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Abstract: Biomass-derived activated carbon materials with hierarchically nanoporous structures
containing nitrogen functionalities show excellent electrochemical performances and are explored
extensively in energy storage and conversion applications. Here, we report the electrochemical super-
capacitance performances of the nitrogen-doped activated carbon materials with an ultrahigh surface
area prepared by the potassium hydroxide (KOH) activation of the Nelumbo nucifera (Lotus) seed
in an aqueous electrolyte solution (1 M sulfuric acid: H2SO4) in a three-electrode cell. The specific
surface areas and pore volumes of Lotus-seed–derived carbon materials carbonized at a different
temperatures, from 600 to 1000 ◦C, are found in the range of 1059.6 to 2489.6 m2 g−1 and 0.819 to
2.384 cm3 g−1, respectively. The carbons are amorphous materials with a partial graphitic structure
with a maximum of 3.28 atom% nitrogen content and possess hierarchically micro- and mesoporous
structures. The supercapacitor electrode prepared from the best sample showed excellent electrical
double-layer capacitor performance, and the electrode achieved a high specific capacitance of ca.
379.2 F g−1 at 1 A g−1 current density. Additionally, the electrode shows a high rate performance,
sustaining 65.9% capacitance retention at a high current density of 50 A g−1, followed by an extraordi-
nary long cycle life without any capacitance loss after 10,000 subsequent charging/discharging cycles.
The electrochemical results demonstrate that Nelumbo nucifera seed–derived hierarchically porous
carbon with nitrogen functionality would have a significant probability as an electrical double-layer
capacitor electrode material for the high-performance supercapacitor applications.

Keywords: Nelumbo nucifera seed; KOH activation; hierarchically porous carbon; nitrogen-doping;
energy storage; supercapacitor

1. Introduction

Supercapacitors, or electrical double-layer capacitors (EDLCs), store charges in the
form of electrical double-layers at the electrode surface by the diffusion of electrolyte ions
from the electrolyte solution, are the current state-of-the-art energy-storage systems for
the storage of electrochemical energy [1–10]. Recently, supercapacitors have attracted
significant attention because of their enormous high power density (>400 kW kg−1), ex-
tremely rapid charging or rapid reversible adsorption/desorption of electrolyte ions at
the electrode surface, extraordinary long cycling stability without any capacitance loss
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(>10,000), high rate performance, low-cost and easy operation, as well as environmentally
friendliness [11–17]. However, despite the several merits supercapacitors suffer from, the
low energy density (1–20 Wh kg−1) compared to the lithium-ion batteries (>160 Wh kg−1),
limiting their practical applications in devices.

The energy density is proportional to the electrode material’s specific capacitance
(Cs) and the potential operating window of the cell (V). To improve the energy density,
one has to either increase the Cs of the electrode material or widen the potential window.
The working potential window or voltage can be achieved by replacing electrolyte solution
with aqueous to non-aqueous solvents. Moreover, ionic liquids can also be used, as they
can be operated over a more comprehensive voltage range than water [18–21]. However,
due to the safety issue, non-aqueous solvents or ionic liquids are less explored in practical
supercapacitor devices, demonstrating the need to improve the electrode material’s textural
properties. Electrode materials for supercapacitors require a large specific surface area
and plenty of well-defined pores for the adsorption of large numbers of electrolyte ions so
that the energy storage capacity could be enhanced significantly. Therefore, nanoporous
materials with a subtle balance of micro- and mesopore structure and high conductivity
have become promising electrode materials in supercapacitors applications. Microporosity
contributes to enhancing the electrical double-layer formation, while mesoporosity pro-
motes the electrolyte ions’ diffusion and contributes to enhancing the rate performance.
Investigations have shown that pore size distribution is a critical factor in controlling the
effective surface area. The materials with hierarchically porous structures consisting of both
the micro and mesopore architectures display better performance as electrode materials
than the other conventional materials [22–26].

Among the various nanoporous materials studied, activated carbon materials due
to high specific surface areas and abundant pores, high electrical conductivity and het-
eroatom doping display the high specific capacitance [27]. Such micro- and mesoporous
carbon with nitrogen functionality can accommodate more electrolyte ions and increase the
performance of the electrode materials in supercapacitor applications. Several nanoporous
carbon materials such as fullerenes or fullerene crystals-derived porous carbons, carbon
fibers, carbon nanotubes (CNTs), reduced graphene oxides and metal–organic framework
(MOF)-derived porous carbon materials have been explored as the electrode materials of
supercapacitors [28–38]. These carbon materials show good capacitive behavior, but the
limitation in the scale-up synthesis sustainability of the energy storage system is low.

