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Multiple Sclerosis (MS) is a complex immune-mediated disease of the central nervous
system. Treatment is based on immunomodulation, including specifically targeting B cells. B
cells are the main host for the Epstein-Barr Virus (EBV), which has been described as
necessary for MS development. Over 200 genetic loci have been identified as increasing
susceptibility to MS. Many MS risk genes have altered expression in EBV infected B cells,
dependent on the risk genotype, and are themselves regulated by the EBV transcription
factor EBNA2. Females are 2-3 times more likely to develop MS than males. We
investigated if MS risk loci might mediate the gender imbalance in MS. From a large
public dataset, we identified gender-specific associations with EBV traits, andMS risk SNP/
gene pairs with gender differences in their associations with gene expression. Some of these
genes also showed gender differences in correlation of gene expression level with Estrogen
Receptor 2. To test if estrogens may drive these gender specific differences, we cultured
EBV infected B cells (lymphoblastoid cell lines, LCLs), in medium depleted of serum to
remove the effects of sex hormones as well as the estrogenic effect of phenol red, and then
supplemented with estrogen (100 nM estradiol). Estradiol treatment altered MS risk gene
expression, LCL proliferation rate, EBV DNA copy number and EBNA2 expression in a sex-
dependent manner. Together, these data indicate that there are estrogen-mediated
gender-specific differences in MS risk gene expression and EBV functions. This may in
turn contribute to gender differences in host response to EBV and to MS susceptibility.

Keywords: Epstein-Barr virus (EBV), multiple sclerosis, sex-bias, eQTL, estrogen, estradiol
INTRODUCTION

Multiple Sclerosis (MS) is an autoimmune disorder in which the myelin sheath of neurons in the
central nervous system is damaged by immune cells (1). It is a complex disorder involving a strong
genetic component and a number of highly implicated environmental factors. To date, over 200 MS
susceptibility risk loci have been identified which are estimated to account for up to 48% of the
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genetic contribution to MS susceptibility (2). The genes
associated with these loci largely function in immune cells,
including T and B cells, monocytes, NK cells and microglia
(2). Epstein-Barr virus (EBV), lack of sun exposure, vitamin D
deficiency, and smoking are all environmental factors with
different degrees of evidence (3). Notably, all of these
environmental risk factors have effects on the immune
system (3).

The gammaherpesvirus EBV, one of the most substantial
environmental risk factors for MS, infects more than 90% of the
global population and has been identified as necessary but
insufficient on its own to cause MS (4). Nearly all patients with
MS are seropositive for EBV (5, 6). The risk for MS increases in
people with high anti-EBV antibody titers (7) or a history of the
EBV syndrome infectious mononucleosis (IM) (8), and fluctuations
in antibody titer are associated with relapses (9). Moreover, in a
study of 1047 clinically isolated syndrome (CIS) cases, an episodic
condition that precedes MS, only one patient was seronegative for
EBV antigens (10). The virus has been postulated to affect MS
pathogenesis across the MS disease course, from pediatric-onset MS
to the relapsing-remitting and progressive forms of MS, and as such,
the therapeutic targeting of EBV in MS patients has received
attention (11). The use of EBV-specific cytotoxic CD8+ T cell
therapy has provided promising results in an MS patient, reducing
disease activity and intrathecal immunoglobulin production (12).
This indicates both the potential for such treatments in MS and the
role of EBV in disease activity.

At the genomic level, EBV is implicated with MS
susceptibility via binding of the EBV transactivating protein
EBNA2 at multiple MS risk loci (13), further implicating EBV
infection in MS pathogenesis. We previously reported that 47
risk loci are associated with gene expression in EBV infected B
cells, referred to as lymphoblastoid cell lines (LCLs) (14, 15). We
also reported the over-representation of MS risk genes in host
genes to be highly correlated with EBV DNA copy number in
LCLs, while non-EBV associated diseases did not have such an
association (15), suggesting an association between MS risk
genes and the EBV life cycle. In addition, we found that the
expression of ZC3HAV1, an MS risk gene with antiviral
function, is dependent on the MS risk SNP in EBV infected B
cells but not in uninfected B cells, highlighting the link between
MS and EBV survival in the host (16). Despite this, surprisingly
little is known about the molecular processes by which EBV may
drive MS development.

