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SUMMARY

Compared with SNV&indel-based neoantigens, fusion-based neoantigens are not well character-

ized. In the present study, we performed a comprehensive analysis of the landscape of tumor

fusion neoantigens in cancer and proposed a score scheme to quantitatively assess their immuno-

genic potentials. By analyzing three large-scale tumor datasets, we demonstrated that (1) the

tumor fusion candidate neoantigen burden is not related to the immunotherapy outcome; (2)

fusion neoantigens tend to have notably higher immunogenic potentials than SNV&indel-based

candidate neoantigens, making them better candidates for cancer vaccines; (3) fusion candidate

neoantigens distribute sparsely between individual patients. Although several recurrent candidate

neoantigens exist, they usually have extremely low immunogenic potentials, suggesting that

vaccination-based cancer immunotherapy must be personalized; (4) compared with fusion

mutations involving tumor passenger genes, fusion mutations involving oncogenic genes have

remarkably low immunogenic potentials, indicating that they undergo selection pressure during

tumorigenesis.
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INTRODUCTION

Vaccination therapy to fight cancer by boosting the response of the human immune system to cancer

cells is a highly promising treatment strategy. Neoantigens are peptides generated from somatically

mutated genes that play an important role in vaccination-based cancer immunotherapy (Liu and Mardis,

2017; Vitiello and Zanetti, 2017). It has been reported that predicted neoantigen load is strongly

correlated with the clinical response to immunotherapy. Fusion is a hybrid gene formed from two

previously separate genes, and it has long been known to play an important role in tumorigenesis

(Mertens et al., 2015). Because of the ability to create new open reading frame (ORF) and produce

plentiful neo-peptides, neoantigens can be generated from fusions (Yang et al., 2019). Current

studies of neoantigen sources mainly focus on single nucleotide variants (SNV) and small insertions

and deletions (indel), whereas fusion-based neoantigens across different cancers are not yet well

characterized (Zhou et al., 2019). Therefore, in the present study, we comprehensively characterized

the landscape of fusion candidate neoantigens presented by major histocompatibility complex class I

(MHC I) in three cohort datasets, i.e., the dataset of cancer cell lines with MHC I mass spectrum (MS),

the dataset of sequencing data from immune checkpoint blockade (ICB) trials, and The Cancer

Genome Atlas dataset (TCGA). Specifically, we characterized the tumor fusion neoantigens by taking

the T-cell receptor (TCR) recognition mechanisms into consideration. TCR is a molecule found on the

surface of T cells, or lymphocytes, that is responsible for recognizing fragments of antigen as

peptides bound to MHC molecules. To activate a T-cell response, peptide-MHC complex (pMHC)

must be recognized by T-cell receptors. However, in the process of mature T-cell generation, negative

selection mechanism removes T cells that are capable of strongly binding with self-peptides. As a

result, the TCR repertoire has intrinsic biases in their generation probabilities (Murugan et al., 2012).

Furthermore, due to the T-cell cross-reactivity (the ability of the T cell to recognize more than

one pMHC) and negative selection, predicted neoantigens may differ greatly in their immunogenic

potentials. Therefore, how to quantitatively and unbiasedly evaluate the neoantigen immunogenic

potentials remains a challenge issue. We hereby proposed a score scheme to evaluate fusion neoantigen

immunogenic potentials, taking two factors, i.e., the likelihood of peptide presentation by MHC

(Bjerregaard et al., 2017) and pMHC subsequent recognition by T cells (Łuksza et al., 2017), into

consideration. Through applying our score scheme to the MS, ICB, and TCGA cohort datasets,

several findings are presented, providing useful clues for personalized cancer vaccination-based

immunotherapy.
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Figure 1. Analysis of the MS Cohort Dataset

(A) Ten breast cancer cell line RNA sequencing data were analyzed according to our computational pipeline neoFusion. Two fusion neo-peptides, i.e.,

TAISPIAVLPR produced by OTUB1-CDC20 in HCC1806 cell line and APKSSSGFSL produced by MTSS1L-RPS15A in HCC1428 cell line, were experimentally

validated to be presented by MHC I using the MS data.

(B) Peptide-spectrum matches with q-value < 0.01 were extracted by mzR R package and then visualized by xiSPEC software.

See also Table S1.
RESULTS

Analysis of the MS Cohort Dataset

Fusion Peptides Can Be Processed and Presented on the Tumor Cell Surface

High resolution mass-spectrometry enables the identification and quantification of MHC ligands that are

naturally processed and presented. To demonstrate that gene fusion is able to generate neo-peptides

that can be presented by the MHC I, fusion candidate neoantigens in 10 human breast cancer cell lines

were predicted following our computational workflow (Methods). In our study, mutation burden is defined

as the total number of somatic mutations detected in a tumor sample and neoantigen burden is defined as

the total number of neoantigens produced by those mutations. The tumor fusion candidate neoantigen

burden varies from 24 to 147 in cancer cell lines, with amedian value of 63 (Figure 1A). Two fusion candidate

neoantigens, i.e., TAISPIAVLPR produced by OTUB1-CDC20 (by CDC20 frameshift transcript) in HCC1806

cell line and APKSSSGFSL produced by MTSS1L-RPS15A (by RPS15A frameshift transcript) in HCC1428 cell

line, were discovered in complex with MHC I via mass spectrometry with high confidences (Figure 1B,

Percolator q-value<0.01, Table S1). These results provide direct evidences of the processing and presen-

tation of fusion peptides through the MHC I, which were also recently experimentally demonstrated by

Yang (Yang et al., 2019).