Nanoporous activated carbons prepared from biomass or biopolymers are the lead-
ing supercapacitor electrode materials due to the ultrahigh surface area, large pore vol-
umes, good electrical conductivity, high chemical and thermal stability, simple preparation
method and low cost [39]. Besides, heteroatom doping in the biomass-derived carbon
further improves the performance of the energy-storage applications [40]. The major com-
ponent of the biomass is the lignocellulose, which upon pyrolysis at moderate temperature
(~200 to 300 ◦C), transforms to porous biochar. The biochar can be further activated by
mixing with chemical activating agents such as KOH, zinc chloride, and phosphoric acid
and carbonized at higher temperatures (up to 1000 ◦C) to enhance the porosity and the
specific surface area. Several biomass-derived nanoporous carbons have been reported
to show high surface area above 2000 m2 g−1, depending on the precursor itself, car-
bonization temperature, chemical activating agent and mixing ratio with the activating
agent [41–46]. Due to high surface area and well-developed porosity, the biomass car-
bons perform excellently as the electrode materials for the electrochemical supercapacitors.
For example, Choerospondias axillaris (Lapsi) seed–derived carbon material exhibited a
high specific surface area of ca. 2272.3 m2 g−1 with interconnected mesoporous structure,
and the electrode showed excellent supercapacitance performance giving a high specific
capacitance of ca. 284 F g−1 at a current density of 1 A g−1 with a high rate performance
sustaining 67.7% capacitance at 20 A g−1 and long cycle stability retaining 99% capacitance
after 10,000 charging/discharging cycles [47]. Activated carbons are also equally explored
in the hybrid capacitor to enhance electrochemical energy storage. For example, Minakshi
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and co-worker [48] reported a hybrid capacitor comprising mixed transition-metal sodium
phosphate/activated carbon, which exhibited a specific discharge capacitance of 45 F g−1

over 1000 cycles. In a recent study, Zhu and co-workers [49] reported nitrogen-doped
(5 at%) hierarchically porous carbon from biodecomposited products with an exceptionally
high surface area of 3142 m2 g−1. Due to the improved textural properties, the material
showed outstanding performance as the electrode materials for supercapacitor applications
giving a high specific capacity of 209 F g−1 at 0.05 A g−1. However, a capacity loss of
about 9% was observed after 10,000 cycles. Similarly, Wu and co-workers [50] successfully
fabricated unique porous microrods from albizia flowers, and the derived material pos-
sessed hierarchically porous architectures. The materials showed a high surface area of
2757.6 m2 g−1, and self-nitrogen doping of 1.34 wt% was found. Furthermore, the albizia
flowers-derived porous microrods showed a high specific capacitance of 406 F g−1 at
0.5 A g−1. In a separate work, Chen and co-workers [51] also fabricated the self-nitrogen-
doped three-dimensional (3D) nanoporous carbon materials from waste cottonseed husk
with honeycomb-like interconnected hierarchical porous structures. Due to a suitable
surface area of 1694.1 m2 g−1, the cottonseed husk carbon material performs excellently as
the electrode material for supercapacitors. The electrode showed a high specific capacitance
of 238 F g−1 at 0.5 A g−1 with a relatively good cycle stability of 91% after 5000 charg-
ing/discharging cycles. Wickramaarachchi and co-workers [52] have recently reported
KOH-activated carbon material from a bio-waste, Mango seed husk. The material obtained
by the carbonization at 1100 ◦C showed the best textural properties with a high specific
surface area of 1943 m2 g−1 and an average pore volume of 0.397 cm3 g−1. As a result,
the carbon exhibited a maximum capacitance of 135 F g−1 at 5 mA cm−2 with the energy
density of 19 Wh kg−1 at the power density of 1077 W kg−1. We recently found that Lotus
seed yields nanoporous carbon material upon activation with zinc chloride with mod-
erate surface areas and pore volumes (1103–1316 m2 g−1 and 0.741–0.887 cm3 g−1) [53].
Furthermore, the electrode prepared from the optimal sample performs reasonably well
as the electrical double-layer capacitor achieving the specific capacitance of 272.9 F g−1

at 1 A g−1 indicating the possibility of further enhancing the energy storage capacity
by optimizing the surface textural properties of Lotus-seed–derived carbon materials.
These examples demonstrate the importance of biomass for producing electrode materials
with good textural properties and self-nitrogen-doping for enhancing the overall properties
of the supercapacitors.

