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Traditional Chinese medicine, as a complementary and alternative medicine, has been practiced for thou-
sands of years in China and possesses remarkable clinical efficacy. Thus, systematic analysis and exam-
ination of the mechanistic links between Chinese herbal medicine (CHM) and the complex human body
can benefit contemporary understandings by carrying out qualitative and quantitative analysis. With
increasing attention, the approach of network pharmacology has begun to unveil the mystery of CHM
by constructing the heterogeneous network relationship of ‘‘herb-compound-target-pathway,” which
corresponds to the holistic mechanisms of CHM. By integrating computational techniques into network
pharmacology, the efficiency and accuracy of active compound screening and target fishing have been
improved at an unprecedented pace. This review dissects the core innovations to the network pharma-
cology approach that were developed in the years since 2015 and highlights how this tool has been
applied to understanding the coronavirus disease 2019 and refining the clinical use of CHM to combat it.
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1. Introduction

Traditional Chinese medicine (TCM), as a treasure of the Chi-
nese nation and a critical component of China’s medical and health
care system, plays an essential role in the field of healthcare for the
Chinese people [1]. Characterized by holistic, personalized, and
rich experience-based therapy, TCM, including modalities such as
Chinese herbal medicine (CHM) and acupuncture, has broad appli-
cations for the systematic control of complex diseases [2]. Due to
the complexity of CHM which comprises a crucial part of TCM, tra-
ditional reductionism method remains difficult to simplify the
interplay between the multiple compounds present in an herbal
formula and the multiple targets on which they act; this has
become a major obstacle to TCM’s modernization and its incorpo-
ration into modern healthcare [3].

Systems biology is a new frontier in biological research which
provides a framework for assembling models of biological systems
from systematic measurements. Further, bioinformatics is concep-
tualizing biology from a molecular perspective and applying ‘‘in-
formatics techniques,” including applied mathematics, computer
science and statistics, to extract knowledge from biological data
for large-scale analysis, prediction, imaging and visualization [4].
Cheminformatics is an emerging frontier in the field of information
technology, focusing on the collection, storage, analysis and oper-
ation of chemical data [5]. Hence, with the development and inte-
gration of fields such as systems biology, bioinformatics,
cheminformatics, artificial intelligence, and ‘‘big data,” research
on the mechanisms of CHM has shifted from investigating single,
isolated compounds to a new multi-faceted and systematic
research approach [6]. One of these breakthroughs is network
pharmacology, which is used to explore the molecular mechanisms
of CHM from the perspective of a complex biomolecular network.
Utilizing this network approach generates an unprecedented
opportunity for systematic research into CHM. In the last five
years, network pharmacology studies of CHM have increased
rapidly [7], and it is evolving as a systematic paradigm and the
leading edge in research and development of CHM [8]. At the same
time, computational methodologies and high-quality databases
play an essential role in satisfying the data-driven aspects of net-
work pharmacology. Therefore, a concise overview of the use of
network pharmacology in CHM research is urgent.

This review is structured into two main sections. In the first sec-
tion, the cutting-edge CHM network pharmacology studies pub-
lished between 2015 and 2021 that established strategies for
active compound screening, target prediction, and network analy-
sis are reviewed and summarized alongside the specialized data-
bases on which these techniques depend. In the second section,
the application of network pharmacology in mechanistic investiga-
tion and repositioning of CHM against coronavirus disease 2019
(COVID-19) is highlighted.
2. Network pharmacology for CHM research

2.1. Strategies for compound screening

Lack of certainty in the bioactive compounds responsible for the
actions of CHM is one of the key issues that makes CHM research
difficult. It is extremely time-consuming and labor-intensive to
478
obtain the chemical profiles of CHM formulas following traditional
chemical methods (i.e., isolation, identification and evaluation).
Many natural product databases are open-source, although it can
be difficult to extract and screen the active compounds present
in CHM from these databases, as they contain vast amounts of data.
In the modern drug discovery procedure, there is a high failure rate
for converting candidate active compounds into effective drugs;
this is primarily caused by undesirable absorption, distribution,
metabolism, elimination and toxicity (ADMET) profiles of the
target compound. Thus, it is practical to include ADMET data in
parallel with information on CHM that can be gathered from natu-
ral product databases. Insufficiency of data is, however, often a
problem in this approach. To fill in some of these information gaps,
some researchers prefer to use their own experiments to profile
compounds that are present in CHM, combined with ADMET filter-
ing. For instance, ultra-performance liquid chromatography-
quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS)
was used for the chemical profiling of Isatis indigotica roots and
leaves, and the active constituents present in I. indigoticawere then
screened using the prediction of gastrointestinal absorption and
drug-likeness (DL) analysis in SwissADME (https://www.swis-
sadme.ch) [9]. The active components in ginsenoside H dripping
pills were identified by UPLC-Q-TOF-MS and then filtered based
on oral bioavailability (OB) and DL [10]. To detect the volatile
compounds from Scutellaria baicalensis, gas chromatography-MS
(GC-MS) was performed. The active compounds were further
screened by OB, druggability and blood brain barrier (BBB) screen-
ing [11]. Likewise, the bioactive constituents inMorus alba L. leaves
were detected using GC–MS and then screened for DL and their
topological polar surface area [12]. Further, GC–MS was used to
detect chemical constituents from Hibiscus cannabinus L. leaves
and Ganoderma lucidum, and then they were filtered according to
Lipinski’s rule through the SwissADME to identify their DL
[13,14]. Liu et al. [15] used OB, DL, human colonic adenocarcinoma
cells, and BBB criteria to screen the potential active compounds of
Guanxinshutong Capsule that had been identified through LC-MS
and GC-MS profiling.

