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Abstract

We consider a model for the evolution of dispersal of offspring. Dispersal is treated
as a parental trait that is expressed conditional upon a parent’s own “migration
status,” that is, whether a parent, itself, is native or nonnative to the area in which
it breeds. We compare the evolution of this kind of conditional dispersal to the
evolution of unconditional dispersal, in order to determine the extent to which
the former changes predictions about population-wide levels of dispersal. We use
numerical simulations of an inclusive-fitness model, and individual-based simula-
tions to predict population-average dispersal rates for the case in which dispersal
based on migration status occurs. When our model predictions are compared to
predictions that neglect conditional dispersal, observed differences between rates
are only slight, and never exceed 0.06. While the effect of dispersal conditioned upon
migration status could be detected in a carefully designed experiment, we argue that
less-than-ideal experimental conditions, and factors such as dispersal conditioned
on sex are likely to play a larger role that the type of conditional dispersal studied
here.

Introduction

Adaptive social behavior balances the selfish interests of an
actor against those of genetically related neighbors (Hamilton
1964; Frank 1998). Information about the degree of related-
ness between an actor and its neighbors can tip this balance,
and sets the stage for the evolution of social behaviors with
conditional expression.

Expression of behavior conditional upon the degree of re-
latedness between an actor and its neighbors appears to be
widespread in nature. Greenbeards, for example, are genes
that recognize copies of themselves in other individuals,
then use this information to guide the conditional expres-
sion of the social behavior of their bearer (Gardner and West
2009). Though the concept was originally a hypothetical one
(Hamilton 1964; Dawkins 1976), greenbeard genes have been
found in the red fire ant, Solenopsis invicta (Grafen 1998;
Keller and Ross 1998), and greenbeard-like behaviors have
also been identified in a number of taxa, ranging from the
slime mold, Dictyostelium discoideum (Queller et al. 2003) to
side-blotched lizards, Uta stansburiana (Sinervo et al. 2006).

The “imprinting” of genes expressed in the placenta and
brains of mammals constitutes yet another example of con-

ditional social behavior (again, perpetrated by genes). Im-
printed genes are expressed differently depending upon
whether they are maternally or paternally inherited. Con-
ditional expression, here, is maintained, because parents are
related by differing amounts to the social partners of their
offspring (Haig 2000). Imprinting, or rather the breakdown
of imprinting, has been implicated in certain genetic dis-
orders of humans (Úbeda 2008), and may contribute to
abnormal psychosocial development (Badcock and Crespi
2008).

As the discussion above suggests, theoretical work on con-
ditional expression of social behavior is varied. Moreover,
one could argue that the basic conclusions drawn by this
body of work are, in a sense, mixed. In some cases, theo-
retical investigations carried out under the assumption of
conditional expression of behavior have led to predictions
that differ markedly from those obtained by investigations
carried out under the assumption of unconditional expres-
sion. El Mouden and Gardner (2008) have shown that costly
expression of helpful behaviors can be advantageous when ex-
pression is conditional on “migration status” (i.e., on whether
one is native or nonnative to the place in which it breeds), a
result that is not only quite different from that obtained in
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the absence of such conditioning (Taylor 1992; Wilson et al.
1992), but also a result that matches more closely with the
observation that altruism and cooperation are widespread
in nature. In other cases, assumptions about conditional
expression do not change the standard model predictions.
Wild and West (2009), for example, have shown that imprint-
ing of genes responsible for sex-allocation behavior changes
corresponding unconditional predictions about the sex ratio
only very slightly (for certain mating systems). In cases like
these, giving consideration to conditional expression of social
behavior does not appear to sharpen our understanding of
nature at all.

Given the mixed conclusions, then, it seems reasonable to
question the general significance of conditional expression:
should we readily expect that conditional expression of so-
cial behavior results in an improved match between theory
and observations? We will address this question, at least in
part, by comparing the predictions of a models for the evolu-
tion of conditional expression of natal dispersal behavior to
those made by a model for the evolution of its unconditional
counterpart.

Natal dispersal occurs when an individual leaves its birth-
place to mate and reproduce elsewhere. Although, much
theoretical work has focused on conditional dispersal (e.g.,
Crespi and Taylor 1990; Ronce et al. 1998, 2000; Travis
et al. 1999; Kisdi 2004; Bonte and Pena 2009), dispersal con-
ditioned upon relatedness cues has been relatively neglected.
Although there is some evidence to suggest that organisms
can adjust their behavior in response to migration-status
cues (Taylor and Crespi 1994), it remains unclear if such
adjustments would significantly alter predictions about the
evolution of natal dispersal.