In this work, we synthesized self-nitrogen-doped ultrahigh surface area nanoporous
carbon material with hierarchically micro- and mesoporous structures from Nelumbo nu-
cifera–seed powder and studied its electrochemical energy storage performance, the elec-
trode material for the supercapacitor in an aqueous electrolyte solution (1 M H2SO4) in a
three-electrode cell. The fabrication method includes mixing biochar of Nelumbo nucifera
seed in potassium hydroxide (KOH) and carbonization at higher temperatures from 600 to
1000 ◦C in an inert atmosphere of nitrogen. Due to the high surface area, well-developed
porosity, nitrogen doping and partially developed graphitic carbon structure, the electrode
prepared from the optimal sample showed excellent electrical double-layer capacitor per-
formance achieving a high specific capacitance of ca. 379.2 F g−1 at 1 A g−1 current density
followed by a high rate performance of 65.9% at a high current density of 50 A g−1 and
extraordinary long cycle life without any significant capacitance loss after 10,000 charg-
ing/discharging cycles. These results indicate the potential of Nelumbo nucifera seed as
the natural precursors for the large-scale and cost-effective production of the hierarchi-
cally porous nitrogen-doped activated carbon materials essential for the development of
sustainable electrode material for high-performance supercapacitors.

2. Materials and Methods
2.1. KOH Activation of Nelumbo Nucifera Precursor

After adequately washing with Milli-Q filtered water Nelumbo nucifera (Lotus) seed
was dried at 100 ◦C for 24 h and crushed to powder form, using a mechanical crusher.
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The Lotus-seed powder (100 g) was heated at 300 ◦C for 6 h under the air atmosphere
to obtain biochar. The yield of the biochar was ca. 44%. The biochar (1 g) was then
mixed with KOH pellet at a 1:1 weight ratio and ground and stored at 25 ◦C for 24 h.
The mixture was carbonized at high temperatures, from 600 to 1000 ◦C, under a nitrogen
gas atmosphere. The temperature ramp, hold time and nitrogen gas flow were 5 ◦C min–1,
3 h and 120 cc min−1, respectively. The carbonization was performed in a tube furnace
(KOYO, Tokyo, Japan). After the carbonization, the obtained samples were mixed with
a dilute hydrochloric acid solution (0.5 M); stirred for 3 h, using the magnetic stirrer;
and washed with pure water, several times, until the solution attained a neutral pH of 7.
After drying in vacuum at 80 ◦C for 12 h, all the samples were ground into powders and
designated as LTSC_K600, LTSC_K700, LTSC_K800, LTSC_K900 and LTSC_K1000, where
the numbers indicate the carbonization temperature. After the carbonization, the mass of
material was found to be 0.26 g (LTSC_K600), 0.24 mg (LTSC_K700), 0.23 g (LTSC_K800),
0.21 g (LTSC_K900) and 0.18 g (LTSC_K1000). For comparison, Lotus seed (1 g) was
directly carbonized at 800 ◦C without KOH and designated as LTSC_800. After the direct
carbonization, 0.24 g of the LTSC_800 was obtained. The KOH activation for the generation
of pore structure in carbon materials is a well-known phenomenon. It includes the etching
of the carbon skeleton to develop pores through gas production and washing off the
potassium compounds. The KOH activation involves the following reactions (the reduction
of K compounds, oxidation of C and other intermediate reactions):

6KOH + C→ 2K + 2K2CO3 (1)

K2CO3 → K2O + CO (2)

CO2 + C→ 2CO (3)

K2CO3 + 2C→ 2K + 3CO (4)

K2O + C→ 2K + CO (5)

2.2. Characterizations of Nelumbo nucifera–Derived Nanoporous Carbons

The prepared nanoporous activated carbon materials were subjected to advanced
characterizations, including thermogravimetric analysis (TGA) (SII Instrument, Model
Exstar 600, Tokyo, Japan), Fourier-transform infrared (FTIR) (Nicolet 4700, Thermo Electron
Corporation, Waltham, MA, USA) spectroscopy, powder X-ray diffraction (XRD) (Rigaku
X-ray diffractometer, RINT, Tokyo, Japan), Raman scattering (NRS-3100, JASCO, Tokyo,
Japan), X-ray photoelectron spectroscopy (XPS) (Theta Probe spectrometer, Thermo Electron
Co. Karlsruhe, Germany) and scanning electron microscopy (S-4800, Hitachi Co., Ltd.
Tokyo, Japan). In addition, the textural properties, including specific surface area and pore-
volume and pore-size distributions, were estimated by nitrogen sorption measurements
(Quantachrome Autosorb-iQ2, Boynton Beach, FL, USA).