Experimental errors in the datasets, poor-quality models and
the idea of applicability domain are major concerns related to
the reliability of ADMET predictions. Compared to the compounds
isolated from herbs, considering the CHM constituents that are
absorbed in vivo could reduce the rate of false-positive results from
ADMET prediction [16]. For example, based on the serum/plasma
pharmacochemical evaluation, the compounds from formulas
(Shentong Zhuyu Decoction, Xiaokewan, and Shenzhi Jiannao For-
mula) or single herbs (Viticis fructus, Poria cocos [Schw.] Wolf, and
Cyclocarya paliurus [Batal.] Iljinskaja leaves) that could enter the
serum were considered to be potential active compounds for net-
work pharmacology analysis [17–22]. The compounds present in
other biological samples, such as urine and tissues, could be also
used for network pharmacology analysis [23,24]. If metabolites
have potential biological activities, they should be included with
prototype compounds in the network pharmacology analysis.
Zhang et al. [25] used phellodendrine and its main in vivo metabo-
lites to explore the potential pharmacological network to address
diabetes mellitus. Arctiin and prim-O-glucosylcimifugin and their
in vivo metabolites were used for network pharmacology analysis
[26,27]. The in vivo metabolites of Achyranthes bidentata Blume
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saponins and their targets associated with rheumatic arthritis were
used to construct a multi-layer network [28]. The prototype con-
stituents plus metabolites of Schisandra chinensis (Turcz.) Baill.
fruits and Paeonia lactiflora Pall. roots that were retrieved from
rat plasma were considered to be bioactive ingredients used for
network pharmacology analysis [29,30].

It is also useful to identify suitable pharmacokinetic marker(s)
of CHM as bioactive compounds. For instance, network pharmacol-
ogy was conducted by selecting the pharmacokinetic markers from
Phlomis brevidentata H.W.Li extract [31]. Further, an everted gut
sac model, coupled with UPLC-Q-TOF-MS, was used to screen and
identify the active compounds of Xijiao Dihuang Decoction com-
bined with Yinqiao Powder [32]. Considering the pivotal role of
gut microbial transformation, three phenylethanoid glycosides
from Cistanche deserticola Y.C.Ma stems and their in vitro metabo-
lites transformed by intestinal bacteria were forwarded to network
pharmacology analysis [33].

Overall, integrating computational and analytical methods
serves as a credible method for identifying preliminary bioactive
compounds present in CHM.
2.2. Strategies for target prediction

Compound-target interaction (CTI) is the core part of network
pharmacology to understand comprehensive mechanisms of CHM
[34]. The traditional way to identify CTIs is to quantitatively deter-
mine the inhibitory or activation values between compounds and
targets by in vitro or in vivo assays [35]. However, it is not feasible
to determine all possible CTIs present in the thousands of CHMs
[36]. The development of various computational methods, such
as molecular docking-based [37], pharmacophore-based [38],
chemical similarity-based [39], machine learning-based [40], and
network-based [41] methods, has provided valuable strategies for
the systematic prediction of potential CTIs. Several data sources
for screening and prediction of CTIs are introduced in Table 1
[42–51].

Multi-omics technologies (e.g., transcriptomics and metabolo-
mics) could pave the discovery of potential CTIs. For example,
Table 1
Several representative databases and web servers for screening and prediction of CTI data

Database and web
server

Website Contents and main features

Binding MOAD https://www.
bindingmoad.org

Including 23,269 complexes and 81

DrugCentral https://drugcentral.
org/

Integrating structure, bioactivity, re
for active pharmaceutical compoun

IUPHAR/BPS Guide to
PHARMACOLOGY

https://www.
guidetopharmacology.
org/

Including approximately 9000 ligan
human proteins.

PubChem BioAssay https://www.ncbi.
nlm.nih.gov/pcassay/

Covering 5000 protein targets and 3
bioactivity outcomes.

Therapeutic Target
Database

https://bidd.nus.edu.
sg/group/ttd/ttd.asp

Providing the known and explored
targeted diseases, pathway informa
these targets.

SIDER https://sideeffects.
embl.de/

Containing marketed medicines and
associations.

SwissTargetPrediction https://www.
swisstargetprediction.
ch/

Inferring the targets of small molec
similarity values with known ligand

DGIdb 3.0 https://dgidb.org/ Containing > 40,000 genes and > 10
interactions.

TargetNet https://targetnet.
scbdd.com/

Netting or predicting the binding o

HIT 2.0 https://hit2.badd-cao.
net/

A comprehensive searching and cur
literature evidence.