In this paper, we build an inclusive-fitness model for the
evolution of natal dispersal when that dispersal is under
parental control. In other words, we investigate how the frac-
tion of offspring dispersed by a parent changes in response
to evolutionary forces (primarily selection). We build on the
work of El Mouden and Gardner (2008) and consider dis-
persal expressed conditional upon a parent’s own migration
status (Fig. 1). In particular, we look to compare the evolution
of dispersal conditioned on migration status with the evolu-
tion of its unconditional counterpart. Overall, our goal is to
determine the extent to which this kind of conditional be-
havior changes predictions about population-average levels
of dispersal.

We determine the stable dispersal strategies for native and
nonnative parents, respectively, using numerical investiga-
tion of our model. We also investigate the long-term evo-
lution of dispersal conditioned on migration status using
individual-based simulation. With the exception of a few
(relatively extreme) cases, the agreement between inclusive-
fitness predictions and simulation results is good. When we
compare predictions about the evolution of conditional dis-

persal to benchmark predictions made by “classical” uncon-
ditional models (Taylor 1988; see below), we find only slight
differences. Overall, we conclude that such differences are
unlikely to be noticed in the field.

A Benchmark Model of Unconditional
Dispersal

In this section, we review the model for the evolution of
unconditional dispersal presented by Taylor (1988), as well
as the predictions that this model makes.

Consider a haploid, asexual population undergoing dis-
crete, nonoverlapping generations (Taylor considered sex-
ual diploid and haplodiploid systems, but his model can be
applied to haploid, asexual organisms as well). We assume
that the population is arranged into a very large number of
patches. Each patch is assumed to be identical, and each is
assumed to support exactly N breeding adults.

Given the assumptions above, it is easy to show that a parent
who disperses a slightly greater-than-average proportion of
its offspring enjoys a selective advantage whenever

Rk > c , (1)

where R is the relatedness between the focal parent and the
average offspring born on its patch, k represents the benefit
dispersal confers on those individuals who do not disperse,
and c represents the marginal fitness cost of dispersing. Read-
ers familiar with social evolutionary theory will notice that
(1) is analogous to Hamilton’s famous rule for the selective
advantage of altruism.

In broader terms, the sign of Rk – c determines the sign
of the selection gradient acting on the population-average
dispersal rate d∗. When Rk – c > 0, selection acts to increase
d∗, when Rk – c < 0, selection acts to decrease d∗. When Rk
= c, the population-average dispersal rate is at evolutionary
equilibrium. Such equilibria can be identified by substituting
k = (1 – d∗)/(1 – cd∗) and R = 1/(N – (N – 1)k2) into Rk –
c, then solving for d∗. Carrying out this procedure, one finds

d∗ = 1 + 2Nc − √
1 + 4N2c 2 − 4Nc 2

2Nc(1 + c)
, (2)

which also happens to be stable against population-wide
perturbations (i.e., convergence stable; Christiansen, 1991).
Equation (2) will serve as a benchmark against which we will
compare the effect of conditional dispersal.

A Model of Dispersal Conditioned
on Migration Status

In this section, we set out most of the basic assumptions
used in our model for the evolution of dispersal conditioned
on migration status. For the reader’s convenience, a brief
description of all notation introduced in the main text is
given in Table 1.

c© 2012 The Authors. Published by Blackwell Publishing Ltd. 823
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Figure 1. We model the evolution of offspring dispersal rate when this rate is determined by a parent (an adult). In our model, an adult that breeds
on its natal patch (a “native,” represented by a gray circle) disperses some fraction of its offspring, denoted dN or d∗

N . An adult that breeds on a patch
other than its natal patch (a “non-native,” represented by a white circle) also disperses a fraction of its offspring, but that fraction is denoted d∗

N N

or dNN. The dispersal rates d∗
N (or dN) and d∗

N N (or dNN) can be different, and so we have conditional expression of dispersal phenotypes—expression
conditional upon a parent’s own “migration status.”

Preliminary details

Like Taylor (1988), we consider a population with discrete,
nonoverlapping generations that consists of a very large
number of habitat patches (M) of identical quality where
each patch supports exactly N individuals (i.e., N breed-
ing sites per patch). Unlike Taylor (1988), however, we as-
sume that individuals in the population are haploid and
asexual. This assumption leads to more straightforward
calculations.

To keep track of migration status, we classify each patch
according to the number of native breeders (adults born on
that patch) it supports. We use j = 0, 1, . . . , N to indicate
the number of natives breeding on that patch. Thus, on a
type-j patch, there are j natives, and (N – j) nonnatives. The
frequency of a type-j patch, denoted by πj , is expected to
fluctuate over time. To indicate that these frequencies have
reached a demographic equilibrium (but not necessarily evo-

lutionary equilibrium), we furnish πj with a hat and write the
distribution of patch types as

[
π̂0, π̂1, . . . , π̂ j , . . . , π̂N

]
.