The predominance of MS among females has been increasing
in recent decades. Reports in the 1930s suggested a male
predominance (17), but in the 1980s a female predominance of
approximately 2:1 was largely reported (18–20), which has
further increased to almost 3:1 (21–23). It is believed that the
increase of MS among women has occurred too quickly to be
attributable to changes in genetic composition and is likely to be
due to rapid changes in lifestyle and environmental factors (3).
These include differences in smoking (24–26), and obesity rates
among women (27, 28). Perhaps more significantly, rapid
changes in modern diets and reproductive behavior have
occurred, factors that alter the levels of sex hormones.
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The increased risk of MS in females is not seen before
puberty, during pregnancy, or after menopause (20). Females
are generally protected from MS during pregnancy, particularly
during the third trimester, when estrogen levels are at their
highest, and are at increased risk postpartum when estrogen
levels have dropped (20). This tolerance and breach of tolerance
is likely mediated by changes in sex hormones, particularly
estrogens (29). This hormone exerts effects on all immune cells
through estrogen receptor-dependent and -independent
mechanisms. The experimental autoimmune encephalomyelitis
(EAE) mouse model for MS supports this notion, finding that
estradiol protects against disease via anti-inflammatory
mechanisms (30–32), including through B cell mechanisms
(33). However, despite all this, clinical trials of estrogens in MS
have been unsuccessful (34).

Several other EBV-associated diseases also have
disproportionately affected females. Two disorders with strong
EBV association, systemic lupus erythematosus (SLE) and
rheumatoid arthritis (RA), have female:male ratios of
approximately 9:1 and 4:1, respectively (35). Other conditions
with less definitive evidence for an EBV association include
primary biliary cirrhosis, autoimmune thyroid disease, and
Sjögren’s syndrome, with female:male ratios of approximately
10:1, 8:1, and 9-20:1, respectively (13, 36–40).

As EBV-associated disorders disproportionately affect
females, and the genetic risk factors are effectively equal among
the sexes, it is possible that a sex-dependent pathogenic response
to EBV may contribute to susceptibility or progression of these
diseases. The seroprevalence of EBV is the same among both
sexes (41), however, as with most viruses, EBV antibody titers are
generally higher in females (42, 43).

It is plausible that the host response to EBV may be involved in
the development of MS, as mentioned above, and that this differing
response between males and females is reflected in the different risk
for MS. This could be mediated by sex hormone augmentation of
the host EBV response and EBV infected B cell functions. A gender
effect has been reported in the correlation of age of IM and the
development of MS (44). We reasoned that a sex-dependent host
response to EBV and the expression of MS risk genes in EBV
infected B cells could be affecting MS pathogenesis and may
contribute to the gender bias in the disease.

We analyzed the eQTL (expression quantitative trait loci)
effects of MS risk loci in a European cohort of LCLs, identifying
several risk loci with sexual dimorphism in the expression
patterns of their associated genes. We also showed that
Estrogen Receptor 2 (ESR2) correlates with EBV traits
differentially in males and females. Hence, we further reasoned
that this gender bias could be mediated by sex hormones. We
tested this hypothesis first by using LCLs cultured in serum-free
medium to remove estrogen and other agents with estrogenic
effects, and in serum-free medium supplemented by estrogen.
We anticipated that the estrogenic effects of serum would be lost
in serum-free medium but would be restored by estradiol
treatment. Our findings support our hypothesis that MS risk
loci/genes and EBV traits are affected by donor gender and
responsive to estrogens.
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MATERIALS AND METHODS

Calculation of Gender Specific eQTL
Effects for MS Risk Loci in LCLs
Genotype data on 196 of the 201 GWAS identified non-HLA MS
risk SNPs (2) in a European population were available from the
1000 Genome project (45) and the 216 genes proximal to these
MS risk SNPs were extracted from the latest MS GWAS (2). The
expression level of these genes in the LCLs derived from the same
European individuals with genotype data was acquired from the
GEUVADIS dataset (46). The MatrixEQTL R package (47) was
used to estimate the eQTL effect for 229 MS risk SNP:gene pairs
in 187 female and 171 male LCLs both separately and combined
(358 LCLs). All 229 MS risk SNP:gene pairs tested for eQTL
associations are described in Supplementary Table 1.

Correlation of MS Risk Genes With Sex
Hormone Receptors, EBV Genes and DNA
Copy Number
The processed and normalized RNA-seq based host gene
expressions (MS risk and sex hormone receptor genes) for 464
LCLs including 216 male LCLs and 248 female LCLs were
obtained from GEUVADIS dataset (46). The processed and
normalized RNA-seq based EBNA2 gene expression were
obtained from EBV portal database (48). The estimated EBV
DNA copy number for matched 433 LCLs samples (201 male
and 232 female LCLs) were also obtained (49). To test the
correlation between these elements, a Spearman’s rank-order
correlation test was performed using R software on data for
donor matched LCLs.

Generation and Culture of LCLs
Blood was collected from healthy individuals with informed
consent (Westmead Hospital Human Research Ethics
Committee Approval 1425). Ficoll-Paque Plus (VWR
International) was used to isolate peripheral blood
mononuclear cells (PBMCs) as previously described (41). The
generation of LCLs was carried out as previously described (14).
Briefly, fresh or frozen PBMCs were incubated for 1 hr at 37°C
with supernatant from the EBV B95-8 cell line, after which the
cells were suspended in RPMI-1640 medium (Lonza) containing
10% fetal bovine serum (FBS, Sigma) and 2 mM L-glutamine
(Life Technologies). The cells were plated at densities of 5 × 106

cells per well in 48-well plates. The medium was supplemented
weekly until the cells were expanded into a 25 cm2 flask.
Expanded LCLs were cryopreserved in 10% DMSO (MP
Biomedical) 50% FBS and RPMI-1640.

