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Abstract 

Intelligent behavior involves mentally arranging learned information in novel ways and is 

particularly well developed in humans. While nonhuman primates (NHP) will learn to arrange new 

items in complex serial order and re-arrange neighboring items within that order, it has remained 

contentious whether they are capable to re-assign items more flexibly to non-adjacent positions. 

Such mental re-indexing is facilitated by inferring the latent temporal structure of experiences as 

opposed to learning serial chains of item-item associations. Here, we tested the ability for flexible 

mental re-indexing in rhesus macaques. Subjects learned to serially order five objects. A change 

of the background context indicated when the object order changed, probing the subjects to 

mentally re-arrange objects to non-adjacent positions of the learned serial structure. Subjects 

successfully used the context cue to pro-actively re-index items to new, non-adjacent positions. 

Mental re-indexing was more likely when the initial order had been learned at a higher level, 

improved with more experience of the re-indexing rule and correlated with working memory 

performance in a delayed match-to-sample task. These findings suggest that NHPs inferred the 

latent serial structure of experiences beyond a chaining of item-item associations and mentally re-

arrange items within that structure. The pattern of results indicates that NHPs form non-spatial 

cognitive maps of their experiences, which is a hallmark for flexible mental operations in many 

serially ordered behaviors including communication, counting or foraging. 
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Introduction 

Mental flexibility refers to the ability to arrange thoughts or actions in novel ways. Flexible mental 

operations are required for many serially ordered behaviors including communication, counting, 

problem solving, and foraging (Davis and Pérusse, 1988; McNamee et al., 2021). A commonality 

of these serial behaviors is that they become more complex and flexible when subjects are able to 

infer the latent temporal structure on top of which mental operations can be performed. The ability 

to infer latent temporal structure and to mentally re-arrange representations within that structure 

underlies measures of intelligence and is particularly well developed in humans compared to 

nonhuman primates (NHP) (Dehaene, 2021; Passingham, 2021). It has remained debated, however, 

how capable NHPs are to infer abstract temporal structure and whether they use it to flexibly guide 

mental operations (Dehaene et al., 2015; Whittington et al., 2022; Passingham and Lau, 2023).  

 

Powerful paradigms for testing how subjects infer latent structure from their experiences involves 

the serial ordering or items (Conway and Christiansen, 2001; Terrace, 2005). Studies using serial-

order learning paradigms have shown that NHPs understand the relative ordinal position of objects 

in multi-item sequences (Damato and Colombo, 1989, 1990; Chen et al., 1997; Orlov et al., 2000; 

Jensen et al., 2019; Mione et al., 2020; Ferhat et al., 2022; Jensen et al., 2022), are able to swap 

object positions in a sequence when they are adjacent to each other (Matsuzawa, 1985; Scarf et al., 

2011), and reverse play 3-item sequences (Xie et al., 2022; Tian et al., 2024). While these abilities 

highlight that NHPs show mental flexibility of manipulating rank ordered items, they also point to 

limitations of NHPs, when compared to humans, to extract the latent temporal structure from item 

sequences beyond serial chaining and rank ordering item-item associations (Dehaene et al., 2015; 

Zhang et al., 2022). For example, the ability to reverse play a sequence A-B-C as C-B-A involves 

the re-indexing of items to a new positions in a sequences (Tian et al., 2024), but this re-indexing 

can be achieved by swapping the relative rank of adjacent items in a sequence without the need to 

represent a abstract temporal structure or ordinal positions to which items are flexibly assigned 

(Kao et al., 2020). 

 

Here, we set out to test the ability of NHPs for mentally re-indexing items that are non-adjacent to 

each other in 5-object sequences. NHPs learned sequences of objects A-B-C-D-E and were probed 

to re-order non-adjacent items B and D to a novel A-D-C-B-E sequence. The re-ordering of objects 
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to different temporal positions can be achieved by independently representing the specific object 

items and the latent ordinal structure to which the items could be assigned (Tian et al., 2024). In 

computational models the latent temporal structure of experienced environments can be inferred 

and represented as a non-spatial cognitive map of item locations that enables the flexible re-

indexing of objects to different positions on this cognitive map (Behrens et al., 2018; Whittington 

et al., 2022).  

 

We tested the learning and flexible re-ordering of object sequences in four rhesus macaques using 

3-D rendered objects shown on a touchscreen Kiosk station in their home cage (Womelsdorf et al., 

2021). The paradigm required NHPs to choose simultaneously presented objects in a 

predetermined sequential order in trials that allowed maximally fifteen choices to complete the 

sequence and receive fluid reward (Fig. 1A). When a sequence was completed, or the maximum 

of fifteen choices was reached the subjects were presented with a new trial in which the same 

objects were arranged at new locations to prevent a spatial strategy. A sequence was shown for a 

total of fifteen trials. Subjects received for each correct object choice immediate visual feedback 

(yellow halo; for incorrect choice: grey halo) and an increment (for incorrect choices: a reset) of 

the slider position that signaled how many steps away subjects were from receiving fluid reward 

(see Fig. 1A and Suppl. Video). After fifteen trials with the same sequence, we changed the 

background (context 1) to a new background (context 2) that showed the same objects but required 

a new pre-determined sequential order with objects B and D swapping position. Each pair of 

context 1 / context 2 sequences used a unique set of objects. Each session evaluated multiple 

sequence pairs in an early block, followed by a delayed match-to-sample task, and followed by a 

late block of multiple sequence pairs (Fig. 1B).  