2D: two dimensions; 3D: three dimensions; CTI: compound-target interaction.
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Dai et al. [52] combined the target information collected from pub-
licly available databases and their own transcriptomics data of
celastrol treatment for osteoarthritis. Liu et al. [53] screened the
potential targets of Danggui Buxue Decoction against anemia by
integrating the data-mined upstream proteins of the differential
metabolites from metabonomics and the anemia-associated tar-
gets obtained from GeneCards database (https://www.genecards.
org/). Similarly, metabolic proteins related to potential biomarkers
from metabolomics and predicted proteins of cantharidin were all
introduced into String database (https://string-db.org/) to conduct
a protein–protein interaction analysis. The hub targets were then
filtered by mean degree value and selected for network pharmacol-
ogy analysis [54]. Thus, it is feasible to unveil the potential CTIs of
CHM via computational methods integrated with multi-omics
strategy.

2.3. Strategies for network analysis

Network thinking has contributed a number of important unan-
ticipated insights on the complex mechanisms underlying CHM, so
how to extract key information from the heterogeneous networks
is the main goal. Many network-based computational approaches
have been conducted to excavate effective components and hub
targets (Fig. 1).

2.3.1. Scoring active compounds
As a demonstrative example, we proposed a contribution index

(CI) to estimate each active compound’s contribution to the effi-
cacy of CHM based on network topology property (NE) and efficacy
weight. The CI was proposed and calculated by equations (1) and
(2):

NE jð Þ ¼
Xn

i¼1
di ð1Þ

CI jð Þ ¼ cj � NEðjÞPm
i ¼ 1ci � NEðiÞ � 100% ð2Þ

where n is the target number of compound j in the compound-
target network; di is the target i’s degree of compound j in the
.

Quantitative
activity
values

Reference

56 binding affinities. Yes [42]

gulatory and pharmacologic actions, and indications
ds.

Yes [43]

ds, 15,000 binding constants, 6000 papers and 1700 Yes [44]

0,000 gene targets, and providing over 130 million Yes [45]

therapeutic protein and nucleic acid targets, the
tion and corresponding drugs directed at each of

No [46]

their recorded side effects, as well as drug-target No [47]

ules based on the combination of 2D and 3D
s.

No [48]

,000 drugs involved in > 100,000 drug-gene No [49]

f multiple targets for any given molecule. No [50]

ation platform for CTI information based on No [51]

https://www.genecards.org/
https://www.genecards.org/
https://string-db.org/
https://www.bindingmoad.org
https://www.bindingmoad.org
https://drugcentral.org/
https://drugcentral.org/
https://www.guidetopharmacology.org/
https://www.guidetopharmacology.org/
https://www.guidetopharmacology.org/
https://www.ncbi.nlm.nih.gov/pcassay/
https://www.ncbi.nlm.nih.gov/pcassay/
https://bidd.nus.edu.sg/group/ttd/ttd.asp
https://bidd.nus.edu.sg/group/ttd/ttd.asp
https://sideeffects.embl.de/
https://sideeffects.embl.de/
https://www.swisstargetprediction.ch/
https://www.swisstargetprediction.ch/
https://www.swisstargetprediction.ch/
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target-pathway network; ci is the number of disease-related litera-
ture of compound i; m is the number of compounds; NE(j) is the NE
of compound j; CI(j) is the CI of compound j [55,56].

Likewise, Wang et al. [57] proposed a contribution score (CS) to
evaluate the effectiveness of each compound of two herbs in a Chi-
nese patent medicine. CAi and CBi represent the degree of each com-
pound only in compound-target network of herb A and herb B,
respectively; Cedge and Tedge represent the edge of compounds and
targets in compound-target network, respectively; P represents
the degree of each protein; Aij is the index of affinity determined
from the xei value as shown in equations (3)–(5).

Aij ¼ xei þ CAi þ CBi

CAi � CBi

����
���� ð3Þ

xei ¼ Cedge

Tedge
ð4Þ

CS ið Þ ¼
Xn

ij

Ci � Aij � Pj
� � ð5Þ

Gao et al. [58] let m denote compounds, n denote the specific
disease genes, Xij (i = 1,. . ., m; j = 1,. . ., n) represent a compound-
target interacting score (Xij ranged from 0 to 1), and Cj represent
the correlation coefficient (specifically, Cj = 0.1 [degree < 5],
Cj = 0.2 [5 � degree < 10], Cj = 0.3 [10 � degree < 20], and
Cj = 0.4 [degree � 20]). The anti-aging score of compound i (AAi)
was calculated by the following formula, i.e., equation (6):

AAi ¼
Xj

1
CjXij ð6Þ

Wang et al. [59] performed a computational algorithm with
Fisher’s exact test method (equation [7]) to investigate and rank
the active compounds of a prescription in treating specific disease:
specifically, if compounds have no known targets, n = 20 and k was
the number of disease-related genes in n; if compounds have s
480
known targets, n = 20 + s, and k was s plus the number of
disease-related genes in n. N was the number of protein-coding
genes in the constructed network and K was the number of all
disease-related genes in the network. P value was calculated and
adjusted by Benjamini-Hochberg method, for ranking all
compounds.