Weaning of LCLs From Estrogenic
Medium to Serum-Free Medium and
Estradiol Treatment
All LCLs were cultured in typical growth medium for LCLs
which consisted of RPMI-1640 (Lonza) supplemented with 10%
FBS and 2 mM L-glutamine, which in this study is termed SCM
(serum-containing medium). No antibiotics were added to any
cultures. To remove the effect of FBS and the estrogenic effects of
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the pH indicator phenol red (50, 51) contained in RPMI-1640,
the cells were weaned from SCM to a serum-free medium (SFM)
which is phenol red-negative. The SFM consisted of X-VIVO 15
phenol red-free medium, (Lonza) and other additions
(Supplementary Table 2). The weaning protocol used for all
experiments, with the exception of the proliferation assay
(outlined in LCL Proliferation Rate) is a modified version of
that recommended by the manufacturer. Cell viability was
checked for all LCLs prior to and during the weaning process
by Trypan blue staining. Cells with a viability of 85% or above
were considered acceptable. Briefly, the cells were weaned by
demi-depletion of the medium with SFM over 9 days (on days
0,2,4,6). On day 7 the medium was either demi-depleted with
SFM or with SFM containing 200 nM estradiol (to provide a final
concentration of 100nM estradiol). 48 hr after the final demi-
depletion (+/- estradiol), the cells were collected and prepared for
analysis. Estradiol (as 17b-estradiol, Sigma Australia) was
dissolved in ethanol just prior to use as previously described
(52). We used estradiol (E2, or 17b-estradiol) in this study as it is
the major form of endogenous estrogen in humans (53). A
concentration of 100 nM estradiol was chosen based on prior
studies (including those in LCLs) which corresponds to
pregnancy level (54–57).

RNA Extraction and cDNA Synthesis
Total RNA was isolated from LCLs using a Bioline Isolate II RNA
Mini Kit (Bioline, U.K.) according to the manufacturer’s
instructions. After treatments or incubation periods, cells were
washed in DPBS and resuspended in 100 mL RLY Buffer provided
in the kit. The samples were snap-frozen and stored at -80°C
until required. Samples were thawed on ice and 100 mL of RLY
Buffer and 2 ml of TCEP was added to samples and vortexed
vigorously. The remaining steps for RNA extraction followed the
manufacturer’s instructions. RNA was checked for quality and
quantified using a NanoDrop 2000 Spectrophotometer
(Thermofisher). cDNA was synthesized using qScript cDNA
SuperMix (Quanta Biosciences).

Gene Expression Profiling
For the detection of MS risk genes, 3 µL of diluted cDNA was
used to detect gene expression of MS risk genes in duplicate by
real time PCR using predesigned TaqMan gene expression assays
(Life Technologies, Carlsbad, CA, USA) (Supplementary
Table 3) and TaqMan Universal Master Mix II, with UNG,
according to the manufacturer’s instructions. Gene expression
was calculated using the 2-DDCT method as previously described
(58), using RPL30 as the reference gene. Wilcoxon matched-
pairs signed rank test (two-tailed) was performed using
GraphPad Prism 8.

Viral Gene Expression
For the detection of expression of EBV encoded genes EBNA2
and LMP1, 3 µL of diluted cDNA used with SYBR primer sets
and Takara SYBR Pre-Mix Master Mix. Forward and Reverse
primers (Supplementary Table 4) were used at a final
concentration of 0.2 mM with 6 µL of SyBr mix. Wilcoxon
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matched-pairs signed rank test (two-tailed) performed using
GraphPad Prism 8.

EBV DNA Copy Number Measurement
For detection of EBV DNA copy number, cells were removed
from culture after the treatment periods, washed with DPBS, and
the pellets stored at -80°C. DNA was extracted from cells using a
QIAamp DNA Blood Mini Kit (Cat.No. 51106) according to the
manufacturer’s instructions. EBV DNA copy number was
detected by Quantitative PCR using a previously described
primer set and probe for an EBV genome-specific repeat
region to detect EBV copy number (49). Real-time PCR was
performed on a Biorad CFX384 qPCR System (Biorad) (49). A
primer set for a single copy gene (Supplementary Table 3) was
used as a reference to account for any DNA concentration
variation between samples. The relative EBV DNA copy
number was calculated as relative to the single copy gene the
using the 2-DDCT method as previously described (58). Wilcoxon
matched-pairs signed rank test (two-tailed) was performed using
GraphPad Prism 8.