Phenotypes

As mentioned above, the phenotypes of interest relate to the
fraction of offspring dispersed by a parent. We consider the
evolution of two such phenotypes: (1) a phenotype that is
expressed only by an individual breeding on its natal patch
(native dispersal rate), and (2) a phenotype that is expressed
only by an individual breeding away from its natal patch
(nonnative dispersal rate). We assume that every individual
possesses genes for both dispersal phenotypes, though only
one phenotype is ever expressed (genes for the other phe-
notype are silent). Our immediate goal is to evaluate the
success of a rare mutant form of one or the other conditional
phenotypes in a wild-type (i.e., nonmutant) population at

824 c© 2012 The Authors. Published by Blackwell Publishing Ltd.
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Table 1. Summary of notation used in the text.

Symbol Explanation

αij The native component of the i-fitness of a native mutant breeding on a type-j patch
βij The native component of the i-fitness of a nonnative mutant breeding on a type-j patch
βij The nonnative component of the i-fitness of a native mutant breeding on a type-j patch
δij The nonnative component of the i-fitness of a nonnative mutant breeding on a type-j patch
c Cost of dispersal
dN Mutant native dispersal rate
d∗

N Wild-type native dispersal rate
d̄N Average dispersal rate on a patch that supports at least one mutant native
dNN Mutant nonnative dispersal rate
d∗

N N Wild-type nonnative dispersal rate
d̄N N Average dispersal rate on a patch that supports at least one mutant nonnative
〈d∗ 〉 Stable population-wide average dispersal rate, when dispersal is based on migration status
K Number of offspring produced by a each adult
M Number of patches (ideally infinite in the kin selection model)
N Patch size
pj(x, y) Probability that a site on a patch that had supported j natives is won by a native in the next generation, given the local natives and

nonnatives dispersed offspring at rate x and y, respectively
Pij (x, y) Probability that a patch that had supported j natives will support i natives in the next generation, given the local natives and nonnatives

dispersed offspring at rate x and y, respectively
π̂i Frequency of type-i patches at demographic equilibrium
Rj Relatedness between a native adult and the average native adult breeding on the same patch (includes relatedness to self)
R̃ j Relatedness between a nonnative adult and the average nonnative adult breeding on the same patch (includes relatedness to self)
u j Vector that stores the relative abundance of natives and nonnatives, respectively, breeding on a type-j patch at demographic

equilibrium
vi Vector that stores the reproductive value of a native individual and a nonnative individual, respectively, breeding on a type-i patch
Wi j Matrix-valued function that stores αij, βij, γij, and δij, respectively
W∗ = [Wi j (d∗

N , d∗
N , d∗

N N , d∗
N N )]i j

�WN The inclusive-fitness effect of increased native dispersal
�WNN The inclusive-fitness effect of increased nonnative dispersal

demographic equilibrium. Mutations are assumed to be rare,
and so we neglect the possibility of double mutants.

The model life cycle

We will assume that the overall population dynamics are
determined by a series of discrete life-cycle events that occur
in the same order in every generation. Each of these events
(a–c) is described (in order) below.

(a) Birth—During the first event of the life cycle, adults
produce offspring. We use K to denote the very large number
of offspring produced by each adult (natives and nonnatives,
mutants and wild types). On a type-j patch, then, Kj offspring
are produced by native adults, and K(N – j) offspring are
produced by nonnatives.

(b) Dispersal—In the second phase, each adult disperses a
certain fraction of its brood. We use d∗

N and d∗
N N to denote

the fraction of offspring dispersed by wild-type native and
nonnative parents, respectively. Thus, on a type-j patch that
supports only wild-type individuals, we find a total of

K
(

j
(
1 − d∗

N

) + (N − j )
(
1 − d∗

N N

))
(3)

offspring that do not disperse. Rather than disperse these
offspring remain on their natal patch and compete as na-

tives once dispersal is complete (Fig. 1). Note that the
K ( j d∗

N + (N − j )d∗
N N) other offspring produced on the

type-j patch in question disperse to (possibly) compete as
nonnatives elsewhere (Fig. 1).

We use d̄N and d̄N N to denote, respectively, the average
native phenotype found on a patch that supports at least one
native mutant, and the average nonnative phenotype found
on a patch that supports at least one nonnative mutant. Thus,
on a type-j patch that supports at least one native mutant, we
expect to find

K
(

j (1 − d̄N) + (N − j )
(
1 − d∗

N N

))
(4)

native offspring once dispersal is complete. Similarly, once
dispersal is complete, we expect to find

K
(

j
(
1 − d∗

N

) + (N − j )(1 − d̄N N)
)

(5)

native offspring on a type-j patch that supports at least one
nonnative mutant. Note that the since mutations are glob-
ally rare, we can neglect the possibility that both native and
nonnative mutants occur together on the same patch.

