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Abstract

This article is dedicated to Dr. Peter Doherty. While Peter continues to make groundbreaking discoveries in the
field of immunology, he also provides outstanding scientific mentorship to his trainees. Here we contemplate
our past training with Peter, Peter’s teachings of basic immunological principles, and how basic principles may
instruct the design of a successful human immunodeficiency virus-type 1 vaccine.
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Training with Peter Doherty

We were trained as fellows in the laboratory of Dr.
Peter Doherty where we were taught the basic con-

cepts of immunology. Peter described how lymphocytes
recognize and then eradicate invading viruses. While teach-
ing and engaging trainees in his ongoing projects, Peter also
encouraged scientific independence. Unlike many mentors
who focus primarily on their own ideas, Peter encouraged
young scientists to formulate new hypotheses. He supported
scientific freedom both within his laboratory and for trainees
who graduated from his laboratory to advance their inde-
pendent careers.

In the mid-1990s, after we had graduated from Peter’s
laboratory and had taken new positions in Peter’s Im-
munology Department at St. Jude Children’s Research
Hospital (St. Jude), we initiated development of a clinical-
grade vaccine. We were soon meeting with Food and Drug
Administration (FDA) officials and learning Good Manu-
facturing Practices (GMPs) required for the development of
clinical biologicals. These steps paved the way for the
preparation of clinical vaccine material and the conduct of a
first phase I clinical vaccine study at St. Jude. Today, the
Children’s GMP LLC on the St. Jude campus produces
dozens of products for clinical applications.

It was while we were advancing our first vaccine candi-
dates in 1996 that Peter and Dr. Rolf Zinkernagel received
the Nobel Prize in Physiology or Medicine for their ground-
breaking discovery of major histocompatibility complex

(MHC) restriction. In the 1970s, Peter and Rolf found that
immune T cells only recognized infected target cells when
the T cell and target cell shared MHC (14,54–57). This
discovery drove further research into T cell receptor, viral
peptide, and MHC interactions (20) and has since served as
the foundation for decades of basic and clinical advances in
vaccine development and T cell immunotherapies. Peter ac-
cepted the Nobel Prize with humility. Even today, when
young scientists meet Peter, they are impressed with his
humility and willingness to stop and discuss science. Peter is
never too busy to listen and provide advice. In sum, Peter
taught us and teaches us how to perform research, how to
enjoy research, how to share research, and how basic im-
munological principles can translate to extraordinary im-
provements in human health.

Basic Immunology Concepts
and Vaccine Development

Evolution has armed mammals with an impressive means
of immune protection. The sophisticated joining of immu-
noglobulin or T cell receptor variable, diversity, and joining
(V-D-J) gene segments in developing B cells and T cells
provides humans with as many as 1020 different receptors
[one model predicts that the receptor number is >1060]
(13,28,32). Each lymphocyte bears a different receptor and
each receptor has a different antigenic specificity. Immune
receptors bind their targets (free antigen for B cells and
peptide-MHC complexes for T cells) using highly specific
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‘‘lock-and-key’’ (target-to-receptor) interactions. Accord-
ingly, the enormous diversity of unique immune cells/re-
ceptors has the potential to protect humans against virtually
any pathogen in nature.

Vaccine developers may take advantage of diverse B and
T cell receptor repertoires by designing look-a-like vac-
cines. When a vaccine ‘‘looks like’’ its target pathogen (i.e.,
carries antigens that are structurally matched), the vaccine
will safely activate (by ‘‘lock-and-key’’ interactions with
lymphocyte receptors) the B cells and T cells that can cross-
react with the pathogen. These lymphocytes then amplify
and serve as an army, ready to tackle pathogen when an
exposure occurs at a later date. Lymphocyte activation be-
fore pathogen exposure is essential, particularly for persis-
tent viruses such as human immunodeficiency virus-type 1
(HIV-1), which in the absence of primed defenses can es-
tablish permanent residence in immune-privileged sites.

HIV-1 Vaccine Development

HIV-1 is a formidable human pathogen. In part, this is
because HIV-1’s attachment envelope protein (Env) can
vary [although Env diversity is limited by its requirement to
bind conserved CD4 (26) and co-receptor molecules]. HIV-
1 is not the first diverse pathogen to pose a challenge to
vaccine development; in other fields, vaccines against di-
verse pathogens have already been designed and licensed. In
the 1950s, Jonas Salk produced a successful polio vaccine
by combining representatives of three circulating poliovirus
serotypes into a cocktail (4–6,22,24). Streptococcus pneu-
moniae vaccines have similarly proven effective, because
they are cocktails that represent diverse serotypes. Cocktail
vaccines for S. pneumoniae were being formulated as early
as 1945 and resulted in a vaccine, still used today, com-
prising 23 purified capsular polysaccharides for representa-
tion of 23 different serotypes (2,50). When pneumococcus
conjugate vaccines were first developed, only seven sero-
types of pneumococcus were included (Prevnar), but
breakthrough infections occurred and vaccine valency was
accordingly increased (19,21,47). The current conjugate
vaccine formulation (Prevnar 13) includes 13 serotypes (1),
and new vaccine candidates comprising even more distinct
serotypes are being developed. It should be noted that the
public health benefits conferred even by the smallest vaccine
cocktail formulations have been immeasurable.