P X ¼ kð Þ ¼
K
k

� �
N�K
n�k

� �

N
n

� � ð7Þ

Zhang et al. [60] developed an index of effective rate, indicating
the possibility of a compound affecting a specified function (see
equation [8]). The outdegree and sub-outdegree mean the number
of putative targets for each compound and the number of putative
targets for a specific function, respectively. This algorithm has also
been successfully applied in our previous network pharmacology
study of Danggui Buxue Decoction [61].

Effective rate ¼ Sub� outdeg ree
Total outdegree

ð8Þ

Suo et al. [62] assumed that if one unit of information comes to
a node of degree kj, it flows downstream through kj � 1 branch,
each of which transfers 1/kj � 1 unit of the original information.
Then, the scoring scheme for the active ingredients can be evalu-
ated as equations (9)�(11),

Ii m ! nð Þ ¼ 1
km

Y

j2VðiÞ

1
kj � 1

ð9Þ

I m ! nð Þ ¼
X

i

Ii m ! nð Þ ð10Þ

I mð Þ ¼
X

n

Iðm ! nÞ ð11Þ

where V(i) is the protein nodes between n and m in path i;
Ii(m ? n) is the effectiveness of ingredient m on target n;
I(m ? n) gives the specificity of ingredient m to target n;
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and I(m) shows the overall effectiveness of ingredient m on the
disorder under investigation.

Considering that CHM compounds vary dramatically in content,
we proposed another CI based on both the intrinsic properties (ac-
tive components’ content and OB) of CHM and the rank-sum ratio
(RSR) of integrated network topology parameters (including
degree, closeness, betweenness, eccentricity, neighborhood con-
nectivity and average shortest path length) of active compounds
in the heterogeneous network [63], as equation (12):

CIi;j ¼ miPn
i mi

� Ci;j

Mj
� OBj � RSRj � 107 ð12Þ

where CIi,j is the CI of component j in herb i, mi is the weight of herb
i in a formula, n is the total count of herbs in a formula, Ci,j is the
content of component j in herb i, and Mj is the molecular weight
of component j; OBj represents the OB value of compound j
retrieved from the TCMSP database (https://old.tcmsp-e.com/
tcmsp.php); and RSRj is the RSR of component j in the compound-
target-pathway network.

2.3.2. Scoring effectual-combination ingredients
With the attempt to find the effectual-combination ingredients

(ECIs) from CHM, a strategy was proposed by Liu et al. [64]; it was
defined as metabolic exposure-oriented network regulation for
identification of ECIs, including network topology score (NTS)
and component exposure score (CES) (see equations [13] and
[14]). NTS represents the topological importance of a compound’s
targets in CHM-regulated network, by calculating ‘‘Betweenness”
(B), ‘‘Closeness” (C), ‘‘Degree” (D), and ‘‘Eigenvector centrality” (E)
of all regulated genes through principal component analysis
(PCA). CES represents the metabolic exposure of each compound
by PCA integrating the Cmax of plasma and brain of each compound.
Finally, the combinatory compounds of which the NTS or CES was
above 2, 1 and 0 were selected as candidate ECIs.

NTS ¼ ð
Xn

i¼0

Bþ
Xn

i¼0

C þ
Xn

i¼0

Dþ
Xn

i¼0

EÞ � ðhB; hC ; hD; hEÞ ð13Þ

CES ¼ max Cplasma

� �þmax Cbrainð Þ� � � ðhp; hbÞT ð14Þ
Similarly, Luo et al. [65] screened ECIs of a formula by combina-

tion of NTS and variable importance in projection (VIP) value. The
VIP values of differential absorbed components in plasma were
revealed by metabolomics-driven strategy coupled with the
orthogonal-partial-least-squares-discrimination analysis. The
combinatory compounds of which the VIP was above 1.5, 1.25
and 1.0 or NTS was above 2, 1 and 0 were selected as candidate
ECIs.

2.3.3. Scoring network modules
To estimate the intensity of associating a specific network mod-

ule with a specific disease, Zuo et al. [66] used an algorithm in the
‘‘targets-(pathways)-targets” network, as equation (15):

Cmidj ¼
X

Pw2Xij

CmipwCpwdj ð15Þ

where Xij is a subset of P and refers to the pathways that are rel-
evant to mi and dj simultaneously; Cmidj refers to the CS of mi to dj,
which is the sum of the contribution of mi to dj through all its rel-
evant pw in Xij. The value of Cmidj varies from 0 to 1: the higher the
value, the greater the contribution mi might make to dj; and all the
modules contribute 1 to a particular disease.

Recently, in order to integrate the target score information of
the TCM prescription as well as the disease, Xiong et al. [67] used
two iterations of PageRank algorithm to obtain the PageRank value
481
of targets in prescription-disease system shown in equations (16)�
(18).