We allow for the possibility that dispersal is costly. Specif-
ically, we assume that a fraction, c, of dispersed offspring
never find a new patch, and perish as a result. The remain-

c© 2012 The Authors. Published by Blackwell Publishing Ltd. 825
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ing fraction (1 – c), however, do find a new patch. If each
patch receives an equal share of successful dispersers, then
the number of nonnative offspring found on any patch once
dispersal is complete is given by K 〈n∗

m〉 where

〈
n∗

m

〉 = (1 − c)
N∑

j=0

π̂ j

(
j d∗

N + (N − j )d∗
N N

)
. (6)

The rareness of mutations allows us to use the previous ex-
pression to describe immigration to all patches, regardless of
whether they had previously supported mutant breeders or
not.

(c) Competition—We assume that, by the end of the dis-
persal phase of the life cycle, all adults have perished leaving
N breeding sites per patch vacant. Competition for vacant
breeding sites on a given patch then occurs at random among
the native and nonnative offspring found there (technically,
uniformly at random, with replacement). For convenience,
we define

p j (x, y) = j (1 − x) + (N − j )(1 − y)

j (1 − x) + (N − j )(1 − y) + 〈
n∗

m

〉 , (7)

and we note that p j (d∗
N, d∗

N N) gives the probability that a
breeding site on a patch that had supported only wild-type
individuals will be won by an offspring that is native to that
patch. Similarly, p j (d̄N, d∗

N N) gives the probability that a
breeding site on a patch that supported at least one native
mutant will be won by an offspring that is native to that
patch, and p j (d∗

N, d̄N N) gives the probability that a breeding
site on a patch that supported at least one nonnative mutant
will be won by an offspring that is native to that patch.

If we now define

Pi j (x, y) =
(

N

i

)
p j (x, y)i (1 − p j (x, y))N−i

, (8)

then we can use this expression to describe the probability
that type-j patch becomes a type-i in the next generation (the
transition probabilities). For a patch that currently supports
only wild-type individuals, we have P ∗

i j = Pi j (d∗
N, d∗

N N).
Similarly, Pi j (d̄N, d∗

N N) describes the transition probabilities
for a patch that supports at least one native mutant, while
Pi j (d∗

N, d̄N N) describes those for a patch that supports at
least one nonnative mutant. Wild-type transition probabili-
ties determine the distribution of patch types at demographic
equilibrium, according to the equations

π̂i =
∑

j

P ∗
i j π̂ j ,∑

i

π̂i = 1.
(9)

Mutant transition probabilities are used to determine mutant
fitness, and it is mutant fitness to which we turn our attention
now.

Mutant fitness

We define the i-fitness of an individual as the number of
its offspring found breeding on a type-i patch one genera-
tion into future. An individual’s i-fitness has both native and
nonnative components. The native component counts the
number of offspring breeding as natives on type-i patch, and
the nonnative component counts the number of offspring
breeding as nonnatives on a type-i patch.

The fitness of a mutant will depend on whether it is native
or nonnative to the patch on which it breeds. A native mutant
disperses a fraction dN of its offspring; when this mutant
breeds on a type-j patch, we use αi j (dN, d̄N) and γij(dn) to
denote the native and nonnative components of its i-fitness,
respectively. A nonnative mutant disperses a fraction dNN of
its offspring; and when this mutant breeds on a type-j patch,
we use βi j (dN N, d̄N N) and δij(dNN ) to denote the native and
nonnative components of its i-fitness, respectively.

Using the description of the life cycle provided above, one
can determine that

αi j (dN, d̄N)

= Pi j

(
d̄N, d∗

N N

) i(1 − dN)

j (1 − d̄N) + (N − j )
(
1 − d∗

N N

) .

(10)

We see that αij is the product of two terms. The first term,
Pi j (d̄N, d∗

N N), is the probability that the patch that currently
supports j natives will support i natives in the next generation.
The second term is the number of next-generation native
spots expected to be won by the focal mutant’s own offspring.
In words, then, αij is the number of mutant offspring that
compete successfully on the focal mutant’s patch, conditional
upon there being exactly i breeding spots reserved for locally
produced offspring.

The model life cycle also tells us that

γi j (dN) =
∑

k

P ∗
ik π̂k

dN(1 − c)(N − i)〈
n∗

m

〉
= π̂i dN(1 − c)

(N − i)〈
n∗

m

〉 , (11)

where the second equality follows from equation (9). In this
case, dN (1 – c) is the probability that a given mutant offspring
disperses successfully. Given that the offspring dispersed suc-
cessfully, π̂i represents the probability that it found a patch
that ultimately supported (N – i) nonnative breeders. Lastly,
(N − i)/〈n∗

m〉 represents the probability that the particular
offspring being considered wins one of the (N – i) nonnative
spots that are being contested by 〈n∗

m〉 other immigrants.
The remaining fitness functions are

βi j (dN N, d̄N N)

= Pi j (d∗
N, d̄N N)

i(1 − dN N)

j
(
1 − d∗

N

) + (N − j )
(
1 − d̄∗

N N

) ,(12)
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and

δi j (dN N) = π̂ dN N(1 − c)
(N − i)〈

n∗
m

〉 . (13)

Equations (12) and (13) are derived and interpreted in the
same way as their counterparts (10) and (11) above.