 

We found that subjects learned quickly to complete 5-object sequences A-B-C-D-E. When the 

background context changed to indicate that the same objects are re-ordered to A-D-C-B-E they 

on average anticipated the swapped positions of objects B and D and chose object D at the second 

ordinal position (Fig. 1C). This pro-active swapping was more likely when the initial sequence 

was learned better and correlated with working memory performance on a session-by-session level. 

The findings suggest that NHPs effectively use context cues to mentally re-index objects to a latent 

temporal structure.  
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Results 

Fast learning of object sequences 

We tested sequence learning in four NHP in 31.25 experimental sessions (subjects B: 13; J: 40; K: 

59; S: 13). Subjects learned to perform the 5-object sequences with ten or less erroneous choices 

within 5.34 ± 0.37 trials (Subject B: 9.55 ± 1.62; J: 6.88 ± 0.68; K: 3.61 ± 0.34; S: 5.18 ± 0.93) 

(Fig. 1C). Across sequences, subjects successfully learned 88% of sequences above the completion 

criterion of 80% (Subject B: 80; J: 87; K: 93; S: 92) (Suppl. Fig. S1A,B), reaching above-chance 

accuracy at each ordinal location (Suppl. Fig. S1C,D). Learning gradually progressed through the 

ordinal positions, reaching 80% completion of the first ordinal position on average after 1.03 trials 

(± 0.03, 95% confidence interval), and of the 2nd-5th ordinal position on average after trials 1.30 (± 

0.11), 2.06 (± 0.25), 2.98 (± 0.39), and 4.24 (± 0.53) (Fig. 1D, E). Learning was achieved by 

reducing erroneous choices of objects, while errors indicating perseverative tendencies or violating 

 
Fig. 1. Learning 5-object sequences. (A) Each trial presented six objects. Monkeys learned to touch five objects 
in a pre-determined order A-B-C-D-E and avoid a distractor object. A correct choice led to visual feedback (yellow 
halo) and incremented a slider progress bar on top of the screen. Monkeys received fluid reward upon completion 
of the sequence. (B) Each sequence was presented in 15 separate trials (each with random spatial arrangement) 
and was followed by a sequence with the same objects but a new context background and swapped order of object 
B and D (red font). After 5-6 pairs of sequences subjects performed a delayed match-to-sample (DMTS) task for 
120 trials. Then, sequence learning was performed again with ~3 new and ~3 repeat-sequence pairs from earlier in 
the session. Sequences were presented on rock- or sand- themed contexts (see methods). (C) Learning curves for 
completing sequences with < 10 errors (y-axis). Symbols mark the average trial (±SE) at which 80% completion 
was achieved consistently across all subsequent trials. (D,E) Probability to reach 80% correct choices (y-axis) for 
each ordinal position (diff. colors) across trials (D) and on average (E). Error bars are SE.  
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the task rules were infrequent throughout (Suppl. Fig. S1E,F). Reaction times gradually increased 

with ordinal positions, consistent with prior studies (Suppl. Fig. S2) (Colombo et al., 1993). 

     

Subjects pro-actively re-order non-adjacent objects of well-learned object sequences 

We next tested whether subjects could re-assign objects of the learned A-B-C-D-E sequence to 

different positions. When subjects completed 15 trials of the initial sequence, we changed the 

context background to a new context 2 and re-ordered the same objects to the new order A-D-C-

B-E. The sequence in context 2 swapped positions of objects B and D (Fig. 2A, see Suppl. Videos). 

Subjects successfully used the context change as a cue and adjusted to the swapping in context 2, 

reaching 80% completion rate on average at trial 2.91 (± 0.61, Mean ± 95% CI), compared to 5.34 

(± 0.73) trials for learning the initial sequence in context 1 (Fig. 2B). The faster learning of 

 
Fig. 2. Subjects swap objects between non-adjacent ordinal positions. (A) Context 2 swapped the ordinal 
position of object B and D. (B) Subjects reached 80% completion rate earlier in context 2 (yellow). (C) Learning 
speed (trials to reach 80% completion) in context 1 (initial sequence) and context 2 (swapped). (D) Retro-active 
swapping after error on B: Probability of choosing objects immediately after erroneously choosing object B in 
context 2: for A: 0.008 ± 0.003l; B: 0.004 ± 0.002 (95% CI); C: 0.356 ± 0.019; D: 0.447 ± 0.023; E: 0.131 ± 0.015; 
Distractor: 0.055 ± 0.010. Three stars denote p < 0.001 difference (Welch's t-test). (E) Retro-active swapping by 
choosing object D after an error on B was more likely when the context 1 sequence was learned at high >80% 
completion rate. (F) Choice probability for objects in context 1 (upper), context 2 (lower) and their differences 
(right panel) in trials prior to reaching the 80% completion rate. Subject more likely chose D over C and B, 
suggesting they pro-actively swapped object D into the 2nd ordinal position. (G) Choice probability of objects after 
correctly choosing object D in context 2, showing that subjects correctly continued with C rather than E. Stars 
denote significance levels (Welch's t-tests). Error bars are SEs.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2024. ; https://doi.org/10.1101/2024.11.24.625056doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.24.625056
http://creativecommons.org/licenses/by-nc/4.0/


 6 

sequences in context 2 was evident in each subject (completion rate for sequences of context 1 / 2 

in subject B: 5.38 (± 0.83) / 3.85 (± 0.73); J: 4.71 (± 0.53) / 2.67 (± 0.31); K: 2.98 (± 0.26) / 1.97 

(± 0.17); S 5.38 (± 0.87) / 3.08 (± 0.52) (Fig. 2C). Reaction times were similar across ordinal 

positions for context 1 and 2 (Suppl. Fig. S2).  