Vp ¼ M2M1Vh = max M2M1Vhð Þ ;
V0 ¼ Vp; V1 ¼ aMV0 þ 1� að Þ1 =N;

V2 ¼ aMV1 þ 1 � að Þ1 =N; Vrank1 ¼ V2 ð16Þ

V0 ¼ Vd; V1 ¼ aMV0 þ 1 � að Þ1 = N ;

V2 ¼ aMV1 þ 1 � að Þ1 = N; Vrank2 ¼ V2 ð17Þ

Vavg ¼ Vrank1 þ Vrank2ð Þ = 2 ð18Þ
where V0 is a target score vector of a prescription or a disease; V1

and V2 are the target score vectors after the first and second itera-
tions; N denotes the total number of targets;M is a symmetric adja-
cency stochastic matrix which denotes target interaction network;
a 2 (0, 1) is a constant representing the importance of the network
while ranking targets. With target score vector Vp of a TCM prescrip-
tion and target interaction matrix M, PageRank score vector Vrank1

was achieved; with target score vector Vd of a disease and matrix
M, PageRank score vector Vrank2 was achieved; finally the average
PageRank score vector Vavg was achieved.

2.3.4. Network cluster/subgroup analysis
Generally, a network can be analyzed from three different

levels: individual, subgroup and whole network. Clusters/sub-
groups refer to highly interconnected regions distilled from differ-
ent, complex objects with similar underlying properties. It is of
great significance to divide the biological regulatory network into
subgroups/clusters to analyze and identify key node groups. Cur-
rently, various methods have been reported to dissect the cluster/
subcluster structure of networks. Some of these methods are graph
theory-based (spectral dichotomy and Kernighan-Lin algorithm),
such as sociological-based methods (-plexes, -cores, and maximal
clique algorithms) and cluster-based methods (optimization corre-
lation algorithms and similarity correlation methods) [68]. For
example, Song et al. [69] conducted a cluster analysis on the net-
work of Maxing Shigan Decoction in treating asthma, and found
that it involved 5 functional clusters such as gene expression,
silencing and replication, DNA/RNA damage repair and transcrip-
tional regulation, and inflammatory immune response. Therefore,
the cluster/subgroup analysis of CHM network pharmacology will
help to identify active ingredient and key target groups for disease
prevention and treatment.

Overall, the development of network analysis methodology is
critically important for finding effective components in the discov-
ery pipelines and generating systematic insights into the mecha-
nism of action of CHM in the treatment of diseases.

2.4. Databases and web servers

2.4.1. Web servers for Gene Ontology enrichment and pathway
analysis

Since TCM involves using multi-compound, multi-target agents,
annotating their targets in the context of networks can help reveal
its mechanisms of action. Gene Ontology resource (GO, https://
geneontology.org) is the most comprehensive knowledge base
concerning the functions of genes/targets. It provides three major
categories of controlled terms for describing gene products: molec-
ular function (activity of gene products at the molecular level), cel-
lular component (location of gene product activity relative to
biological structures), and biological process (larger biological pro-
grams that exploit gene molecular function) [70]. Identifying GO
terms within a given gene list can provide a better understanding
of the genes involved in these functions and further elucidate the

https://geneontology.org
https://geneontology.org
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role of CHM in regulating genes involved in improving disease pro-
cesses. Furthermore, pathway analysis has become the preferred
choice for gaining insights into the underlying biology of differen-
tially expressed genes and proteins. The action of drugs is not only
related to target proteins, but also affected by the biological path-
ways of the target proteins, especially formulti-target CHM. Table 2
lists several web sources for GO enrichment and pathway analysis
[71–76]. Among them, the Reactome knowledgebase provides
molecular details of signal transduction, transport, DNA replication,
metabolism and other cellular processes as an ordered network of
molecular transformations in a single consistent data model [71];
and the STRING database aims to integrate all known and predicted
associations between proteins, including both physical interactions
and functional associations, which relies on the annotated pro-
teomes maintained by Swiss-Prot (https://www.expasy.org/sprot/
and https://www.ebi.ac.uk/swissprot/) [72].

2.4.2. Databases for CHM network pharmacology
Network pharmacology is a new frontier that is becoming a

paradigm for investigating the therapeutic mechanism of CHM
from a systemic and molecular perspective. During the past five
years, with the aid of cheminformatics and big data science, many
high-quality databases have been curated to support CHM network
pharmacology research and CHM repositioning. Some of the
important databases are introduced in Table 3 [77–93]. From the
citation metrics in Fig. 2, four specialized databases in network
pharmacology were cited over 100 times. More importantly, the
majority of them were built via curating TCMSP, a well-known
database for CHM network pharmacology with 1346 citations as
of the time of this writing. TCMSP includes 29,384 ingredients,
3311 targets and 837 associated diseases, as well as 12 ADME-
related properties involving DB, DL, intestinal epithelial permeabil-
ity and BBB, etc. [94]. The majority of them, however, suffer from
common limitations, such as lack of experimental evidence in the
cited literature, as well as lack of ingredient composition of CHM
from high-performance liquid chromatography or mass spectro-
graphic analysis. In addition, it is worth paying attention to how
to reasonably analyze the large number of targets predicted from
the databases. On the one hand, a goal of CHM network pharmacol-
ogy is to predict the potential efficacy or disease spectrum of CHM,
so further analysis of the whole genome predicted by CHM is
appropriate; on the other hand, it is to explore the active ingredi-
ents and mechanism of action of CHM in the treatment of specific
diseases, so focusing on drug targets is also needed. More impor-
tantly, these databases are slow to update, thereby lagging behind
Table 2
Several web sources for GO enrichment and pathway analysis.