Inclusive-fitness effects

We store the fitness functions above in the matrix-valued
function,

Wi j (dN, d̄N, dN N, d̄N N) =
[

αi j (dN, d̄N) βi j (dN N, d̄N N)

γi j (dN) δi j (dN N)

]
.

(14)

Under the assumption of weak selection, Taylor and Frank
(1996) have shown that the fate of a mutant allele that alters
either native or nonnative dispersal can be determined using
the dominant left and right eigenvectors of the matrix

W∗ = [
Wi j

(
d∗

N, d∗
N, d∗

N N, d∗
N N

)]
i j

(15)

(call these eigenvectors v = [vi ]i and u = [u j ] j , respec-
tively), and marginal fitness components expressed us-
ing partial derivatives of the elements of the matrix
[Wi j (dN, d̄N, dN N, d̄N N)]i, j . Following the approach of Tay-
lor and Frank (1996), we focus on two expressions:

�W N =
N∑

i=0

N∑
j=0

vi

(
∂Wi j

∂dN

∣∣∣∣
∗
+ ∂Wi j

∂ d̄N

∣∣∣∣
∗

R j

)
u j , (16)

�W N N =
N∑

i=0

N∑
j=0

vi

(
∂Wi j

∂dN N

∣∣∣∣
∗
+ ∂Wi j

∂ d̄N N

∣∣∣∣
∗

R̃ j

)
u j , (17)

where “|∗” indicates that partial derivatives are to be evalu-
ated by setting all dispersal rates equal to their corresponding
wild-type values. The symbol Rj in (16) denotes the relat-
edness between a native and the average native breeding on
the same type-j patch. The symbol R̃ j = 1/(N − j ) for (j
≤ N – 1) in (17) denotes the relatedness between a nonna-
tive and the average nonnative breeding on the same type-j
patch. Relatedness coefficients are calculated in Appendix
A1. Note that both coefficients account for relatedness to
self.

The expression in (16) predicts the fate of a mutant lineage
that alters its native dispersal rate, and so we call this expres-
sion “the inclusive fitness effect of native dispersal.” The ex-
pression in (17) predicts the fate of a mutant lineage that alters
its nonnative dispersal rate, and so we call this expression “the
inclusive fitness effect of non-native dispersal.” When �W N

(resp. �W NN ) is greater than zero, a native (resp. non-native)
mutant that disperses slightly more offspring than the native
(resp. nonnative) wild type will invade; in other words, selec-
tion favors an increase in d∗

N (resp. d∗
N N). When �W N (resp.

�W NN ) is less than zero, a native (resp. nonnative) mutant
that disperses slightly fewer offspring than native (resp. non-
native) wild type will invade; in other words, selection favors
a decrease in d∗

N (resp. d∗
N N). Conditional dispersal rates are

at evolutionary equilibrium if �W N and �W NN are zero. An
evolutionary equilibrium will be considered stable when it is
the long-term result of a selective process. With this loose def-
inition of stability, nonequilibrium wild-type dispersal rates
(i.e., boundary rates, of zero or one) might also be stable.

Methods of Analysis

Numerical procedure to find stable dispersal
rates

Because our model is not analytically tractable, we used it
to simulate the evolution of d∗

N and d∗
N N numerically. The

result of this numerical simulation is what we call a stable
phenotype pair.

Our numerical simulation started with an initial guess of
stable value of d∗

N and d∗
N N based on fixed values of N and

c. Using this guess, the patch distribution at equilibrium was
determined by solving (9). The equilibrium distribution of
patch types, in turn, allows the signs of the inclusive-fitness
effects �W N and �W NN to be determined using equations
(16) and (17), respectively.

Based on the sign of �W N and �W NN , our initial guess
for stable dispersal rates could be improved. If �W N (resp.
�W NN ) was positive, d∗

N (resp. d∗
N N) was increased by a

small amount; if �W N (resp. �W NN ) was negative, d∗
N (resp.

d∗
N N) was decreased by a small amount. The new guesses

were then used to recompute �W N and �W NN and further
refinements were made in the same way until either the size of
the inclusive-fitness effects fell below some preset threshold,
or the boundary of the phenotype space (zero or one) was
reached.

For given N and c, the numerically determined, stable
phenotype pair was used to compute the population-average
dispersal rate, 〈d∗〉, according to the equation

〈d∗〉 = 1

N

N∑
j=0

π̂ j

(
j d∗

N + (N − j )d∗
N N

)
. (18)

It is 〈d∗〉 that we compare to Taylor’s (1988) result in equa-
tion (2).