2.3. Electrochemical Studies

Using cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electro-
chemical impedance spectroscopy (EIS), we studied the electrochemical performances of
the Lotus-seed–derived nanoporous carbon materials as the electrode materials for super-
capacitor applications. Working electrodes were prepared on the glassy carbon electrode
(GCE: outer and inner diameters of 10 and 5 mm, respectively). First, carbon material was
dispersed in a mixed solvent (water:ethanol = 4:1, 2 mg mL−1) and sonicated for 60 min.
Next, the suspension (3 µL) aliquot was drop cast at the center of the GCE (5 mm diameter)
and dried at 60 ◦C for 2 h for the evaporation of solvents, which gave the mass of the
active material on the electrode is 6 × 10−3 mg. Finally, a Nafion solution (5% in ethanol:
5 µL) was added on top of the carbon sample on GCE as a binder and further dried under
reduced pressure at 80 ◦C for 12 h. In addition, a platinum wire and Ag/AgCl were used
as counter and reference electrodes, respectively. The EIS measurements were performed at



Nanomaterials 2021, 11, 3175 5 of 16

an amplitude of 5 mV, in the frequency range of 0.01 Hz to 100 kHz. All the electrochemical
measurements were carried out in a three-electrode system in an aqueous electrolyte of
1 M H2SO4 at 25 ◦C. CHI 660E workstation (CH Instruments, Inc. Austin, TX, USA) was
used. The specific capacitance (Cs) of the electrode material was calculated from both CV
(Equation (6)) and GCD curves (Equation (7)), using the following equations.

Cs =
1

m× v× ∆V

∫ V2

V1

I(V)dV (6)

where m, v, V and I represent mass of the electrode material (g), scan rate (mV s−1),
operating potential window (V) and current (A), respectively.

Cs =
I × td

m× ∆V
(7)

where I, td, m and ∆V respectively represent the discharge current (A), the discharge
time (s), the mass of the electrode material (g) and the potential window (V), respectively.

3. Results

The pyrolysis properties of the carbon source, Lotus-seed powder (Figure 1a: TGA
curve), reveal the carbonization process in different stages. The first stage involves the
evaporation of moisture or crystallized water in the precursor below 200 ◦C. The poly-
merization of the main components of biomass, cellulose and hemicellulose takes place
in the second stage, which also involves the degradation of carbohydrates and lipids in
the range of 200–500 ◦C, releasing the volatile gases and thus causing a significant weight
loss. As a result, about 70% of the mass is lost (Figure 1a). Finally, carbon formation
occurs above 500 ◦C, with no noticeable weight loss in the TGA curve, demonstrating
that the carbonization can be carried out above this temperature. Based on the pyrolysis
characteristics, we conducted KOH activation of Lotus-seed biochar by carbonizing at
different temperatures, namely 600, 700, 800, 900 and 1000 ◦C, where the carbon yields are
estimated at 26.6, 24.5, 22.9, 21.2 and 18.8%, respectively.

Nanomaterials 2021, 11,  6 of 17 
 

 

 
Figure 1. (a) TGA curve and (b) FTIR spectrum of the carbon source, Lotus-seed powder. 

The FTIR spectrum shows the presence of heteroatoms (oxygen and nitrogen) func-
tionalities in the precursor (Figure 1b). An intense FTIR peak at 3285 cm−1 corresponds to 
the N–H (str.), bands at 2922 and 2851 cm−1 corresponding to cellulose’s aliphatic C–H 
(str.). The band at 1636 cm−1 relates the O–H (def.) of adsorbed moisture water in the pre-
cursor. The FITR bands in the range of 1600–100 cm−1, commonly observed in the biomass 
due to cellulose and lignin, correspond to C–H (def.) and C–O (str.). After carbonization, 
the intensity of the FTIR bands corresponding to oxygen and nitrogen functionalities de-
creases significantly due to high-temperature carbonization (Supplementary Materials 
Figure S1). The broadband at 3446 cm−1 corresponds to adsorbed water, while a weak peak 
at about 1630 cm−1 can be attributed to the C=C (str.) common in the biomass-derived ac-
tivated carbons [54]. The surface composition of the directly carbonized sample and the 
KOH-activated carbon materials was further investigated by the XPS (Figure 2). The XPS 
survey spectra display peaks at 284, 400 and 532 eV, which confirm carbon, oxygen and 
nitrogen as the main components of the prepared carbon materials (Figure 2a). Note that 
an increase in carbonization temperature alters the surface composition changes, and less 
oxygen and nitrogen functionalities are present in the samples carbonized at higher tem-
peratures. Maximum nitrogen content of 3.4 at% was observed in LTSC_K600. The C 1s 
spectra of the samples could be deconvoluted into four peaks, with a peak centered at 
284.4, 285.1, 286.1 and 289.4 eV, which correspond to C=C, C–N, C–C and C=O bonding 
states of the carbon material, respectively. The deconvoluted N 1s peaks centered at 397.9 
and 400.5 eV, respectively, correspond to pyridinic-N and graphitic-N [55]. The O 1s XPS 
spectra with the deconvoluted peaks are shown in Supplementary Materials Figure S1b 
the two primary bonding states of oxygen. 