LCL Proliferation Rate
A modified weaning protocol was used for the preparation of a
proliferation assay as the reagent used, Cell Trace Violet (CTV,
Life Technologies), does not effectively work over a prolonged
period such as the 9 days used for other assays in this study. For
this assay, the LCLs were prepared as before prior to day 0. On
day 0, the LCLs were first labelled with CTV at a final
concentration of 5 mM and incubated at 37°C for 10 mins.
Quenched by adding bovine serum albumin (BSA) to a
concentration of 0.5% w/v, the cells were then washed twice
with PBS. 2 × 106 LCLs were cultured with SCM or SFM. Unlike
the other weaning process, in this case demi-depletion took place
daily on days 1,2, and 3. The estradiol treated group were demi-
depleted with SFM 200 nM estradiol on days 2 and 3. On Day 4
Frontiers in Immunology | www.frontiersin.org 4
cells were harvested, washed with chilled PBS containing 0.05%
sodium azide, pelleted at 300 x g (5 min), then fixed with 0.5 ml
1% paraformaldehyde and ran on FACSCanto II flow cytometer
(BD). Median fluorescence intensity (MFI) of CTV was analyzed
using FlowJo, with each sample compared to their Day 0
background values. Wilcoxon matched-pairs signed rank test
(two-tailed) was performed using GraphPad Prism 8.

MS Risk SNP Genotyping
For genotyping in the Westmead cohort, DNA was extracted
from whole blood samples using Qiagen QIAamp DNA Blood
Mini Kit (Qiagen). Samples were genotyped for MS-associated
SNPs using Taqman Assays (Supplementary Table 5) and
Taqman Genotyping Master Mix (Thermofisher/Life
Technologies) according to the manufacturer’s instructions.
RESULTS

Many MS Risk SNP eQTLs in LCLs Are
Affected by Gender
To determine if any MS risk SNPs are sex-biased eQTLs, we
interrogated the eQTL effect of MS risk SNPs (using a cut-off of
p < 0.05) from the GEUVADIS dataset, based on three sets,
which consisted of LCLs of both genders together (combined
cohort), male LCLs and female LCLs (Figure 1A). From a total of
196 non-HLA MS risk SNPs, 73 were identified as eQTLs in
LCLs in at least one of the three sets: 61 in the combined cohort,
37 in male LCLs, and 47 in females. Eleven eQTLs were identified
in the combined cohort that were not eQTLs in either the male or
female sets. From the remaining 62 SNPs, the seven SNP/gene
pairs with the largest sex differences in the eQTL effect size were
selected (Figure 1B). Two further SNP/gene pairs were included
in the study due to sex differences in eQTLs detected in other
study cohorts. Sex biased eQTLs were detected for ZC3HAV1
A B

FIGURE 1 | MS risk SNP eQTLs profile in LCLs demonstrates gender dimorphism. A total of 196 non-HLA MS risk SNPs were investigated to determine if they
were eQTLs in LCLs (using a cut-off of p < 0.05) in the GEUVADIS dataset and those eQTLs identified were further investigated for gender dimorphism. (A) Data was
divided into three sets, Male LCLs (blue), Male + Female LCLs (the entire cohort, green), and Female LCLs (red). A total of 37 eQTLs were detected in the Male set,
61 eQTLs were detected in the Male + Female set, and 47 eQTLs were identified in the Female set, with a total of 73 unique eQTLs occurring across the three sets.
A total of 11 eQTLs were identified only in the Male + Female set. (B) Of the other 62 eQTLs, the 7 SNP:gene pairs with the strongest gender bias in eQTL effects in
LCLs are presented. The GEUVADIS LCL cohort consisted of 358 European samples using RNA-seq including 187 female and 171 male LCLs.
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and CD40 in the MRCE (n = 950) and MRCA (n = 206) LCL
cohorts (59–62). Our preliminary work on our LCL cohort (n =
42) also confirmed a sex biased eQTL for the MS risk SNP
associated with ZC3HAV1, with opposite directions of this effect
between male and female LCLs (male LCL p < 0.0266, female
LCLs p < 0.005, Supplementary Figure 1). A total of 9 MS risk
genes TBX6, ADCY3, TRAF3, CLECL1, RCOR1, IKZF3, IRF5,
CD40 and ZC3HAV1 associated with 8 risk SNPs were selected
for further investigation. All 73 unique MS risk SNPs with eQTL
effects are described in Supplementary Table 6.