Individual-based simulation

To validate the numerical approach described above, we de-
vised an individual-based simulation. Because simulations
were computationally expensive, only a limited number of
parameter combinations were investigated. We investigated
for N = 2, 4, 6, 8, and c = 0.1, 0.2, . . . , 0.9. We simulated a
population made up of M = 200 patches, and so at any time

c© 2012 The Authors. Published by Blackwell Publishing Ltd. 827
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during the simulation each of MN positions was occupied by
an individual.

A typical simulation began by furnishing the individuals
at each of MN positions with randomly determined pairs of
dispersal phenotypes (one phenotype to be expressed when
native, and the other to be expressed when nonnative), and a
randomly determined migration status. The dispersal pheno-
type pair and migration status at each position was updated
by simulating the birth, dispersal, and competition events
described above. A small mutation rate was added to the
simulation to ensure it explored a greater fraction of the phe-
notype space. Complete MATLAB scripts are presented in
Appendices A2 and A3. Preliminary investigations suggested
that 5000 simulated generations provided more than enough
time for stable dispersal rates to become established. Thus,
all simulations were stopped after 5000 generations.

When the stable dispersal rate of nonnatives was predicted
to be zero by the numerical investigation, we simulated only
the dispersal rate of natives. In this case, we fixed the nonna-
tive dispersal rate to zero level to reduce variation (noise). All
other aspects of the simulation were unchanged.

For each parameter combination (fixed N and c), we de-
vised an estimate of the stable conditional dispersal rates (d∗

N

or d∗
N N) based on 50 replicate simulations. Specifically, an

average evolutionary trajectory was determined for d∗
N and

d∗
N N by calculating the appropriate mean for the collection

of 50 replicates during every generation. Each average trajec-
tory was then time-averaged over the last 2000 generations
to arrive at the estimate for stable d∗

N and d∗
N N , respectively.

Ninety-five percent confidence intervals for our estimates
were based standard errors of trajectories time-averaged over
the last 2000 simulated generations.

Results

Summary of numerical results

Our model predicts that stable levels of conditional disper-
sal will decrease with increasing c, and with increasing N
(Fig. 2). Similar predictions are made by standard models for
the evolution of unconditional dispersal (e.g., Taylor 1998).

Figure 2. The relationship between the stable conditional dispersal rates
d∗

N (panel a) and d∗
N N (panel b), and the model parameters c (cost of

dispersal) and N (patch size).

All else being equal, an increase in c increases the inclusive-
fitness cost of dispersing one’s offspring—the decreased sta-
ble levels of dispersal are simply a response to this disin-
centive. Along the same lines, increased N effectively dilutes
the inclusive-fitness benefit of dispersal, again resulting in
decreased stable dispersal rates.

In addition to the consistent relationships between dis-
persal rates and model parameters, we have observed a con-
sistent relationship between the dispersal rates themselves.
Specifically, we found that the stable rate of dispersal of na-
tives (d∗

N) is always greater than that of nonnatives (d∗
N N)

(Fig. 3). Certainly, natives are more closely related to the
offspring produced on their patch than are their nonnative
neighbors. Inclusive-fitness benefits of dispersal, therefore,
accrue at a higher rate for natives, and the relatively higher
native dispersal rates we have found represent a response to
this extra incentive.

The match between numerical and
individual-based simulations

We found a qualitative agreement between numerical and
simulation results, but the level of quantitative agreement was
mixed and depended on parameter combinations considered
(Fig. 4).

In many cases, the individual-based simulation tended to
agree with the numerical results, in the sense that the 95%
confidence interval over the last 2000 generations captured
the numerical result (Fig. 4). When the 95% confidence in-
terval did not contain the numerical prediction, the extent of
the disagreement was, typically, only very slight (Fig. 4). On
the whole, the agreement between numerical and individual-
based simulations was good.

We should point out that in a minority of cases, the quan-
titative agreement between numerical and individual-based
simulation was quite pronounced. These larger disagree-
ments occurred for larger values of c and N—where nu-
merical predictions for d∗

N N fell below 0.1 (Fig. 4, right pan-
els). Larger discrepancies involving d∗

N were eliminated in
those cases where numerical results predicted d∗

N N = 0 (i.e.,
in those cases where our individual-based simulation proce-
dure set d∗

N N equal to zero), and so low nonnative dispersal
rates appear to be the driving force behind the disagreements,
when they occur. One factor contributing to the larger dis-
agreements could be the stochastic effects associated with the
small size of the subpopulation nonnative at larger N and c,
but this is conjecture.