Figure 1. (a) TGA curve and (b) FTIR spectrum of the carbon source, Lotus-seed powder.



Nanomaterials 2021, 11, 3175 6 of 16

The FTIR spectrum shows the presence of heteroatoms (oxygen and nitrogen) function-
alities in the precursor (Figure 1b). An intense FTIR peak at 3285 cm−1 corresponds to the
N–H (str.), bands at 2922 and 2851 cm−1 corresponding to cellulose’s aliphatic C–H (str.).
The band at 1636 cm−1 relates the O–H (def.) of adsorbed moisture water in the precursor.
The FITR bands in the range of 1600–100 cm−1, commonly observed in the biomass due
to cellulose and lignin, correspond to C–H (def.) and C–O (str.). After carbonization, the
intensity of the FTIR bands corresponding to oxygen and nitrogen functionalities decreases
significantly due to high-temperature carbonization (Supplementary Materials Figure S1).
The broadband at 3446 cm−1 corresponds to adsorbed water, while a weak peak at about
1630 cm−1 can be attributed to the C=C (str.) common in the biomass-derived activated
carbons [54]. The surface composition of the directly carbonized sample and the KOH-
activated carbon materials was further investigated by the XPS (Figure 2). The XPS survey
spectra display peaks at 284, 400 and 532 eV, which confirm carbon, oxygen and nitrogen
as the main components of the prepared carbon materials (Figure 2a). Note that an increase
in carbonization temperature alters the surface composition changes, and less oxygen
and nitrogen functionalities are present in the samples carbonized at higher temperatures.
Maximum nitrogen content of 3.4 at% was observed in LTSC_K600. The C 1s spectra of
the samples could be deconvoluted into four peaks, with a peak centered at 284.4, 285.1,
286.1 and 289.4 eV, which correspond to C=C, C–N, C–C and C=O bonding states of the
carbon material, respectively. The deconvoluted N 1s peaks centered at 397.9 and 400.5 eV,
respectively, correspond to pyridinic-N and graphitic-N [55]. The O 1s XPS spectra with
the deconvoluted peaks are shown in Supplementary Materials Figure S1b the two primary
bonding states of oxygen.
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LTS_800 and KOH-activated LTSC_K600, LTSC_K700, LTSC_K800, LTSC_K900 and LTSC_K1000 samples.

Using pXRD and Raman scattering spectroscopy, we studied the structure of the
prepared carbon materials. All the samples show typical XRD patterns commonly observed
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in amorphous carbon materials (Figure 3a). Two broad diffraction peaks observed at
diffraction angles of 24 and 43◦ can be attributed to the (002) and (100) plans of disordered
graphite-like structures of amorphous carbon often realized in biomass-derived carbon
materials [54]. Raman scattering spectra support the structural characteristics of these
samples. Raman spectra contain two pronounced peaks located at ~1350 and 1595 cm−1,
corresponding to the D (disorder or imperfect structure) and G (graphitic structure) bands
of amorphous carbons (Figure 3b) [56]. The intensity ratios of G and D bands (IG/ID) are
found in the range of 0.98 to 1.03, typically observed in amorphous carbon with partial
graphitic structures. The presence of defects (in the form of micropore structures) in
the carbon matrix is advantageous to increase the specific surface area and hence the
capacitance performance. On the other hand, graphitic carbon structure contributes to
enhancing the conductivity [57].
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Figure 3. (a) pXRD and (b) Raman scattering spectra recorded at 25 ◦C for Lotus-seed–derived nanoporous carbon materials;
LTS_800, LTSC_K600, LTSC_K700, LTSC_K800, LTSC_K900 and LTSC_K1000.