 

How did the subjects adjust to the swapped positions of object B and D in context 2? A serial 

chaining framework predicts subjects will erroneously choose object B at the second ordinal 

position and adjust to this error by choosing the next neighboring object C at the third ordinal 

position because its relative position is closest to the second position. In contrast to such a serial 

inference, subjects may also at the second ordinal position pro-actively choose object D. This 

would reveal they understood that D was indexed to the absolute fourth position in context 1 and 

needed to be re-arranged to the new A-D-C-B-E sequence when the context changed. We found 

that overall, subjects re-indexed object D from the fourth ordinal position in context 1 to the second 

ordinal position in context 2 more likely than choosing object C, which occupied the adjacent thurd 

position in context 1. First, we analyzed choices in context 2 prior to reaching completion rate. 

When subjects erroneously choose object B in context 2 they were more likely to correctly choose 

object D rather than object C (Welch's t-test, p = 6.2 × 10^-9) (Fig. 2D). This correct re-indexing 

of object D in context 2 was more likely when the initial A-B-C-D-E sequence in context 1 was 

learned at ≥ 80% completion rate (Fig. 2E). When context 1 was performed below 80% completion 

rate, subjects similarly often applied the correct re-indexing strategy (choosing object D at the 

second position) and the incorrect serial-inference strategy (choosing object C at the second 

position) (Fig. 2E).   

 

We next quantified directly whether subjects used the context cue to swap objects pro-actively, i.e. 

whether - after correctly choosing A - they anticipated choosing object D at the second ordinal 

position in context 2 without erroneously choosing object B. We found that compared to context 

1, in context 2 subjects more likely choose object D as well as object C more likely than B prior 

to reaching an 80% completion rate (t-test, p < 0.001; Fig. 2F). Directly comparing contect 1 

versus context 2 showed that already prior to reaching 80% completion choosing D (indicating 

swapping) was significantly more likely than choosing C (indicating serial inference) (t-test, p = 

0.05; Fig. 2F). This pattern of results suggests that subjects considered both, object C and object 
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D as possible target objects in context 2 early during learning when they had not yet achieved an 

80% completion rate, but that they more likely anticipated that object D was the most likely object 

to be correct at the second ordinal position.  

 

To further test whether subjects considered object D to be the correct object swapped into the 

second ordinal position in context 2 we calculated how likely they chose object C (correctly) rather 

than object E (incorrectly) following correctly choosing D. Subjects chose C more likely than 

object E following correctly choosing D in the second context, indicating they swapped D to an 

earlier position rather than jumping to the late chain of D-E sequence they learned in context 1 

(Fig. 2H) (Welch’s t-test, p < 1 × 10^-10; correctly choosing object C: 0.465 ± 0.014, incorrectly 

choosing object E: 0.206 ± 0.014 and object B: 0.261 ± 0.013). 

 

Sequence memory and rule memory improves swapping ability 

To swap the position of objects in a sequence depends on recalling the original sequence from 

memory and on an understanding of the swapping rule. To test how long-term memory affected 

swapping performance we split each experimental session into early sequence learning, followed 

by an interspersed delayed-match-to-sample task, and late sequence learning (Fig. 1B). During the 

late learning epoch, we repeated a subset of sequence pairs from the early epoch and tested whether 

the early sequence was memorized and potentially facilitated performance and the likelihood of 

swapping of the repeated sequences in the late epoch. We found that repeated sequences were 

learned faster than the initial sequence shown earlier in the session, or other new sequences that 

were interspersed late in the session to control for a possible effect of the time-in-task (trials to 80% 

completion: Early New sequences: 4.12 (± 0.63; Mean ± 95% CI); Late New sequences 4.74 (± 

0.80); Repeated sequences: 1.81 (± 0.37), Fig. 3A; Suppl. Fig. 3). The likelihood of pro-active 

swapping was already above chance for the early sequences and did not increase further in repeated 

sequences (New Early vs. Repeat: p = 0.0818; New Early vs. New Late: p = 0.0998; Repeat vs. 

New Late: p = 0.6962; Fig. 3B). However, in repeated sequences subjects were significantly more 

likely in context 2 to retro-actively swap object D into the second position after erroneously 

choosing object B at the second ordinal position (New Early vs. Repeat: p = 0.0008; New Early 

vs. New Late: p = 0.0019; Repeat vs. New Late: p = 0.3462; Fig. 3C). Thus, sequence memory 
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improved error correction in trials when subjects failed to pro-actively swap object D into the 

second ordinal position. 