The effect of conditioning on the
population-average dispersal rate

Our main goal was to compare the population-average
dispersal rate under conditional dispersal (〈d∗〉) with the
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Figure 3. The relationship between the stable conditional dispersal rates d∗
N and dNN for varying c (cost of dispersal) when (a) N = 2, and (b) N =

4 (N is patch size).

unconditional result given by Taylor (1988). Because there
is some disagreement between certain numerical and
individual-based simulation results, we calculated 〈d∗〉 using
numerical results (eq. 18) and using data from the individual-
based simulation.

At lower costs of dispersal, Taylor’s (1988) population-
average dispersal rate is greater than that predicted by
our numerical model, and at higher costs Taylor’s (1988)
population-average dispersal rate is less than that predicted
by our numerical model (Fig. 5). The switch between the
two cases (Taylor’s prediction greater than those of our nu-
merical model on one hand, and Taylor’s predictions less
than those of our numerical model on the other) occurs at
an intermediate cost that, itself, decreases with decreasing N
(Fig. 5).

Comparison between Taylor’s predictions and data from
individual-based simulation reveals a pattern that is sim-
ilar to the one revealed by the numerical results, though
discrepancies occur in those cases where d∗

N N is small (as
discussed above). In some cases, Taylor’s predicted
population-average dispersal rate lies between population-
average predictions from our numerical and individual-based
simulations, respectively. That said, the absolute difference
among any of the predicted population-average dispersal
rates (Taylor’s predictions, our numerical predictions, our
predictions from individual-based simulations) is small (note
the vertical scales in Fig. 5). In fact, as we argue below, the
small differences between Taylor’s predictions and any of our
predictions (the largest such difference is approximately 0.06;
see Fig. 5) suggest to us that dispersal conditioned upon a par-
ent’s migration status is unlikely to confound match between
theory and data.

Discussion

In the model we develop above, an adult that has dispersed
does not breed alongside relatives, and so—relative to one
that has not dispersed—that adult can afford to disperse its
own offspring in a more selfish manner. Using migration sta-
tus as a cue for conditioning the dispersal of one’s offspring,
then, will confer a clear selective advantage. Still, most theo-
retical predictions are generated under the assumption that
such conditional behavior does not occur. Since there is em-
pirical evidence to suggest that phenotypic expression can
depend on a variety of kin-recognition cues (e.g., Breed and
Julian 1992; Sharp et al. 2005), including an individual’s mi-
gration status (sex-ratio data from Hoplothrips pedicularius
collected by Taylor and Crespi [1994] suggests that this is so),
one might naively expect the predictions of standard theory to
be incorrect. Our goal was to assess the extent to which disper-
sal conditioned upon migration status might confound the
match between standard theory and observations. We chose
the model of unconditional dispersal presented by Taylor
(1988) as a benchmark against which to compare our model.

We observed quantitative differences between Taylor’s
(1988) predictions and the population-average dispersal rates
predicted by our model that typically ranged between 0 and
0.01 in absolute value (but in one case the difference was as
high as 0.06). That said, it is not immediately clear that these
differences would, in practice, cause problems for the match
between theory and data.

Suppose, for the sake of argument, that one was able to
overcome the difficulties associated with determining pa-
rameter values (e.g., see Wolff 1994). In that case, rough
calculation suggests that a sample of size between 100 and
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Figure 4. Comparison between predictions about stable, conditional dispersal rates generated by numerical simulation (black lines) and those
generated by individual-based simulation (red lines) for varying c (cost of dispersal) and N (patch size). Ninety-five percent confidence intervals
accompany individual-based simulation results. Results for nonnative dispersal rates (right panels) are truncated when numerical simulation predicts
d∗

N N = 0. Note that this means there is only one observation for the N = 8 panel.
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Figure 5. Comparisons between Taylor’s (1988) predicted dispersal rate, d∗ (eq. 2) and the population-average dispersal rate 〈d∗〉 predicted by our
model with dispersal conditioned on migration status. We have plotted the difference between Taylor’s predictions and numerical simulation results
(solid curve) as well as the difference between Taylor’s predictions and individual-based simulation results (open circles), for various values of c and N.
In all cases, the comparison showed that our predictions differ from those of Taylor by only a small amount. Below each comparison, we also present
the frequency of natives (N) and nonnatives (NN) for numerical (solid bars) and individual-based simulations (open bars) for c = 0.1, 0.3, 0.5, 0.7, 0.9)
(left to right).

10, 000 would be needed to detect the differences between
our predictions and those of Taylor (1988) with 95% confi-
dence (e.g., Montgomery et al. 2011, p. 212). A sample size
on the order of 100 is not unheard of in field investigations
and experiments (e.g., Greenwood et al. 1978; Harvey et al.
1979), and so the effect of conditional dispersal could po-
tentially be detected in a carefully designed experiment. That
said, field and experimental conditions are seldom perfect.
Microhabitat variation, for example, has been found to alter
passive dispersal by black-fly neonates significantly (Fonseca
and Hart 1996). This “noise” introduced by variation of this
kind could have the potential to obscure the detection of even
six dispersers of 100 offspring—the upper end of the range
of values quoted above.