The surface morphology of the carbon materials was investigated by SEM observations.
Figure 4 shows typical SEM images of the directly carbonized (LTS_800: Figure 4a,b) and
KOH-activated samples (LTSC_K600, Figure 4c,d; LTSC_K700, Figure 4e,f; LTSC_K800,
Figure 4g,h; LTSC_K900, Figure 4i,j; and LTSC_K1000, Figure 4k,l). Additional SEM
images are supplied in Supplementary Materials Figures S2–S7. Micron-sized irregular-
shaped particles (granules) are common in all the samples. Pores are not noticeable in the
low- and high-resolution SEM images of the LTS_800 sample, demonstrating the lack of
surface porosity. However, abundant large-size macropores with channel-like structures
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are observed in the KOH-activated samples (Figure 4c,e,g,i,k and Supplementary Materials
Figures S2–S7). The frameworks of these macroporous channels comprised well-developed
micro- and mesopore structures due to the KOH activation, suggesting the hierarchical
pore structures. Therefore, the KOH-activated samples are expected to display a high
specific surface area and well-defined pore size distribution with a large pore volume
advantageous in high-energy-storage supercapacitors.
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Nitrogen sorption measurements were performed to study the textural properties
(porosity) of the prepared carbon materials. The nitrogen uptake in the LTS_800 sample is
low, and the isotherm shows Type-III sorption behavior corresponding to the nonporous
materials, which supports the SEM observation that the directly carbonized sample lacks
well-developed porosity. While all the KOH-activated samples show mixed Type-I/Type-
IV adsorption isotherms (Figure 5a). Significant nitrogen adsorption at a low relative
pressure (P/P0 < 0.1), followed by a gradual nitrogen uptake at high relative pressure with
a clear hysteresis loop, demonstrates the presence of hierarchically bimodal micro- and
mesopore architectures. Substantial nitrogen uptake in the low relative pressure region
corresponds to micropore filling, while the hysteresis loop at high relative pressure is due
to capillary condensation occurring in the mesopores [24,58,59]. Careful observation of the
sorption isotherms reveals that the nitrogen uptake in the low relative pressure increases
with the carbonization temperature up to 900 ◦C and then decreases. However, the size
of the hysteresis loop monotonously increases with the temperature, suggesting that the
micropore coalescence takes place at 1000 ◦C, leading to more mesoporous structure
formation in the LTSC_K1000 sample. The pore-size-distribution profiles determined
from the density functional theory (DFT) method (Figure 5b) and Barrett–Joyner–Halenda
(BJH) model (Figure 5c) show prominent peaks in the micro- and mesopore region, thus
further confirming the presence of hierarchically pore architectures in the KOH-activated
samples. The textural properties summarized in Table 1 clearly show the crucial role
of the carbonization temperature in porosity development. An increase in temperature
monotonously increases the total specific surface area. However, microporosity reaches
a maximum at 900 ◦C and then decreases, caused by the micropore coalescence, leading
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to the formation of mesopores, demonstrating that the LTSC_K900 sample has a much
larger electrochemically accessible surface area and appropriate pore size distribution
(majority micropores), enhancing the electrolyte ion adsorption and thus improving the
energy storage capacity.
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Table 1. Textural properties of Lotus-seed–derived carbon materials carbonized at different temperatures.

Sample SSA (m2 g−1) Smicro (m2 g−1) Smeso (m2 g−1) Vp (cm3 g−1) Vmicro (cm3 g−1) Wp (nm) Dp (nm)

LTS_800 46.1 18.8 27.3 0.102 0.044 - 3.09
LTSC_K600 1059.6 824.5 235.1 0.819 0.472 0.285 3.92
LTSC_K700 1878.4 1556.1 322.3 1.232 0.775 0.286 3.93
LTSC_K800 2236.6 1891.3 345.3 1.499 1.034 0.274 3.91
LTSC_K900 2330.1 1905.7 424.4 1.793 1.206 0.286 3.92

LTSC_K1000 2489.3 1725.6 763.7 2.384 1.488 0.705 3.93

SSA = total specific surface area; Smicro = micropore surface area; Vp = total pore volume; Vmicro = pore volume from micropores;
Wp = average half pore width, as obtained from the DFT model; Dp = average pore diameter obtained from the BJH analysis.

Encouraged by the hierarchically porous architectures, ultrahigh surface area, well-
developed porosity, large pore volume and self-nitrogen doping, we explored the Lotus-
seed–derived activated carbons as the electrode materials for the electrical double-layer
supercapacitor applications. The CV curves recorded at a fixed scan rate of 50 mV s−1 in a
three-electrode system in aqueous 1M H2SO4 (Figure 6a) agree with the results obtained
from the nitrogen sorption isotherms and are well correlated to the textural properties that
increase microporosity increases the total integral current. The LTSC_K900 samples show
the highest current output, demonstrating the highest energy-storage capacity among the
studied samples. The rectangular shapes of the CV curves with weak humps in the range of
0.2–0.45 V, followed by a quick response to the current on the reversal of the potential sweep,
suggest the dominance of the electrical double-layer capacitor charge storage mechanism
characteristics of the carbon materials with some contribution of pseudocapacitance, due
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to the presence of the nitrogen and oxygen functionalities [6,23,49,60]. The CV profiles
of the electrodes prepared from all the samples reveal that the integral current increases
with the scan rate, while sustaining the semi-rectangular shape of the curves (Figure 6b–d
and Supplementary Materials Figure S8). Note that the weak peaks have come from the
pseudocapacitive behavior of the nitrogen and oxygen functionality decrease in the carbon
samples prepared at higher temperatures due to loss of nitrogen- and oxygen content
(Figures 2a and 4b–d and Supplementary Materials Figure S8b–d). The Cs of the electrode
materials calculated by using Equation (6) shows that the directly carbonized sample, due to
the lack of electrochemically accessible micropores, possesses very low specific capacitance
as compared to the KOH-activated samples. The optimal sample, LTSC_K900, achieved a
high Cs of ca. 434.5 F g−1 at 5 mV s−1, which can be attributed to the outstanding surface
area caused due to the presence of hierarchically micro- and mesopore architecture and self-
nitrogen doping. Among the KOH-activated samples, the Cs follow the order LTSC_K900 >
LTSC_K800 > LTSC_K1000 > LTSC_K700 > LTSC_K600, which is in good agreement with
the microporosity of the materials (Table 1). Furthermore, the electrodes prepared from
the KOH-activated samples show outstanding capacitance retentions at a high scan rate,
500 mV s−1 (Figure 6f). Interestingly, the Cs retention of LTSC_K1000 (83.4%) is better
than it is for LTSC_K900 (81.2%), suggesting the fast electrolyte ion diffusion through the
mesopore channels, even at the high potential sweep.
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(d) LTSC_K900 as typical examples. (e) The calculated Cs vs. scan rate. (f) The capacitance retention.