 

Next, we analyzed whether the depth of memorizing the initial sequence early in the session 

influenced the swapping performance of that sequence later in the session. We found that subjects 

 
Fig. 3. Memory of object sequences improves pro-active and retro-active swapping performance. (A) 
Completion rate of sequences before the working memory task (New Early), and for new and repeated sequences 
performed after the working memory task (New Late, Repeat). (B) Pro-active swapping in context 2: Anticipating 
that D is in 2nd position in context 2 does not differ between conditions. (C) Retro-active swapping after 
erroneously choosing object B in context 2: Difference of choosing object D vs. C. (D) Better initial performance 
in context 1 (blue vs red: higher vs lower completion rate) is associated with higher likelihood of pro-actively 
swapping object D and B context 2. (Low completion rate: M = 0.1525, 95% CI [0.1315, 0.1736]; high 
completion rate: M: 0.2148, 95% CI [0.1999, 0.2297]; p: 2.58 × 10^-6). (E) Regression of the completion rate in 
context 1 and the likelihood to choose object D immediately after object A in context 2 (β: 0.3568; intercept: -
0.2040; R²: 0.0082; p: 0.0013; Cohen's f²: 0.0082). (F) Same format as D for retro-active swapping, i.e. for 
choosing object D in context 2 at the 2nd ordinal position after erroneously choosing B (low completion rate: M: 
0.0179, 95% CI [-0.0458, 0.0815]; high completion rate: M: 0.1226, 95% CI  [0.0809, 0.1643]; t-test, p: 0.00714). 
(G) Regression of context 1 completion rate and retro-active swapping in context 2 (β: 0.2073; intercept: 0.0249; 
R²: 0.02; p: 8.98 × 10^-8; Cohen's f²: 0.0204). (H) Choosing object D proactively after object A in context 2 was 
more likely than choosing object B on average across 124 valid sessions (M: 0.19, 95% CI [0.17, 0.21]; p < 1 × 
10^-10). The effect increased in strength over sessions (regression β value: 0.0023; p: 0.0007; Cohen's f²: 0.0982). 
(I) Choosing object D after an erroneous choice of B in context 2 was more likely than choosing object C on 
average across 124 sessions (M: 0.09; 95% CI [0.05, 0.13], one-sample t-test, p = 2.5 × 10^-5). The regression 
slope across sessions (red dashed line) was not significant (β value: 0.0017; p: 0.1917; Cohen's f²: 0.0140). 
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more likely pro-actively swapped D into the second position in context 2 for repeated sequences 

late in the session when the sequences were better memorized early in the session, i.e. when they 

were performed at a higher completion rate (R2: 0.02, p=9x10-8) (Fig. 3 D,E). Similarly, retro-

active swapping of object D after erroneously choosing B in context 2 at the second position was 

also more likely late in the session when the initial sequence was better learned early in the session 

(R2: 0.0082, p=0.0013) (Fig. 3 F,G). 

 

In addition to memory for the sequence, subjects may also improve memory of the swapping-rule 

that required swapping the 2nd and 4th ordinal position once the context background changed. We 

analyzed rule memory by quantifying how pro-active and retro-active swapping changed over  

sessions. Pro-active swapping was apparent already in the first experimental sessions and gradually 

increased over sessions (R2: 0.0089, p=0.0007; Fig. 3F), while the likelihood of retro-active 

swapping remained similar across sessions (R2: 0.0138, p=0.1917) (Fig. 3I).  

 

 
Fig. 4. Working memory performance correlates with pro-active swapping. (A) Delayed match-to-sample 
(DMTS) paradigm. (B) Across sessions, the DMTS accuracy did not correlate with the completion likelihood of 
sequences. (C) DMTS accuracy significantly correlated with pro-active swapping, i.e. with choosing object D 
after A in context 2. Black line denotes avg. Linear Mixed Effect model; colors show individual subjects. (D) 
Contexts facilitated sequence learning: Completion rates were higher for sequences repeated with the same context 
(n=687, yellow) than a different context (n=430, blue): (same contexts: 0.0865 (95% CI [0.0763, 0.0967]; different 
contexts: 0.0660, 95% CI [0.0549, 0.0771]). (E) Context did not modulate pro-active swapping (different context: 
M = -0.0093, 95% CI [-0.0363, 0.0177]; same context: M = 0.0373, 95% CI [0.0095, 0.0651]; Welch's t-test: p = 
0.1269). (F)  Context did not modulate retro-active swapping (different context: M = 0.0386, 95% CI [-0.1273, 
0.2045]; same context: M = 0.1225, 95% CI [0.0319, 0.2131]; Welch's t-test: p = 0.3001). 
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Pro-active swapping of object positions correlates with working memory 

Swapping objects from later and earlier ordinal positions may involve transiently storing the 

position index of the original objects in a temporary variable, which is similar to a short-term 

memory buffer (Tian et al., 2024). We thus hypothesized that working memory ability predicts 

pro-active swapping performance, which we tested by assessing delayed match-to-sample 

performance in the same behavioral sessions that assessed swapping (Fig. 4A, Suppl. Fig. S4). 

We found that WM performance did not correlate with overall sequence learning accuracy (Fig. 

4B), but WM accuracy significantly correlated with pro-active swapping abilities on a session-by-

session basis (Fig. 4C). This result indicates that successfully swapping object D and B in context 

2 is not only influenced by longer term sequence-memory and rule-memory (Fig. 3), but also by 

an ability to hold objects active in short-term working memory.  

 

We next tested whether memory of the context background in which a sequence was learned 

influenced swapping behavior. When a sequence was repeated after the working memory task, it 

was presented on either the same, or on a different contextual background than the initial new 

sequence. We found improved sequence learning performance on repeated versus early (initial) 

sequences when the context was the same than different (Welch's t-test, p = 0.0079; Fig. 4D). 

However, this overall contextual facilitation did not modulate pro-active or retro-active swapping 

in context 2 (pro-active sapping: Welch's t-test: p = 0.1269; Fig. 4E; retro-active swapping: Welch's 

t-test: p = 0.3001; Fig. 4F). 

