R5/X4 dataset) and with a
cutoff-independent measure of the size of the area under ROC curve. The table lists the performances of several classification methods and their combinations. The
predictions of the combined methods are calculated as the Euclidian distance from the origin of the prediction score space of each of the individual methods.
doi:10.1371/journal.pone.0007387.t002
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change of phenotype and that the accumulation of other mutations

on the V3 loop might drive the coreceptor switch. Previous studies

[24] report dual-tropic V3 loop sequences as being predominant

among the sequences misclassified by different prediction

methods. It may be that the sequences we observe to be located

in untypical regions of sequence space for their tropism represent

an intermediate form between the two mono-tropic types. Other

studies [25] reveal a dependence of the predictive value of

positions 11 and 25 on CD4+ T-cell level, suggesting that

individual patient parameters can influence the viral coreceptor

usage. Another possible reason for errors in predicting coreceptor

usage on the basis of V3 sequence may be the occurrence of

complementary mutations in other parts of the gp120 protein.

However, a similar inspection of the sequence space of the V2-V3

sequences revealed no separation between the CCR5 and CXCR4

phenotypes in the V2 part (Figure 8). A similar observation has

been previously reported [26] in an analysis of the V1-C3 region

of the gp120 protein sequences that revealed a relative

Figure 10. Patient sequence evolution in sequence space. CD4+ cell count level is plotted against mean distance to NSI/CCR5 sequence set in
the full (A and B) and the therapy-naı̈ve datasets (C and D). Sequences with annotated phenotype or tropism are marked with colors (blue for NSI/
CCR5 sequences, red for SI/CXCR4). Sequential data points of the same patients are marked in black and connected with a solid line: (A) therapy-
experienced patient showing an increase in sequence variability with decreasing CD4+ cell count, (B) therapy-experienced patient with an opposite
trend, (C) therapy-naı̈ve patient showing an increase in sequence variability with decreasing CD4+ cell count, (D) therapy-naive patient with a mixed
trend. Patient identifiers are indicated above the plots.
doi:10.1371/journal.pone.0007387.g010
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conservation of the V2 region with only a few positions in the V1/

V2 stem being significant for the coreceptor usage. This strongly

points to the V3 loop being the region of the gp120 protein crucial

for the viral tropism that is under selection pressures driven by the

interaction with the host.

The separation of the two classes of sequences in sequence space

can therefore be used for the coreceptor usage prediction. Our

prediction methods are drawn from sequence space localization

determined by the means of sequence distance measures,

phylogenetic distance and clustering. The predictive power of

the methods is below that of SVM and PSSM which is not

surprising as the prediction score based on sequence space is

obtained by averaging over many sequence distances, an operation

in which information on a single position in a sequence is lost.

Adding the sequence space location descriptor to the sequence-

based SVM did not improve its accuracy which might be due to

the fact that the sequence space location is drawn from the genetic

information that is already used by the SVM. However combining

prediction methods, in particular the phylogeny-based method

with other classifiers, resulted in a performance increase.

Nevertheless the stochastic step involved in the phylogeny-based

method renders its predictions less reliable which is reflected by

the weak predictive power of the method by itself.

Relating clinical markers to the sequence space position shows

higher sequence variability among patients with an impaired

immune system. Other studies have reported the emergence of

highly mutated viruses in the later stage of infection [23,27]. Our

analysis shows the association of this emergence with the drop in

patient CD4+ T-cell count. This association might be due to a

selection pressure exerted on the viral V3 loop that disappears

with the gradual erosion of the immune system. With the

attenuation of this selection force the virus is apparently

undergoing an unrestricted evolution on the V3 loop which

traverses distant parts of sequence space. The existence of a similar

selection mechanism has been suggested in other studies [28].

However the nature of the selection pressure limiting the viral

mutation in the early stage of infection is not clear. The

observation that the development of a highly mutated CXCR4-

tropic virus is associated with low CD4+ T-cell numbers and

therefore with the impairment of the immune system suggests an

immunological component of this mechanism. There is some

evidence for selective pressure against the emergence of CXCR4

strains having an immunological basis [29] and decrease of

positive selection accompanying the drop in CD4+ T-cell count.

This supports the hypothesis that the emergence of mutated strains

late in infection is related to the limitation in the suppressive

capacity of the immune system. However, recent studies [30] show

examples of patients exhibiting CXCR4-tropic virus at relatively

high CD4+ T-cell counts. Such cases could be explained by a

successful antiretroviral treatment, as viral tropism appears not to

impact the response of CD4+ T-cell count on the treatment [31].

In our datasets we find patients (mostly therapy-experienced) who

exhibit an increase in sequence conservation with a reduction of

the CD4+ T-cell counts (example in Figure 10B). Other

parameters may therefore influence the evolution of the viral V3

loop. Notably, high sequence conservation has been observed

among patients under long-term successful therapy [32].

Our large-scale analysis of the sequence space of the V3 loop

provides a comprehensive description of CCR5- and CXCR4-

tropic viral phenotypes. By characterizing CXCR4 viruses as

highly variable and dispersed in sequence space we provide further

evidence for the fact that not only is this phenotypic change

predictive of disease progression but also that it comes as a result of

an extensive evolution of the V3 loop sequence and a decrease of

the selective pressure on the viral envelope genome.
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