Adding to lessons from other vaccine fields, insight into
successful HIV-1 vaccine development can be gained by
analyses of natural virus infections. Studies have shown that
animals previously exposed to HIV-1 (or simian immuno-
deficiency virus [SIV] or chimeric HIV-SIV [SHIV] in
nonhuman primate models) are often protected from su-
perinfection (9,10,12,15,33,37,43,45). Furthermore, the
passive transfer of sera from an infected animal to a naive
animal can be protective (27,34,46).

The immunity against exogenous virus that is conferred by
infection is a consequence of a complex interplay between
endogenous virus and the immune system. When a naive
individual is naturally infected with HIV-1, the founder virus
is limited in diversity and the consequent immune response
is similarly limited (49). Virus is not cleared, but it is instead
sequestered in privileged sites. Virus then mutates, generat-
ing new Env structures that can support HIV-1 infection and

can escape the contemporaneous systemic immune response
(31,49). When new virus variants circulate, they activate new
lymphocytes, increasing the breadth of the immune response.
Activated B cells also experience somatic mutation, after
which cells that bear receptors with improved affinity and
avidity toward viral antigens are amplified (17). After several
rounds of virus escape and lymphocyte activation, immune
breadth is sufficient to recognize diverse HIV-1 and thereby
protect against virus infections from an exogenous source
(29,35,49). Vaccines designed to recapitulate the Env di-
versity that is introduced by a natural virus infection are
likely to prove successful (29).

Yet another lesson informing HIV-1 vaccine development
can be gleaned from the RV144 HIV-1 vaccine study (30).
Although this clinical trial suggested a vaccine efficacy of
only *30% (in a modified intention-to-treat analysis), it is
noteworthy that the vaccine included only three different
Env. One genetically engineered Env was expressed with
other HIV-1 proteins by recombinant canarypox and two
Env were included in a protein boost (51). Trial results were
disappointing, but they pointed to the potential efficacy that
could be afforded by a larger vaccine cocktail (as was ob-
served in the pneumococcal vaccine field).

Creating an HIV-1 Cocktail Vaccine

Successful multivalent or ‘‘cocktail’’ vaccines (such as
those tested in the 1940s and 1950s) were designed to rep-
resent antigenically distinct target pathogens by mapping
(cartography) studies that tested antigen–antibody interac-
tions (4–6,24,41). Similar antigen–antibody mapping studies
have been initiated in the HIV-1 vaccine field by using virus
isolates/proteins and sera/antibodies (3,23,25,38,58). These
have defined antigenic clusters, but they have not yet been
used to advance a vaccine to licensure.

Results from antigen–antibody mapping studies empha-
size that the virus’s clade (sequence) and country of origin
do not always predict antigenicity (3,23,40,48). Rather,
some viruses from two different clades and countries share
antigenicity, whereas some viruses from the same clade and
country do not. This result is expected, because B cell and
T cell epitopes are influenced by structure (including three-
dimensional and four-dimensional protein configurations),
not just sequence, and because structure can be altered by
one or a few amino acid changes within or distant from a
target epitope (7,8,11,16,36,44).

Cartography studies in the HIV-1 field could be easily
expanded and fine-tuned using high-throughput antigen–
antibody assays to create vaccine cocktails representing
most functional Env antigens. The immune system naturally
responds to a plethora of diverse antigens in the human
environment and can also respond to large multicomponent
vaccines (e.g., the pneumococcus vaccines described earlier
or much larger vaccine libraries) (18,39,42,52,53).

Presumably large HIV-1 cocktail vaccines will eventually
be developed, shown to induce protective immunity, and
licensed. Inferring from previous successful vaccines such
as Prevnar, it is possible that HIV-1 vaccine development
will be iterative—advancing in vaccine efficacy with each
subsequent iteration.

The multi-Env cocktail vaccine approach is slowly
gaining momentum in the HIV-1 vaccine field. Goals are to
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recruit an array of lymphocytes with diverse receptors and
to promote somatic mutations to improve receptor affinity,
avidity, and breadth (17). These outcomes may together,
ultimately, protect humans from a deadly disease.
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