Expression of Estrogen Receptor 2 Is
Correlated With EBV Latency III Traits
In the GEUVADIS cohort the LCLs frommales and females were
cultured in the same medium, yet demonstrated a gender effect of
risk alleles on gene expression. This suggests that the LCLs have
gender specific differences (for example, due to epigenetic effects)
reflecting their gender of origin, and that this difference is
maintained in culture. As the growth medium contains sex
hormones and estrogen analogs, we hypothesized that these
Frontiers in Immunology | www.frontiersin.org 5
molecules could drive these differences. To determine if sex
hormones might affect LCL phenotypes, we tested if expression
of sex hormone receptors was correlated with the EBV latency III
genes EBNA2 and LMP1 (n = 464 for both), in addition to EBV
DNA copy number (n = 433) in the GEUVADIS cohort (see
Materials and Methods). We tested for correlation of these
markers against the expression of Estrogen Receptors 1 and 2
(ESR1, ESR2), the Progesterone Receptor (NR3C3), and the
Androgen Receptor (AR). Among these, only ESR2
significantly correlated with the latency III traits (Figure 2,
Supplementary Table 7), while NR3C3 expression was not
detected in LCLs. EBNA2 expression was negatively correlated
with ESR2 expression in female LCLs (rho -0.21, p < 0.0007) but
not in male LCLs (rho -0.06, p < 0.32) (Figure 2). LMP1
expression was negatively correlated with ESR2 in both female
and male LCLs, but much more so in females (rho -0.21, p <
0.0005 for females and rho -0.17, p < 0.01 for males, Figure 2).
EBV DNA copy number was positively correlated with ESR2
expression, especially in females (rho 0.19, p < 0.002 for females
and rho 0.15, p < 0.03 for males, Figure 2).
A C E

B D F

FIGURE 2 | The correlation between ESR2 expression level and EBV latency III traits. ESR2 correlation with EBNA2 in (A) males and (B) females. Correlation
between ESR2 expression level and LMP1 expression level in males (C) and in (D) females. Correlation between ESR2 expression level and EBV DNA copy number
in males (E) and in (F) females. The RNA-seq based expression levels for ESR2, EBNA2 and LMP1 were obtained from the GEUVADIS study and EBV Portal for 216
male LCLs and 248 female LCLs. The estimated EBV DNA copy number and ESR2 expression level for 201 male and 232 female LCLs were used to estimate the
correlation between ESR2 and estimated EBV DNA copy number. The correlations were calculated using Spearman’s rank correlation coefficient for donor matched
LCL samples.
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Expression of MS Risk Genes Correlates
With Estrogen Receptor 2 and EBV
Latency III Traits
As ESR2 expression was strongly correlated with latency III traits,
dependent on gender, and we had previously identified sexual
dimorphism in associations of MS risk SNPs with gene
expression, we next tested for correlations of expression of these
MS risk genes with ESR2 and latency III traits. Of the nine genes,
four were correlated with either ESR2, EBNA2, or EBV DNA copy
number (Figure 3, Supplementary Table 8). The most highly
correlated gene was CD40. CD40 negatively correlated with ESR2
(rho -0.20, p < 0.000008) in male and female LCLs combined, as
well as female (rho -0.17, p < 0.005) and male LCLs separately (rho
-0.23, p < 0.0004). CD40 also negatively correlated with EBV DNA
copy number in male and female LCLs combined (rho -0.16, p <
0.0007), female (rho -0.17, p < 0.009) and male LCLs (rho -0.15, p <
0.02). CD40 positively correlated with EBNA2 in male and female
LCLs combined (rho 0.21, p < 0.000004), female (rho 0.19, p <
0.002) and male LCLs (rho 0.23, p < 0.0004). Furthermore, the
correlation of CD40 with these elements was stronger in male LCLs
than female. TRAF3, CLECL1 and ADCY3 demonstrated a gender
effect, with TRAF3 correlating positively with ESR2 in female LCLs
but not male (rho 0.15, p < 0.01 for females and rho 0.09, p < 0.16
for males), and negatively correlating with EBNA2 in female but not
male LCLs (rho -0.19, p < 0.02 for females and rho -0.08, p < 0.19
for males). CLECL1 was slightly negatively correlated with EBNA2
in male LCLs but not female (rho -0.16, p < 0.02 for males and rho
Frontiers in Immunology | www.frontiersin.org 6
-0.003, p < 0.95 for females). ADCY3 positively correlated with
EBNA2 in male LCLs but not female (rho 0.23, p < 0.0004 for males
and rho 0.1, p < 0.11 for females, Figure 3).