 

Discussion 

We found that rhesus monkeys learned multiple 5-object sequences in single experimental sessions 

(Fig. 1, Suppl. Video). When a change in context indicated that non-adjacent objects B and D 

switched positions, subjects swapped these objects more likely than choosing the next-ranked 

object C in the sequence (Fig. 2D-G). The swapping occurred pro-actively, i.e. prior to making an 

error (Fig. 3B,D,H), as well as retro-actively, i.e. when subjects corrected an erroneous choice of 

B at the second ordinal position in context 2 (Fig. 3C,E,I). Four factors were associated with better 

swapping performance: Swapping in context 2 was more likely when the sequence had been 

learned at a higher proficiency level in the immediately preceding context 1 (Fig. 2E) and in 

repeated sequences in context 2 when context 1 was performed at higher proficiency level ~30-60 
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min prior in the early epoch of a session (Fig. 3D-G); when the swapping rule had been performed 

for more sessions later in the experiment (Fig. H); and when subjects showed a higher working 

memory performance (Fig. 4C). Taken together, these results show that rhesus monkeys infer the 

latent temporal order of objects during sequence learning and are able to flexibly swap the index 

of object identities to absolute positions in that latent order when a new context instructs them to 

reassign objects to new temporal positions.  

 

Swapping behavior reflects flexible mental re-indexing of object associations 

Successful pro-active swapping behavior shows that monkeys used the context of the swapped 

sequence as a cue to re-order objects A-B-C-D-E of context 1 to a new A-D-C-B-D order in context 

2. A neuronal correlate for such cue-triggered reconfiguration process has recently been suggested 

in an experiment that required NHPs to reverse play the spatial order of 3-item sequences (Tian et 

al., 2024). Groups of frontal cortex neurons represented forward spatial 3-item sequences A-B-C 

and re-coded the sequence when a visual cue required to report the sequence backwards. During 

the rec-coding process neuronal population activity in frontal cortex transiently encoded the 

swapped item positions, which was followed by a new neuronal population that encoded the 

backward sequence (Tian et al., 2024). While these neuronal findings were limited to reversing 

adjacent items, we suggest that they provide a versatile framework to conceptualize the re-indexing 

of objects to non-adjacent positions in our study. In particular, this framework predicts that in our 

study objects of the A-B-C-D-E sequence in context 1 will be encoded by neurons indexing their 

ordinal position (Xie et al., 2022). When the context changes and objects D and B need to be 

swapped, the original index of objects B and D are temporarily encoded in a short-term buffer, and 

the original A-B-C-D-E sequence is reconfigured into the new A-D-C-B-E sequence. When this 

operation completes, the transient buffer is not needed anymore and the swapped sequence is 

encoded by a group of neurons that is partially distinct from the group of neurons that encoded the 

initial sequence (Tian et al., 2024). The key insight of this framework is that the swapping 

operation can be conceived of as the re-indexing of objects to the absolute serial position of a 

sequence. This indexing operation requires that the objects and the temporal sequential structure 

are independently encoded in the neuronal network that performs this operation, which is well 

supported by neurophysiological evidence (Xie et al., 2022; Tian et al., 2024). Our study suggests 

that NHPs uses these neuronal processes when learning to re-index objects to non-adjacent 
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positions, which extends previous findings and documents a high level of flexibility of mental 

operations.  

 

Mental re-indexing of object positions is linked to working memory abilities 

We found that pro-active swapping in context 2 was more likely when subjects also showed better 

performance of the delayed match-to-sample task, suggesting a relationship of working memory 

and pro-active swapping (Fig. 4C). In contrast, working memory did not correlate with the average 

speed of learning the sequence (Fig. 4B), suggesting the learning of the initial sequence does 

involve associative mechanisms while swapping relies on mentally manipulating a learned 

structure in working memory. Consistent with this suggestion the re-indexing framework 

postulates a transient short-term buffer of the to-be-swapped objects is needed to re-arrange the 

order of a sequence (Tian et al., 2024). More generally, a short-term memory buffer enables 

prospective planning of temporal orders of items that are not physically visible. For example, 

prospective working memory has been documented in NHPs using paradigms that require planning 

ahead by masking future items of a sequence or require comparisons of the relative rank of items 

that appeared in different lists (Beran et al., 2004; Inoue and Matsuzawa, 2009; Treichler and 

Raghanti, 2010; Scarf et al., 2011; Gazes et al., 2012; Templer et al., 2019). Our results extent 

these studies by suggesting that stronger working memory performance as measured with a 

delayed-match-to-sample-task is linked to the mental ability for flexible re-indexing of objects to 

non-adjacent temporal positions.  

 

Swapping of sequences uses long-term memory 

In addition to working memory, our results also suggest that pro-active mental re-indexing is more 

likely when the sequential structure of object relationships has been more firmly learned in long-

term memory. Subjects more likely pro-actively swapped object B and D in context 2 the better 

they had learned the sequence in context 1. This result suggests that pro-active swapping is a 

behavioral strategy that becomes available once a sequence is sufficiently well represented in 

memory (Jensen et al., 2021). With poorer learning of the context 1 sequence subjects applied 

equally likely a serial inference strategy, i.e. choosing at the second ordinal position 2 the adjacent 

item C instead of item D in context 2 (Fig. 2E). This finding extends previous studies that 

document monkeys represent (Chen et al., 1997; Jensen et al., 2019; Mione et al., 2020; Ferhat et 
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al., 2022; Jensen et al., 2022), and memorize long term (Orlov et al., 2000; Templer et al., 2019) 

serially ordered items as their relative ordinal rank. Our results are consistent with these prior 

findings by suggesting that representing serially ordered objects by chaining neighboring objects 

and knowing their relative rank in the sequence is a ‘default strategy’ by NHPs that is applied as 

long as a sequence is not learned sufficiently deep, or if there is no task requirement to infer a more 

abstract temporal structure that would support the mental re-indexing operations of non-

neighboring positions. According to this interpretation, NHPs are able to infer latent temporal 

structure with sufficient experience of the temporal structure and do not have a ‘hard cognitive 

limitation’ of inferring more complex temporal structures from item sequences beyond 

representing serial chains of item-item associations (Dehaene et al., 2015; Zhang et al., 2022).  