Web server Website Contents and main features

Reactome https://reactome.org Including molecular details
other cellular processes as
version of a classic metabo

STRING https://string-db.org/ Aims to integrate all known
physical interactions and fu

Gene Ontology
Annotation
Database

https://www.ebi.ac.uk/GOA Including evidence-based G
368 million GO annotation
groups.

GOATOOLS https://
github.com/tanghaibao/goatools

A Python-based library, ma
annotations; performs gene
represented terms, and org
novel GOATOOLS GO group

PANTHER https://pantherdb.org A multifaceted data resourc
by function.

Metascape https://metascape.org/ A web-based portal designe
resource for experimental b
gene annotation, and mem

GO: Gene Ontology.
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the latest development of CHM research. Therefore, a more com-
prehensive and complete database with powerful web services is
necessary and will more effectively promote the network pharma-
cology research of CHM.

3. Network pharmacology for mechanism elucidation of CHM
against COVID-19

COVID-19 was initially reported at the end of 2019 and spread
rapidly around the world. Hundreds of millions of lives have been
affected during this pandemic [95], and the overwhelmed health-
care systems greatly impacted the global economy. As of January
16, 2022, there have been reported over 323 million confirmed
cases and over 5.5 million deaths worldwide [96].

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
belongs to the same family of coronaviruses responsible for the
severe acute respiratory syndrome in 2003 and Middle East respi-
ratory syndrome in 2012 [97]. The emergence of SARS-CoV-2 vari-
ants is continuing to surge, causing a large number of virus
replications. Since the outbreak, researchers are developing vacci-
nes and targeted antiviral drugs. At the moment, vaccines are still
one of the most important means to alleviate the COVID-19 pan-
demic. However, for some underdeveloped countries and regions,
it remains difficult to achieve vaccination for the whole population.
Thus, people are struggling to seek alternative ways to protect
themselves from this virus or to reduce its severity.

The World Health Organization reported that > 80% of the
world’s population rely on herbal medicines (involving TCM, Per-
sian medicine, and traditional Indian medicine) for a particular
aspect of their primary health care needs. TCM has a long history
and plays a unique role in the prevention and treatment of major
infectious diseases. During the SARS epidemic in 2003, TCM was
shown to provide remarkable therapeutic effects [98]. TCM was
included in the Chinese guideline on diagnosis and treatment of
COVID-19 since the beginning, and abundant clinical usage
demonstrated that CHM exerted positive effects against COVID-
19 through increasing the cure rate of Western medications, and
decreasing severity and concomitant symptoms [99]. The national
percentage of treating confirmed cases of COVID-19 patients with
CHM-integrated therapy exceeds 90% with the support from over
4900 TCM practitioners all over China [100]. And modern pharma-
cological studies have shown that CHM was effective in clearing
heat and toxicity, as well as in dispelling dampness, thereby
inhibiting the virus [101]. In most cases, CHM inhibits the virus-
mediated inflammatory response by regulating the immune func-
Reference

of signal transduction, transport, DNA replication, metabolism, and
an ordered network of molecular transformations—an extended
lic map, in a single consistent data model.

[71]

and predicted associations between proteins, including both
nctional associations.

[2]

O annotations to proteins in the UniProt knowledgebase; supplies
s to almost 54 million proteins in more than 480,000 taxonomic

[73]

king it more efficient to stay current with the latest ontologies and
ontology enrichment analyses to determine over- and under-

anizes results for greater clarity and easier interpretation using a
ing method.

[4]

e for classification of protein sequences by evolutionary history, and [75]

d to provide a comprehensive gene list annotation and analysis
iologists, including functional enrichment, interactome analysis,
bership search.

[76]

https://www.expasy.org/sprot/
https://www.ebi.ac.uk/swissprot/
https://reactome.org
https://string-db.org/
https://www.ebi.ac.uk/GOA
https://github.com/tanghaibao/goatools
https://github.com/tanghaibao/goatools
https://pantherdb.org
https://metascape.org/


Table 3
Several representative databases for CHM network pharmacology research.

Database and
web server

Website Contents and main features Reference

BATMAN-TCM https://bionet.ncpsb.org/batman-tcm/ Including (1) ingredients’ target prediction; (2) functional enrichment analyses of targets;
(3) the visualization of ingredient-target-pathway/disease association network and KEGG
pathway; (4) comparison analysis of multiple CHMs.

[77]

TCMIP
(including
ETCM)

https://www.tcmip.cn/TCMIP/index.php;
https://www.nrc.ac.cn:9090/ETCM/

Including 403 herbs, 3962 formulae, 7274 herbal ingredients, 2266 validated or predicted
drug targets, and 3027 related diseases.

[78]

TCMID https://47.100.169.139:8000/tcmid/ Containing approximately 47,000 prescriptions, 8159 herbs, 25,210 compounds, 6828
drugs, 17,521 targets and 3791 diseases.

[79]

SymMap https://www.symmap.org/ Focusing on TCM symptoms and their relationships to herbs and diseases. [80]
NPASS https://bidd2.nus.edu.sg/NPASS/ Providing 35,032 natural products, 25,041 species, 5863 targets; containing 222,092

natural product-target pairs and 288,002 natural product-species pairs.
[81]

TCM-Mesh https://mesh.tcm.microbioinformatics.org/ Containing 6235 herbs, 383,840 compounds, 14,298 genes, 6204 diseases, 144,723 gene-
disease associations, and a web-based software to construct a network between herbs and
treated diseases.