Estradiol Affects EBV Traits
To determine if estradiol or other components of the medium
were affecting gender-biased gene expression, we investigated if
serum depletion, or serum depleted medium augmented with
estradiol, affected EBV latency III traits (EBNA2 expression, EBV
DNA copy number, and cell proliferation) in a local LCL cohort
(n = 42). LCLs were cultured in a typical serum-containing
medium (SCM)—which contains numerous growth factors as
well as the estrogenic pH indicator phenol red (50, 51)—or they
were weaned from this into serum free medium (SFM) without
phenol red, and then treated with estradiol 100 nM (ESFM), as
outlined in Figure 4. Figure 5 and Supplementary Table 9
represent the effect of SCM, SFM and ESFM conditions on EBV
traits in LCLs. EBV DNA copy number was significantly
increased in SFM compared to SCM when male and female
LCLs were combined for analysis (Figure 5A, p < 0.05); but this
trait did not appear to be sex-biased, with both male and female
LCLs responding similarly (Figures 5B, C). EBNA2 expression
was significantly reduced by estradiol addition in female LCLs
(ESFM compared to SFM, Figure 5F, p < 0.01). As expected, LCL
proliferation was reduced when the medium was depleted of
serum for both male and female LCLs (Figures 5G–I). Addition
of estradiol to SFM increased proliferation in males, with a trend
for increase seen in females (Figures 5H, I, p < 0.05, p < 0.1193).
Taken together, these data indicate that LCL donor gender affects
response to estradiol in EBV latency III.

The Effect of Estradiol on MS Risk
Gene Expression
As we had identified several MS risk loci as being gender-biased
eQTLs, with expression of some of their associated genes
correlated with expression of ESR2, we next investigated
whether expression of these genes was affected by serum
depletion or estradiol supplementation of serum-free medium.
Of the nine MS risk genes tested, five were significantly
responsive to serum depletion in males, and none in females
(CD40, ADCY3, ZC3HAV1, CLECL1 and IKZF3; Figure 6, p <
0.05). The response seen in males in serum-free medium was
abolished by addition of estradiol. CD40, ADCY3 and IKZF3
were significantly altered by estradiol treatment in female but not
male LCLs (Figure 4, p < 0.05). We did not detect any of the
correlations of genotype with expression in any conditions seen
in the much larger GEUVADIS cohort, presumably due to lack
of statistical power (Supplementary Table 10).
DISCUSSION

In this study we investigated if there were gender differences in
the interaction of MS risk genes with EBV latency III infection,
and if these differences were affected by estradiol, to assess if the
differences might underpin the increased susceptibility of females
to MS. We identified several lines of evidence that point to a
FIGURE 3 | The correlation of the expression of the 9 MS risk genes in this
study with Estrogen receptor 2 (ESR2) and the EBV latency III traits EBNA2
and EBV DNA copy number (DNA) of LCLs of known donor gender. ESR2,
EBNA2 and EBV DNA copy number correlation with the expression of the 9
MS risk genes in male and female LCLs combined (Left), in male LCLs
(center), and in female LCLs (right). The correlations were calculated using
Spearman’s rank correlation coefficient. Heatmap shows the significance of
the correlations (p value). For those correlations of statistical significance (p
value less than 0.05), the Spearman’s correlation coefficient value (rho) is
represented with numbers in the corresponding cells. The RNA-seq based
expression levels for ESR2, EBNA2 and LMP1 were obtained from the
GEUVADIS study and EBV Portal for 216 male LCLs and 248 female LCLs.
The estimated EBV DNA copy number and ESR2 expression level for 201
male and 232 female LCLs were used to estimate the correlation between
ESR2 and EBV DNA copy number.
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gender effect on the EBV latency III traits. Gene expression of the
EBV latency III master regulator EBNA2 is highly negatively
correlated with ESR2 expression in female LCLs, but not in males
(Figure 2). The EBV latency gene LMP1, which is regulated by
EBNA2, correlated negatively with ESR2 in male and female
LCLs, but the statistical strength and effect size of this was greater
in female LCLs. EBV DNA copy number was more positively
correlated with ESR2 expression in female than male LCLs.
There was also a gender effect on the association of MS risk
loci with gene expression in LCLs. We identified 41 risk loci that
were only eQTLs in one gender, 15 for males, and 26 for females,
highlighting a marked difference between the MS risk SNP eQTL
profiles of male and female LCLs. Of the 8 loci (8 MS risk SNPs
Frontiers in Immunology | www.frontiersin.org 7
associated with 9 MS risk genes) selected for further study, three
were significantly correlated with ESR2 expression, in a sex-
biased manner. Despite the observed sex biases, when comparing
ESR2 expression only, no differences were detected between male
and female LCLs (Supplementary Figure 3).