This conclusion is also supported by neurophysiological evidence of neurons in the prefrontal 

cortex as well as in the medial temporal cortex. In these brain areas neuronal responses have been 

found that are tuned to the ordinal rank of items in multi-item sequences (Xie et al., 2022; Chen et 

al., 2024a; Chen et al., 2024b; Shpektor et al., 2024). Prefrontal rank-selective neuronal responses 

predict the specific items that a subject uploads at each position even when that item is erroneously 

uploaded and lead to an unrewarded choice (Averbeck and Lee, 2007; Chen et al., 2024a). The 

neural coding of a rank position independently of the specific item that is encoded at that rank in 

principle supports a flexible assignment of items to different ranks, documenting that neuronal 

representations are not limited to serial item-item associations.  

 

We speculate that the key behavioral results of our study - the ability of NHPs to flexibly re-index 

objects to non-adjacent positions in learned sequences - was facilitated by various design features 

of our task. Firstly, NHPs were exposed in each behavioral session to multiple sequence pairs with 

context 1 and the swapped items of context 2 already early during training. This design aspect 

ensured the swapping rule was not a rare exceptional task feature, but an integral part of their daily 

task environment, motivating them to figure out how to complete swapped sequences in context 2 

in order to receive rewards. Secondly, our task paradigm enforced a ‘retouch-the-last-correct-item 

after-an-error’ rule, which ensured that erroneously made serial object connections were not left 

unnoticed by were corrected immediately by the correct pair (see Suppl. Video). Lastly, the task 

paradigm provided immediate performance feedback of every choice in the form of the halo 

feedback and the stepping forward or reset of the slider progress bar (Fig. 1A). This design aspect 
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provided unambiguous information about erroneously chosen objects, which will have facilitated 

learning. 

 

Conclusion 

Taken together, our results show that NHPs are able to flexibly re-index objects to a non-adjacent 

position within 5-object sequences once they have been learned at high proficiency. This mental 

flexibility suggests that NHPs infer latent temporal structure of their experiences when they engage 

in a task that requires mental operations on-top of this structure such as the required swapping of 

objects once the context changed. These abilities suggest that NHPs form non-spatial cognitive 

maps and use them to mentally manipulate items during goal-directed behavior (Whittington et al., 

2022). We speculate that this mental capacity will have evolved in NHPs to support a higher level 

of adaptiveness of behavior during many serially organized behaviors beyond arranging visual 

objects in novel temporal relationships (McNamee et al., 2021).      
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Methods 

Ethic Statement 

All animal and experimental procedures complied with the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals and the Society for Neuroscience Guidelines and Policies 

and were approved by the Vanderbilt University Institutional Animal Care and Use Committee. 

 

Experimental Design 

Four male rhesus macaques (Monkey S: 10 yrs / 12.6 kg; Monkey B: 10 yrs / 10.8 kg; Monkey K: 

12 yrs / 11.9 kg; Monkey J: 13 yrs / 12.9 kg) were used in this study. They performed the 

experimental task in their housing cage using cage-mounted touch screen stations (Womelsdorf et 

al., 2021) (Fig. 1A). Visual display, behavioral response registration, and reward delivery were 

controlled by the Multi-Task Suite for Experiments (M-USE) (Watson et al., 2023). M-USE is an 

open-sourced video-engine based Unity3D platform that is integrated with a touchscreen, a video 

camera system and reward delivery hardware.  

 

The task required learning the sequential temporal order of sets of five objects. We generated novel 

sets of objects for every new sequence by randomly assigning each object different features from 

up to ten different feature dimensions using multi-dimensional 3D rendered so-called Quaddle 

objects (Watson et al., 2019). We used Quaddle 2.0 objects that vary in ten feature dimensions 

(e.g. the shape, color, body pattern, different arm orientations, the presence of a head, etc.), each 

with >10 possible feature values (different body shapes, variable colors, etc.) (Fig. 1C). The 

objects were generated using the software Blender and custom Python scripts. For the experiment, 

object colors were chosen to be equidistant within the perceptually defined CIELAB color space. 

Objects were presented on an Elo 2094L 19.5" LCD touchscreen with a refresh rate of 60 Hz and 

a resolution of 1,920 × 1,080 pixels, rendered at 2.9-4.2 x 2.4-4.7 cm on the screen. 

 

For each sequence, a new contextual background image was displayed. Context images were 

generated with DALL·E 2, an AI system developed by OpenAI, using a text prompt for obtaining 

images from the categories rocks and sand. We applied color filters to images to obtain a larger 

number of distinct context backgrounds, ensuring each color filter maintained a fixed luminance 

value of 50. The colors were selected by evenly spacing them around the CIELAB color wheel, 
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ensuring a diverse range of hues. The brightness of the background images was adjusted to be ≤ 

50% of the HSL scale.  