[82]

CancerHSP https://lsp.nwsuaf.edu.cn/CancerHSP.php Including 2439 anticancer herbs, 2439 active compounds, and activity data based on 492
cancer cell lines.

[83]

TM-MC https://informatics.kiom.re.kr/compound/ Including 536 medicinal materials, 14,492 compounds, and 24,154 links between them. [84]
CMAUP https://bidd2.nus.edu.sg/CMAUP/ Including 47,645 active ingredients against 646 targets in 234 KEGG pathways associated

with 2473 gene ontologies and 656 diseases.
[85]

YaTCM https://cadd.pharmacy.nankai.edu.cn/
yatcm/home

Containing 6220 herbs, 47,696 herbal compounds, 18,697 targets, 1907 predicted targets,
390 pathways and 1813 prescriptions.

[86]

HERB https://herb.ac.cn/ Linking 7263 herbs and 49,258 ingredients to 12,933 targets and 28,212 diseases, and
providing six pairwise relationships among them.

[87]

TCMAnalyzer https://www.rcdd.org.cn/tcmanalyzer Allowing to (1) identify the potential compounds that are responsible for the bioactivities
for a CHM through scaffold-activity relation search techniques, (2) investigate the
molecular mechanism for a CHM at the systemic level, and (3) explore the potentially
targeted bioactive herbs.

[88]

PharmDB-K https://pharmdb-k.org Containing 262 traditional medicines, 7815 drugs, 32,373 proteins, 3721 diseases, and
1887 side effects.

[89]

KampoDB https://wakanmoview.inm.u-toyama.ac.jp/
kampo/

Containing 42 traditional medicines, 54 drugs, 1230 compounds, 460 known targets, and
1369 potential targets, together with biological pathways and molecular function
annotations.

[90]

TCMIO https://tcmio.xielab.net/ Including the data of TCM on immuno-oncology. [91]
DCABM-TCM https://bionet.ncpsb.org.cn/dcabm-tcm/#/

Home
Including 4206 blood constituents, 194 herbs and 192 prescriptions. [92]

SuperTCM https://tcm.charite.de/supertcm Providing the information about 6516 CHMs with 5372 botanical species, 55,772 active
ingredients against 543 targets in 254 KEGG pathways associated with 8634 diseases.

[93]

CHM: Chinese herbal medicine; KEGG: Kyoto encyclopedia of genes and genomes; TCM: traditional Chinese medicine.

Fig. 2. The citation metrics of databases for Chinese herbal medicine (CHM)
network pharmacology research and CHM repositioning. The citations were curated
from Google Scholar on November 15, 2021.
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tion of the body, which corresponds to the multi-target role of
CHM in the overall regulation of the body’s systems [102]. Despite
the widespread use and promising results of CHM in clinical prac-
tice, proving its effectiveness via scientific trials and dissecting the
molecular mechanisms are still big challenges.

There is increasing evidence indicating the reliability and effec-
tiveness of network pharmacology in expanding the rationale and
mechanism for the clinical efficacy of CHM against COVID-19
[103]. In this pandemic, three herbal formulas have been key play-
ers used during different COVID-19 stages. Yang et al. [104] per-
formed network pharmacology combined with experimental
study on Qingfei Paidu Decoction and Maxing Shigan Decoction
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in treating COVID-19, revealing that the therapeutic effects against
COVID-19 may be attributed to their anti-inflammatory effects via
the thrombin and Toll-like receptor signaling pathway. Zhao et al.
[105] also conducted a network pharmacological study to illustrate
the immune regulation, anti-infection, anti-inflammation, and
multi-organ protection mechanisms of Qingfei Paidu Decoction
against COVID-19, and results showed that 88 high-confidence tar-
gets affected by SARS-CoV-2 infection of 12 active compounds in
Qingfei Paidu Decoction were identified and involved in biological
processes related with COVID-19 development, such as pattern
recognition receptor signaling, interleukin signaling, cell growth
and death, hemostasis, and injuries of the nervous, sensory, circu-
latory, and digestive systems. Zheng et al. [106] employed a net-
work pharmacology approach and found that Lianhua Qingwen
formula has the most relationship to the respiratory system, indi-
cating specific effects in lung diseases, and modulates the inflam-
matory process, exerts antiviral effects and repairs lung injury.
Moreover, it also relieves the ‘‘cytokine storm” and improves
angiotensin-converting enzyme 2 (ACE2)-expression-disorder-cau
sed symptoms. Ai et al. [107] performed network pharmacology
on ‘‘Fei Yan No. 1,” a specific formula against COVID-19 recom-
mended by the Health Commission of Hubei Province, and revealed
that it may exert antiviral and immune response-regulatory effects
through multiple pathways, also affecting influenza A, hepatitis B,
hepatitis C, Kaposi sarcoma-associated herpesvirus infection,
human cytomegalovirus infection, viral carcinogenesis and human
immunodeficiency virus 1 infection.