Standard culture medium for LCLs contains phenol red, a dye
that is an estrogen analogue (50, 51), and FBS, which contains
hormones and various cytokines. We depleted LCLs of serum
and phenol red to eliminate estrogenic effects, which significantly
reduced LCL proliferation and decreased EBV DNA copy
number but did not alter EBNA2 mRNA in either gender.
ESR2 expression was not altered (Supplementary Figure 2).
Addition of estradiol did not affect EBV DNA copy number but
FIGURE 4 | Overview of the weaning and estradiol treatment protocol used in this study. The standard medium for lymphoblastoid cell lines (LCLs) contains phenol-red,
a pH indicating dye which has estrogenic effects. Fetal bovine serum (FBS) is also added to a final concentration of 10%-15% (v/v) to encourage the growth of cells but
contains various hormones and cytokines which are confounding for the purposes of this study. This protocol weaned healthy LCLs from normal medium (RPMI-1690
containing phenol red and FBS 10%) to serum-free medium (SFM), which does not contain phenol red, over a 9-day period to remove the estrogenic effects of the
medium. Preparation: proliferating LCLs cultured in normal medium were selected for study. One day prior to the start of the weaning protocol (Day -1), healthy LCLs
were plated in 24-well plates and supplemented with normal medium. Medium Weaning: on Days 0,2,4 and 6 the medium was demi-depleted either with normal medium
(top) or with serum-free medium containing no estrogenic agents. Treatment: on Day 7 the LCLs were demi-depleted as before, with estradiol added to one SFM group
at a final concentration of 100 nM (estradiol-containing serum-free medium, ESFM). 48 hours later (Day 9) the cells were harvested for collection for three sets, SCM,
SFM, and ESFM. On day 9 the cells were harvested for analysis. Expected Outcome: we hypothesized that the removal of estrogenic effects from the medium, (SCM to
SFM) would affect the expression of the MS risk genes of interest and with EBV traits (symbolized by LCLs) in a gender-dependent manner. We further hypothesized that
the reintroduction of estradiol would restore these effects. The dial indicates the expression of MS risk genes sensitive to estrogen.
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reduced the difference in LCL proliferation caused by serum
depletion. Expression of five (of nine tested) gender biased risk
genes was reduced by serum depletion and restored by addition
of estradiol. The response of these five genes to serum depletion
was limited to males. However, estradiol addition did alter the
expression of four of the gender bias risk genes in females.
Together, these data indicate that estradiol regulates the
expression of at least five of these MS risk genes in LCLs
gender-specifically.

Epigenetic effects in B cells could potentially mediate the
sexual dimorphism that we found in EBV latency III traits and
the MS risk gene expression in this study. One study of CD19 B
cells found that 3894 CpG sites were differentially methylated
based on sex, which the authors postulated could be due to
female sex hormones (63). EBV infection widely alters the
epigenetic pattern (64, 65). EBV infected cells are reported to
have a substantially altered methylome compared to their
Frontiers in Immunology | www.frontiersin.org 8
uninfected B cell counterparts. EBV infected B cell promoters
tend to be hypomethylated (66, 67), particularly at sites
corresponding to B cell biological pathways, when compared to
resting B cells (67). Furthermore, we previously found that MS
risk SNPs that are eQTLs in LCLs (LCLeQTLs) are more likely to
be methylated than by chance (68). It is therefore plausible that
in the current study that differential methylation in the genders
could underpin the response to estrogen signaling observed in
serum-containing medium. Response to estrogen in males and
females is dose-dependent, and male immune cells have been
reported to be more responsive ex vivo (69). We also found that
expression of the MS risk genes was affected in males but not
females by estrogen depletion. As well as being dependent on the
concentration, response to estrogen may depend on existing
methylation patterns and transcriptome differences that might
not be significantly altered after 7 days of serum-depletion.
Estrogen has also been reported to alter the genetic program of
A B C

D E F

G H I

FIGURE 5 | Effect of serum depletion and estradiol treatment of LCLs on EBV latency III. Top row, EBV DNA copy number. (A) Estradiol significantly increased EBV
DNA copy number in male and female LCLs combined. Both male (B) and female (C) demonstrated insignificant increases in EBV DNA copy number in response to
estradiol. Middle row, EBNA2 mRNA expression under different serum conditions. (D) Male and female LCLs combined, (E) Male LCLs, and (F) Female LCLs.
EBNA2 expression was significantly reduced by estradiol in female LCLs. Bottom row, LCL proliferation. Removal of serum reduced proliferation in male and female
LCLs combined (G). Estradiol treatment increased cell proliferation significantly in male LCLs (H) but not significantly in female LCLs (I). Male and female LCLs
combined (n = 42), male LCLs (n = 21), and female LCLs (n = 21). EBNA2 expression detected by real-time PCR relative to RPL30 expression. Wilcoxon matched-
pairs signed rank test performed (two-tailed). * < 0.05, ** < 0.01, *** < 0.001. SCM, serum-containing medium; SFM, serum-free medium; ESFM, serum-free medium
with additional estradiol at a final concentration of 100 nM (see Materials and Methods).
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B cells to alter survival and activation, which can promote B cell
autoreactivity (70), which is a mechanism which could alter EBV
and MS risk gene expression patterns.