 

Task Paradigm  

On each trial six objects were presented at a random location at equal eccentricity relative to the 

center of the screen (Fig. 1A). Five of the objects were assigned a unique ordinal temporal position 

in the sequence, while a sixth object was a sequence-irrelevant distractor. Each sequence was 

presented for a maximum of 15 trials. In each trial subjects had a up to 15 choices to complete the 

sequence and earn fluid reward by touching objects and receiving either positive feedback (a 

yellow halo and high pitch sound) for correct choices, or negative feedback (a transient grey halo 

and low pitch sound) for touching an object at an incorrect temporal position. After an erroneous 

choice, subjects had to re-choose the last correct object in the sequence before searching for the 

next object in the sequence (see Suppl. Video). When a trial was completed the objects were 

removed from the screen and a new trial was started with the objects displayed at random new 

locations equidistant from the center of the display. For each correctly chosen object, the slider 

position of the slider progress bar on top of the screen stepped forward. Successful completion of 

a sequence always completed the slider progress bar and resulted in a water reward. When a 

sequence was not completed no fluid reward was given and the slider progress bar was reset for 

the subsequent trial with the same objects at new random locations. After completing fifteen trials 

on a sequence A-B-C-D-E we changed the background context and swapped the order of object B 

and D, requiring to perform the sequence A-D-C-B-E for the next fifteen trials (Fig. 1C). We refer 

to the initial and the swapped sequence as a ‘sequence pair’. 

 

Delayed presentation of novel and familiar sequences and same or different contexts. Each session 

began by presenting four or five sequence pairs in a first set, followed by interleaving 120 trials of 

a delayed match to sample task, and followed by a second set with five or six sequence pairs (Fig. 

1B). In this second set one of the sequence pairs was novel, and four or five pairs were repeated 

sequence pairs from the early first set of sequences presented prior to the delayed match-to-sample 

task (Fig. 1B). Fifty to seventy-five percent of sequences in the repeated set were presented with 

the same context, while the remaining sequences were randomly presented with different contexts. 
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Distractor objects. In each trial, one of six objects was a sequence-irrelevant distractor. Feature 

dimensions of the distractor were chosen to have a high degree of feature similarity to the second 

object of the initial sequence (which then became the fourth object in the swapped sequence). The 

sequence-irrelevant distractor object differed from the sequence relevant object at ordinal position 

two (object B) in only three features, while the other objects of the sequence did not share features 

(Fig. 1C). The distractor object was used to validate subjects paid attention to the features of the 

objects. Analysis results (Suppl. Fig. S5) confirmed that subjects indeed confused the distractor 

object most likely with object B in the first sequence in context 1 (2nd ordinal position) and also 

with object B in the second swapped sequence in context 2 (4th ordinal position).        

 

Interleaved delayed-match-to-sample working memory task. After the first and before the second 

set of sequences, subjects performed a delayed match-to-sample task (DMTS) for 120 trials (Fig. 

4A). The DMTS task is part of the M-USE platform (Watson et al., 2023). DMTS used Quaddle 

1.0 stimuli that varied in up-to four feature dimensions (body shapes, arm style, body pattern, 

color). The DMTS trial presented a sample object for 0.5 s, followed by a delay of 0.5, 1.25 or 

1.75 seconds, before two or three test objects were shown. One of the test objects matched the 

sample and when touched resulted in a yellow halo, a high pitch sound and a token reward (a green 

circle) that was added to a token bar (Watson et al., 2023). Choosing non-matching objects resulted 

in a grey halo, a low-pitched tone, and a grey token that was subtracted from tokens available in 

the token bar. The token bar contained three placeholders for tokens and flashed white/red when 

all three tokens were completed, resulting in the delivery of fluid reward.        

 

Analysis of sequence learning. In each trial subjects could make maximally ten errors to reach the 

last, fifth object in a sequence or else a new trial started with the same objects in new positions. 

Up to fifteen trials were shown with the same sequence. We quantified learning as the proportion 

of trials in which an object sequence was completed (Fig. 1C). A sigmoid fit was applied to the 

completion rates across trials from all subjects. The trial at which learning reached criterion 

performance was defined as the first trial at which subjects completed 80% of trials correctly (Fig. 

1C). To assess overall performance, we calculated the average completion rate for each subject's 

sessions. We defined well performed sequences when more than 80% of the trials were completed; 

blocks falling below this threshold were considered poorly performed (Suppl. Fig. 1D). To 
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evaluate the consistency of learning at each ordinal position we calculated the proportion of correct 

choices for objects at each ordinal position across trials within a block (Fig. 1D). For each ordinal 

position, we identified the trial at which subjects achieved 80% correct object choices (Fig. 1E). 

 

To analyze how learning over trials correlated with changes in choice reaction times, we calculated 

the average time of subsequent choices for each ordinal position (Suppl. Fig. 2). We plotted the 

reaction times separately for trials before and after reaching the trials-to-80% criterion completion 

rate to investigate the effect of learning on reaction time. A Welch t-test was applied to compare 

the reaction time differences before and after the learning point at each ordinal position. 

 

Analysis of errors. To evaluate how subjects learned, we quantified the decrease in the proportion 

of different error types across trials (Suppl. Fig. 1D-F): (1) An exploration error occurred when 

choosing an incorrect object among objects not yet learned; (2) A rule-breaking error involved 

incorrectly re-selecting or failing to re-select the last correctly chosen object after an error, or re-

selecting a previously correctly chosen object; (3) A distractor error occurred when choosing the 

distractor object; (4) A perseverative error involved choosing the same incorrect object as in the 

last choice before reselection. We calculated the overall proportion of each error type relative to 

all errors as a function of the trial in a block. To evaluate how fast subjects reduced each type of 

error over trials we fitted an exponential decay function (𝑎 ∗ exp(−𝑏 ∗ 𝑥) + 𝑐) across fifteen trials. 