Figure 7 describes the results obtained from the GCD measurements between 0 and
0.8 V, at different current densities, from 1 to 50 A g−1. Figure 7a shows the GCD curves
measured at a constant current density of 1 A g−1 for LTS_800 and the KOH-activated
samples. The GCD curves recorded at a high current density of 50 A g−1 are shown
in Supplementary Materials Figure S9a. The symmetrical quasi-triangular shaped GCD
curves with the linear decay during discharging indicate the ideal capacitive behavior
of the electrode materials with well-balanced charge storage [60,61]. The discharge time
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follows the order of LTSC_K900 > LTSC_K800 > LTSC_K1000 > LTSC_K700 > LTSC_K600 >
LTS_800, which is correlated to the micropore surface area of the materials (Table 1). A small
deviation from the triangular shape with a small voltage drop is caused due to nitrogen
and oxygen functional groups. Note that the discharge time of the directly carbonized
sample is far less than the discharge times of the KOH-activated samples, suggesting better
energy-storage capacity of the activated samples. As expected from the porosity proper-
ties, the LTSC_K900 sample has an extended discharge time indicating the highest energy
storage capacity among the other activated samples studied. The GCD curves recorded at
different current densities (1 to 50 A g−1) show that the quasi-triangular shape of the curve
is sustained even at a high current density of 50 A g−1 (Figure 7b–d and Supplementary
Materials Figure S9b–d), indicating the fast ion transfer to the electrode surface for the
formation of an electrical double layer with a good rate performance and well-balanced
storage of the charges. Figure 8e shows the Cs calculated by using Equation (7). Due to the
electrochemically accessible high microporous surface area, the LTSC_K900 sample shows
the highest specific capacitance of ca. 379.2 F g−1, while the nonporous sample obtained
by direct carbonization show only 7.1 F g−1 at 1 A g−1. The rate capability of the elec-
trodes prepared from the carbon materials obtained at higher carbonization temperatures
(700–1000 ◦C) shows better performance than the directly carbonized sample. The capaci-
tance retentions were ca. 63.5% (LTSC_K700), 63.3% (LTSC_K800), 65.9% (LTSC_K900) and
72.4% (LTSC_K1000) at a high current density of 50 A g−1, thus suggesting the excellent
rate performance essentially required for high-performance supercapacitors. Our materials’
overall electrochemical supercapacitance performance is better than the commercial acti-
vated carbons, for which Cs is reported in the range of ~100 F g−1 [52,62], and comparable
to or better than the performance of nanoporous activated carbon materials derived from
other biomass precursors, such as Washnut, Lapsi and Jackfruit seed; corncob; bamboo;
and others (Supplementary Materials Table S1).
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Figure 7. Results obtained from the GCD measurements. (a) The GCD curves recorded at a constant current density of
1 A g−1 for LTS_800, LTSC_K600, LTSC_K700, LTSC_K800, LTSC_K900 and LTSC_K1000, and GCD curves vs. current
density for (b) LTS_800, (c) LTSC_K800 and (d) LTSC_K900. (e) The Cs vs. current density. (f) The corresponding
rate performance.
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Cycling stability is a crucial parameter to evaluate the performance of supercapacitors.
Here we have studied the cycle performance of the selected electrodes prepared by using
LTSC_K800, LTSC_K900 and LTSC_K1000 samples at a fixed current density of 50 A g−1.
As commonly observed in the electrical double-layer capacitive materials, all the electrodes
display outstanding long-cycle performance sustaining more than 99% capacitance after
the successive 10,000 charging/discharging cycles (Figure 8a). The outstanding cycle
performance can be attributed to the hierarchically porous architecture with micro- and
mesopore structures that contributes to the fast electrolyte ion diffusion to the electrode
surface [63,64].
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and LTSC_K1000).