Estrogen could also interact with EBV. One research group
have indicated that high estradiol levels (representative of the
third trimester of pregnancy) reduced EBV reactivation (56, 57).
Such a mechanism whereby estrogen controls EBV infection
could explain the reduced MS disease activity typical of the third
trimester of pregnancy, when estrogen is highest. Estrogen could
affect B cell or EBV regulation and epigenetics directly through
interaction at the transcriptomic level with genes such as the MS
risk genes of this study. Four of the MS risk loci in this study are
confirmed binding sites for EBNA2 with a total of five proximal
genes associated with EBNA2 (TRAF3, RCOR1, CLECL1, CD40,
and TBX6) (14). The IKZF3 locus is also targeted by EBNA2 but
its transcription has not been reported as regulated by it to date.
There was no association between the MS risk loci and ESR2
expression. Notably though, there are EBNA2 binding sites at
potential regulatory sites within the ESR2 gene (13). This
suggests regulation of gene expression through estrogen
response may contribute to EBV dysregulation of the host
transcriptome. Further work will determine whether estradiol
alters EBNA2 binding at these sites to regulate these MS risk
genes, or whether estrogen receptors directly colocalize with
Frontiers in Immunology | www.frontiersin.org 9
EBNA2 in a manner that could contribute to the sexual
dimorphism found in this study.

The MS risk genes studied here function on pathways
important in EBV immortalization (14), or in the case of
ZC3HAV1 in host antiviral response, and therefore likely affect
EBV survival in infected B cells in the host. We have previously
proposed a model for how these genetic loci may alter MS
susceptibility and/or progression through altering EBV
pathogenesis in the host (14, 16). Demonstrating that EBNA2
is altered by estradiol treatment is therefore of importance.
Estrogen could indirectly modulate expression of these MS risk
genes in infected B cells via the regulation of EBNA2 dependent
on gender. The treatment of EBV infection in MS has received
some attention recently (11) and is therefore important to
understand how estrogen or other hormones affect the EBV
life cycle.

If estrogen drove increased genetic susceptibility to MS
through affecting regulation of these gender biased risk loci,
then we would expect the loci to be associated in one gender
more than the other. This is not the case. Although both males
and females are equally susceptible to EBV pathogenesis (41),
they have different responses to the virus. Females, for example
have higher titers of EBNA1 antibodies (42, 43). In the in vitro
context female LCLs grow about 7% slower than male LCLs (71),
which could be due to the estrogenic culture conditions.
Therefore, we suggest that estrogen may drive gender
differences in susceptibility by altering the host response to
EBV. The gender specific genetic differences we observed in
risk loci eQTLs may indicate these genes are important in the
host response, but affect progression rather than susceptibility.
This hypothesis is supported by evidence of a gender effect in the
correlation between the age of IM and the development of MS
(44). Females who had IM earlier in life developed MS slower
than males who had IM earlier in life, and slower than females
who had IM beyond puberty (44). As such, the effect of EBV
infection on MS may be tractable to therapeutic intervention.

To detect eQTL differences in the MS risk loci in response to
estradiol, larger cohort sizes are needed. Response could also be
affected by other time points and concentrations of estradiol,
stages of the EBV life cycle examined, switching between stages,
other hormones, the relevance of in vitromodels, and by types of
estrogen. Additionally, next-generation sequencing, such as with
RNA-seq and ChIP-seq, and immunophenotyping would
provide a more comprehensive assessment of sex hormone
response in EBV infection. This study detected gender
associations in LCLs, a well-established model of the EBV
latency III stage of infection, and tested the effects of estrogen
in LCLs. It is possible that these observed gender differences and
responses may be different in EBV infected B cells in vivo.
Therefore, testing of sex hormones in an EBV animal model,
such as described by Wirtz and colleagues (72), will more clearly
define the role of hormones in both MS and EBV infection.

We conclude that estradiol treatment alters EBV latency III
functions and regulates MS risk genes differently between males
and females. The consequences of this on EBV infection and MS
pathogenesis need to be determined.
FIGURE 6 | Effect of serum depletion and estradiol treatment of LCLs on the
expression of nine MS risk genes. Left, LCLs are grouped to include both male
and female LCLs combined (n = 42); center, male LCLs (n = 21); right, female
LCLs (n = 21). Heatmap shows the statistical significance (p value) of the fold
change in expression between serum-free medium and serum-containing
medium (SFM vs SCM), or estradiol treated versus serum-free medium (ESFM
vs SFM). For the comparisons that were statistically significant (p value less than
0.05), the fold changes are represented with numbers in the corresponding
cells. Fold change values greater and less than one denotes increased and
decreased expression levels, respectively. MS risk gene expression was
measured by RT-qPCR. PCR was performed in duplicate with expression
relative to RPL30. Expression relative to RPL30. Colors represent the p value as
calculated by expression relative to RPL30. Wilcoxon matched-pairs signed
rank test performed (two-tailed). Wilcoxon matched-pairs signed rank test
performed (two-tailed). SCM, serum-containing medium; SFM, serum-free
medium; ESFM, serum-free medium with additional estradiol at a final
concentration of 100 nM (see Materials and Methods).
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