The same decay function was applied to each session individually, and decay factors were plotted 

to compare the decreasing speed of error types (Suppl. Fig. 1D). Statistical analysis was performed 

using one-sample t-tests to compare the decay factor to zero, and a Welch t-test was applied to 

compare each pair of error types. 

 

Analysis of re-ordered sequence with swapped object positions. We tested how subjects learned 

the swapping of objects B and D from the first sequence A-B-C-D-E in context 1 to the second 

sequence A-D-C-B-E in context 2. A sigmoid fit was applied to the completion rates over trials in 

context 1 and context 2 (Fig. 2B). We calculated the average trials needed to reach learning 

criterion (≥80% completion rate) for each session across sequence pairs in context 1 and context 

2, using a t-test to compare the differences (Fig. 2C). To investigate the effect of swapping on 

search time, we plotted the average reaction time for each ordinal position in both conditions 
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(Suppl. Fig. S2B). Next, we analyzed which objects subjects chose after they incorrectly chose 

object B at the 2nd ordinal position in context 2 (Fig. 2D). A t-test was used to compare the 

transition probability of objects C, D, or E. We also calculated the probabilities of choice separately 

for well-performed and poorly performed blocks (Fig. 2E). To quantify how likely subjects chose 

objects at each ordinal position in context 1 and context 2 before they reached the 80% learning 

criterion, we calculated transition choice probabilities after choosing object A (Fig. 2F) and after 

choosing correctly object D in context 2 (Fig. 2G). We used t-tests to compare whether subjects 

inferred the correct swapped order in context 2 after choosing object D at the 2nd ordinal position 

(choosing C), or whether they confused the sequential ordering in context 2 with the order from 

context 1 (and incorrectly chose E).  

 

Analysis of effect of memory on swapping. To quantify the effect of memory on sequence learning 

we tested whether sequences that were repeated late in the session were performed better than 

novel sequences performed late in the session. Using paired t-tests, we compared how fast 

sequences were performed at learning criterion (≥80% completion) that were shown early ('new 

early'), or repeated late in the session (‘repeated’). We also included novel sequence pairs that were 

presented late in the session ('new late'), or introduced newly late in the session (‘new late’) (Fig. 

1B; Fig. 3A). Next, we analyzed how memory influenced pro-active swapping and retro-active 

swapping behavior. We calculated two measures: a value indexing the likelihood that subjects 

chose object C instead of object D in context 2 at the second ordinal position (an incorrect serial 

inference), defined as:  𝑝(choosing	D − choosing	C	|	erroreously	choose	B; and we calculated a 

value indexing the likelihood of choosing object D at the second ordinal position in context 2, 

reflecting pro-active swapping: 𝑝(choosing	D − choosing	B	|	correctly	choose	A). T-tests were 

used to quantify the difference of these strategies in these repeated versus new/late new sequence 

pairs (Fig. 3B,C).  

 

Analysis of the effect of learning proficiency and task experience on swapping behavior. We 

quantified how the proficiency of performing a sequence (the average completion rate in context 

1) affected the likelihood of pro-active swapping behavior in context 2. We used t-tests to compare 

the values indexing the likelihood of showing incorrectly a serial inference strategy or a pro-active 

swapping strategy in context 2 for sequences performed at low versus high completion rates in 
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context 1 (Fig. 3D,F). We also correlated these values on a sequence-by-sequence basis using 

linear regression (Fig. 3E,G) and used linear regression of the performance across sessions to 

discern the influence of experience over the course of the experiment (Fig. 3H,I). 

 

Analysis of the relation of working memory and sequence learning. The delayed match-to-sample 

task presented a sample stimulus, followed by a blank delay lasting 0.5, 1.25, or 1.75s, followed 

by the presentation of three objects (2 distractors and 1 target object matching the sample stimulus) 

(Fig. 4A). The distractor stimuli were either similar or dissimilar to the target stimulus, because 

they shared, or did not share, features with the target objects.  We analyzed the overall accuracy 

for low/high similarity and across delays. Linear regression analysis showed no decline across 

delays so that we averaged the accuracy across conditions for individual sessions and each monkey 

(Suppl. Fig. 4). To analyze the relationship of working memory, sequence learning and the ability 

to anticipate the swapped object order in context 2, we applied individual linear regressions and a 

linear mixed model fit to the performance across sessions (Fig. 4B,C). 

 

Analysis of context repetition on sequence learning. In a subset of sequence pairs shown late in the 

session, we repeated the object sequences from early in the session but on a different background 

context. To test how the difference of contexts versus the similarity of contexts affected 

performance and the likelihood to observe pro-active swapping behavior in context 2 we 

determined the difference in accuracy between early and late (repeated) sequences with the same 

and different contexts (Fig. 4D-F). Paired t-tests were used to compare the accuracy between 

conditions. 

 

Analysis of choices of the distractor. For very 5-object sequence the task presented a sixth 

distracting object that was irrelevant to the sequences and shared three features with the object B. 

We tested whether the distractor object was more likely chosen at the ordinal position at which it 

shared features with object B of the sequence than at other ordinal positions. We tested for 

differences in the proportion of distractor choices in context 1 and 2 using a proportion Z-test 

(Suppl. Fig. S5). 
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