https://bionet.ncpsb.org/batman-tcm/
https://www.tcmip.cn/TCMIP/index.php
https://www.nrc.ac.cn%3a9090/ETCM/
https://47.100.169.139%3a8000/tcmid/
https://www.symmap.org/
https://bidd2.nus.edu.sg/NPASS/
https://mesh.tcm.microbioinformatics.org/
https://lsp.nwsuaf.edu.cn/CancerHSP.php
https://informatics.kiom.re.kr/compound/
https://bidd2.nus.edu.sg/CMAUP/
https://cadd.pharmacy.nankai.edu.cn/yatcm/home
https://cadd.pharmacy.nankai.edu.cn/yatcm/home
https://herb.ac.cn/
https://www.rcdd.org.cn/tcmanalyzer
https://pharmdb-k.org
https://wakanmoview.inm.u-toyama.ac.jp/kampo/
https://wakanmoview.inm.u-toyama.ac.jp/kampo/
https://tcmio.xielab.net/
https://bionet.ncpsb.org.cn/dcabm-tcm/%23/Home
https://bionet.ncpsb.org.cn/dcabm-tcm/%23/Home
https://tcm.charite.de/supertcm
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Notably, network pharmacology shows an immense advantage
in the feasibility analysis of drug repositioning, especially in the
analysis of CHM ingredients. Wang et al. [108] applied network
pharmacology (integrated network proximity and network diffu-
sion) to quantify the relationship between CHM ingredients’ tar-
gets and COVID-19 disease targets in the protein–protein-
interaction network, thereby predicting new anti-COVID-19 ingre-
dients. Quercetin, luteolin, acacetin and kaempferol were screened
as anti-COVID-19 candidates. Other CHM ingredients such as ber-
berine [109], emodin [110], astragaloside IV [111], matrine [112],
puerarin [113], glycyrrhizic acid [114], hesperidin, isorhaponti-
genin and gallocatechin-7-gallate [115] were also repurposed as
therapeutic candidates against COVID-19 based on network phar-
macology analysis (Fig. 3), and some typical compounds (berber-
ine, emodin and glycyrrhizic acid, etc.) have been validated by
molecular docking and dynamics simulation as potential inhibitors
for different proteins of SARS-CoV-2 or a drug in treating COVID-19
cytokine storm [116–118]. In preclinical explorations on cell or
animal models, luteolin, quercetin, emodin, glycyrrhizic acid, hes-
peridin, isorhapontigenin and gallocatechin-7-gallate have been
successfully validated to block the SARS-CoV-2 replication or the
spike protein and ACE2 interaction [115,119].

Although network pharmacology research on CHM against
COVID-19 is expanding, there are still many limitations that need
to be discussed and resolved [99]. For example, the CTIs obtained
by database-based strategy should be experimentally validated.
TCM as adjunctive therapy to Western medication remains the
mainstream treatment of COVID-19 in China, so a systematic
network-based model should be built to better understand how
integrated Chinese and Western medicine works together. Last
but not least, it is necessary to combine network pharmacology-
based identification, experimental validation and clinical data.
Fig. 3. Rich resources of Chinese herbal medicine ingredient repositioning via network p
replication, ACE2 receptor and/or cytokine storm. ACE2: angiotensin-converting enzyme
6: interleukin-6; PLpro: P-like protease; RBD: receptor-binding domain; RdRp: RNA-depe
2; TNF-a: tumor necrosis factor-a.
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4. Concluding remarks

Network pharmacology presents an immense scope for explor-
ing traditional knowledge to find solutions for the modernization
of TCM. In this review, we mainly introduced many pioneering
explorations on active compound identification, CTI prediction
and network topology analysis embedded in the workflow of net-
work pharmacology as well as specialized databases, thereby pro-
viding reference for deciphering the exact mechanisms of CHM
against diseases. The spotlight of network pharmacology in the
mechanistic investigation and repositioning of CHMs against
COVID-19 was also discussed.

Recently, the first international standard for evaluating network
pharmacology—‘‘Network Pharmacology Evaluation Method Guid-
ance” (2021) was released by the World Federation of Chinese
Medicine Societies, to promote more standardized implementation
of network pharmacology by result verification from the perspec-
tive of computer models, experimental models, and clinical data
[120]. From this, we conclude that (1) the best future direction
for network pharmacology is to integrate the post-network analy-
sis (e.g., molecular docking and simulation) and the experimental
and clinical data, such as analytic and multi-omics data; (2) the
reliability and repeatability of the network pharmacology results
should be improved; (3) more robust computing algorithms/soft-
wares should be developed for the systematic screening, integra-
tion, and processing of data on various compounds, genes, and
proteins; (4) the specialized database development with high data
quality and quantity along with constant updating and regulation
is very necessary. Collectively, by integrating reductionist and sys-
tems approaches as well as computational and experimental meth-
ods, network pharmacology will accelerate the modernization
process of TCM in the future.
harmacology for coronavirus disease 2019 treatment mainly targeting SARS-CoV-2
2; 3CLpro: 3-chymotrypsin-like protease; CXCL: chemokine (CXC motif) ligand 1; IL-
ndent RNA polymerase; SARS-CoV-2: severe acute respiratory syndrome coronavirus
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