EIS measurements reveal the charge storage mechanism and electrolyte ions’ diffusion
kinetics at the electrode surface. The straight vertical lines at the low-frequency region in
the Nyquist plots (negative of imaginary part versus real part of the complex impedance)
are the characteristic of typical carbon materials with double-layer capacitive behavior
(Figure 8b) [65]. Depending on the sample, the electrode has a different ion diffusion
resistance; for example, the LTSC_K600 sample shows non-vertical lines in the low fre-
quency, due to the relatively high ion diffusion resistance. Due to the nitrogen and oxygen
functionalities, the electrode prepared by using carbon samples carbonized at the lower
temperature display weak semicircular response, suggesting a minimal charge-transfer
resistance and hence a high efficiency of the ion diffusion. The values of the equivalent
series’ resistance (ESR: often interpreted as the sum of the bulk electrolyte resistance, the
electrode resistance and contact resistance of electrode and current collector) estimated
from the intersection point of the imaginary and real part at high frequency are low, indi-
cating good conductivity of the prepared carbon materials. They are ca. 5.12, 5.10, 4.85,
4.62 and 4.61 Ω for LTSC_K600, LTSC_K700, LTSC_K800, LTSC_K900 and LTSC_K1000,
respectively. The EIS results demonstrate that the differences in the energy-storage capacity
of the KOH-activated samples are caused mainly due to the different porosity properties
(surface area and pore volumes).

4. Conclusions

In conclusion, we studied the performance of the self-nitrogen-doped nanoporous
carbon materials prepared by the KOH activation of the biochar of the Lotus-seed powder
by measuring the electrochemical supercapacitance in an aqueous electrolyte (1 M H2SO4)
in a three-electrode system. Activated carbon materials with nanoporous bimodal pore
structures comprising micro- and mesopores and self-nitrogen doping were prepared by
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the KOH activation of the biochar obtained by the pyrolysis of Lotus-seed powder at 300 ◦C.
The Lotus-seed biochar was mixed with KOH and carbonized at different temperatures
(600 to 1000 ◦C). Surface textural properties show the crucial role of the carbonization
temperature on the porosity. An increase in temperature increases the total specific surface
area. However, the microporosity reaches a maximum at 900 ◦C and declines due to the
micropore coalescence at high temperatures. The surface area and pore volume were
calculated in the range of 1059.6 to 2489.6 m2 g−1 and 0.819 to 2.384 cm3 g−1, respectively.
The amorphous carbons materials with partial graphitic structure contained a maximum
of 3.28 atom% nitrogen content and possessed hierarchically micro- and mesoporous
structures. The electrode prepared from the optimal sample performed excellently as
the electrical double-layer capacitive material. The electrode achieved a high specific
capacitance of ca. 379.2 F g−1 at 1 A g−1 current density, excellent rate performance
sustaining 65.9% capacitance retention at 50 A g−1 and extraordinary long cycle life with
only 0.3% capacity loss after 10,000 subsequent charging/discharging cycles. Thus, the
electrochemical results demonstrate that Nelumbo nucifera seed, an agro-waste, exemplifies
a novel yet low-cost precursor for the large-scale production of hierarchically porous
carbon materials with self-nitrogen doping, having significant potential as the electrical
double-layer capacitor electrode material in the applications of high-performance energy-
storage supercapacitors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11123175/s1. Figure S1: (a) FTIR spectra, and (b) XPS O 1s spectra with the deconvo-
luted peaks of the directly carbonized sample, LTS_800, and KOH activated samples; LTSC_K600,
LTSC_K700, LTSC_K800, LTSC_K900, and LTSC_K1000. Figure S2: Additional SEM images of
LTS_800. Figure S3: Additional SEM images of LTSC_K600. Figure S4: Additional SEM images of
LTSC_K700. Figure S5: Additional SEM images of LTSC_K800. Figure S6: Additional SEM images of
LTSC_K900. Figure S7: Additional SEM images of LTSC_K1000. Figure S8: (a) The CV curves of all
the samples at a fixed scan rate of 5 mV s−1 recorded at 25 ◦C, and the CV curves vs. scan rates for
(b) LTSC_K600, (c) LTSC_K700, and (d) LTSC_K1000 systems. Figure S9: (a) The GCD curves at a
constant current density of 50 A g−1, and the GCD curves vs. current density for (b) LTSC_K600,
(c) LTSC_K700, and (d) LTSC_K1000. Table S1: Comparison of the electrochemical supercapacitance
of the KOH activated Nelumbo nucifera (Lotus) seed carbon materials with activated carbon materials
derived from other biomass.
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