Other adaptive changes to the dispersal rate provide addi-
tional challenges for the potential match between dispersal
theory and data. Theoretical work has demonstrated the ad-
vantage of conditioning dispersal based on, among other
things, habitat quality (Greenwood-Lee and Taylor 2001;
Leturque and Rousset 2002), sex and the sex ratio (Leturque
and Rousset 2003; Wild and Taylor 2004), and brood size
(Kisdi 2004). Although we cannot readily compare the work
cited here to the results of Taylor (1988), it seems reasonable
to suggest that it would be very difficult to disentangle the
predictions made by this work from the subtle effect of condi-
tioning based on migration status. Overall, then, we conclude
that ignoring the possibility that parents condition dispersal
of offspring based on their own migration status is not likely
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to cause a problem for the match between dispersal theory
and data.

Our conclusion that information about migration status
does little to change the overall level of dispersal in a pop-
ulation is particularly interesting in light of previous work.
As mentioned in the introduction, El Mouden and Gardner
(2008) found that when helping (and indeed harming) can
be expressed conditional on migration status, natives help
and nonnatives do not help. Their predictions are quite dif-
ferent from the predictions of models that assume helping
is not informed by migration status—those “unconditional”
models predict that no individual helps (Taylor 1992; Wilson
et al. 1992). In essence, then, El Mouden and Gardner (2008)
show that information about migration status can increase
the overall level of help in the population to a level that is in
proportion to the number of native individuals in a popula-
tions; and as we see from Figure 5, the number of natives can
be quite substantial. With that in mind, one might ask: why
is it that migration status is of so little consequence to overall
level of dispersal, when it has the potential to change overall
levels of helping so substantially? Unfortunately, we can offer
only a partial answer to this question.

In the model presented by El Mouden and Gardner (2008),
patch demographics are not substantially affected by changes
in individual behavior—a consequence of the assumption
that fitness effects are additive and the assumption that se-
lection is weak. Essentially, the demographic effects of help-
ing/harming in El Mouden and Gardner (2008) are small,
even when natives and nonnatives have very disparate phe-
notypes. We suggest that the minimal demographic sensi-
tivity found in El Mouden and Gardner (2008) eliminates
“higher order” effects of selection (e.g., substantial demo-
graphic change) that (possibly) work against population-
wide evolutionary change. To clarify this point, consider the
dispersal model we present here. Although selection in our
model is weak, we observed substantial demographic change
associated with changes in the evolving traits (Fig. 5). In
particular, demographic changes seem to act to buffer the
population-wide level of dispersal against the effects of rela-
tively extreme conditional dispersal rates. For example, when
nonnative dispersal rates are zero (at high cost of dispersal
c), the population as a whole is dominated by native indi-
viduals that disperse offspring at a low, but nonzero, rate
(Fig. 5). The demographic situation in this case is not far
from one we expect to see in a model with unconditional
dispersal (average dispersal rates in such a model are also
low), and so the cost–benefit balancing made by individuals
in the dominant native subpopulation closely follows that
made by individuals who are unaware of their own migra-
tion status. In other words, noticeable demographic shifts
appear to act against substantial population-level changes.
We must emphasize that the effect of demography here
is primarily speculative, and future work should address

its consequences for conditional social behavior in greater
detail.
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A1. Relatedness

In this appendix, we outline the calculation of Ri (for i ≥
1), the relatedness between the a native adult and the average
native adult that breeds on its patch (this includes relatedness
to self). We follow Taylor and Frank (1996) and determine
the set of Ri values under the assumption of that selection
is absent. A recursive argument shows that, in the long run,
each Ri satisfies

Ri = 1

i
+ i − 1

i

N∑
j=0

P ∗
i j π̂ j

π̂i

×
⎛
⎝(

j
(
1 − d∗

N

)
j
(
1 − d∗

N

) + (N − j )
(
1 − d∗

N N

)
)2

R j

+
(

(N − j )
(
1 − d∗

N N

)
j
(
1 − d∗

N

) + (N − j )
(
1 − d∗

N N

)
)2

R̃ j

⎞
⎠ ;

(A1)

thus, the set of Ri values can be determined by solving this
system of equations (this was done numerically).
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A2. Individual-based simulation of the joint evolution of conditional dispersal rates

In this section, we provide a version of the Matlab script used to execute an individual-based simulation of the joint evolution
of d∗

N and d∗
N N .
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A3. Individual-based simulation of the evolution of native dispersal rate

In this appendix, we provide the Matlab script that executes an individual-based simulation of the evolution of dN alone. This
simulation was used when the numerical model predicted d∗

N N = 0.
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