Fusion candidate neoantigens were further prioritized according to their score as defined in theMethods. It

should be noted that when scoring those predicted fusion neoantigens, only the likelihood of peptide pre-

sented by MHC I (Methods) was calculated, as those peptides are eluted from pMHC complexes. The
250 iScience 21, 249–260, November 22, 2019



fusion candidate neoantigens TAISPIAVLPR in HCC1806 cell line (92 fusion candidate neoantigens in total)

and APKSSSGFSL in HCC1428 cell line (29 fusion candidate neoantigens in total) rank 6/92 and 2/29,

respectively, suggesting that candidate neoantigens with higher ranks are presented by the MHC I with

high priorities (p value<0.05, Methods).
Analysis of the ICB Cohort Dataset

Overview of the Landscape of Fusion Candidate Neoantigens in the ICB Dataset

Two melanoma ICB cohorts with whole-exome and RNA sequencing data were analyzed according to

our computational workflow (Methods). In the Van Allen cohort, the total number of fusions per sample

varied from 0 to 25, with a median value of 5. In the Hugo cohort, the total number of fusions per

sample varied from 0 to 9, with a median value of 1. In these two cohorts, tumor fusion candidate neoanti-

gens were notably lower than SNV&indel candidate neoantigens, in terms of both burden and score (Fig-

ure 2A, Table S2).

The Tumor Fusion Candidate Neoantigen Burden Is Not Associated with the Immunotherapy
Outcome

Given that the tumor SNV&indel neoantigen burden closely correlates with the response to checkpoint

inhibitors (Van Allen et al., 2015; Hugo et al., 2017; Lauss et al., 2017), we next examined whether the

tumor fusion candidate neoantigen burden is similarly associated with the immunotherapy response.

The tumor microenvironment, including the surrounding immune cells and fibroblasts, should be taken

into consideration in predicting the immunotherapy outcome (Church and Galon, 2015). According to

Rooney et al., cytolytic activity is a biomarker of the immune response (Rooney et al., 2015). Similarly,

Balachandran et al. reported that tumors having both the highest neoantigen burden and the most

abundant CD8+ T-cell infiltrates, but not either alone, stratified patients with the longest survival (Bala-

chandran et al., 2017). In other words, high-quality neoantigens and sufficient T cells are needed simul-

taneously to elicit a T-cell response. To this end, the cytotoxic lymphocyte score (CTL, Methods) was

incorporated to amplify the tumor candidate neoantigen score (score*CTL, Methods) for survival anal-

ysis. In both cohorts, the tumor fusion candidate neoantigen burden, neoantigen score, and the tumor

fusion candidate neoantigen score*CTL were not associated with the checkpoint inhibitor response

(Figures S1A, S1B, and 2B), suggesting that the tumor fusion candidate neoantigen burden is not a

biomarker for the immunotherapy outcome.

The Overall Tumor Candidate Neoantigen Score*CTL Is Associated with the Immunotherapy
Outcome

Since the response to checkpoint inhibitors is associated with the neoantigen burden, we reasoned that

neoantigens generated by all mutations should be taken into account. Therefore, we summed the

SNV&indel candidate neoantigen burden and fusion candidate neoantigen burden to obtain the overall

tumor candidate neoantigen burden. Similarly, we summed the SNV&indel candidate neoantigen score

and fusion candidate neoantigen score to obtain the overall tumor candidate neoantigen score. In the

Van Allen cohort, the overall tumor neoantigen burden, score, and CTL, respectively were not related

to the immunotherapy outcome (Figures S1C, S2A, and S2B). Survival, however, was significantly

improved in patients with a higher overall tumor candidate neoantigen score*CTL (Figure 2C, log rank

p value = 0.021) and overall tumor candidate neoantigen burden*CTL (Figure S2C, log rank p value =

0.032) in the Van Allen cohort. In the Hugo cohort, the overall tumor candidate neoantigen burden*CTL

and CTL respectively were not related to the immunotherapy outcome (Figures S2C and S1C). Survival

was significantly improved in patients with a higher overall tumor candidate neoantigen burden, score,

and higher overall tumor candidate neoantigen score*CTL (Figures S2A, S2B, and 2C, log rank p

value<0.05) in the Hugo cohort. Taking together, all the metrics except the overall tumor candidate neo-

antigen score*CTL have their limitations in immunotherapy response prediction in these two cohorts,

indicating the rationality and effectiveness of our proposed score scheme.

It can be seen that in these two ICB cohorts, tumor fusion candidate neoantigen burden and score

were notably lower than tumor SNV&indel candidate neoantigen burden and score respectively;

as a result, adding the fusion candidate neoantigen burden and score to the overall tumor candi-

date neoantigen burden and score does not affect the p value in predicting the immunotherapy

outcome.
iScience 21, 249–260, November 22, 2019 251
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Figure 2. Analysis of the ICB Cohort Dataset

(A) The overview of the tumor candidate neoantigen burden and score in the two ICB melanoma cohorts. Y axis values

were log2 transformed.

(B) The tumor fusion candidate neoantigen score*CTL could not separate patients in both cohorts.

(C) The overall tumor candidate neoantigen score*CTL significantly separated patients in both cohorts. Samples were

split by the median value cutoff in C and D. See also Figures S1 and S2 and Table S2.

(D) In the Van Allen cohort, the overall tumor candidate neoantigen score of the response group was significantly higher

than that of the no response group. In the Hugo cohort, there was no difference between the response group and no

response group. Boxplots show the first, median, and third quartiles, and whiskers extend to 1.5X the interquartile range.
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Moreover, we examined the overall tumor candidate neoantigen score*CTL, together with age and sex, in

a multivariable model. Our results indicated that the overall tumor candidate neoantigen score*CTL was

associated with the response to checkpoint inhibitors, independent of age and sex (Figure S1D, Van Allen

cohort: hazard ratio [HR] 0.44, 95% confidence interval [CI] 0.22–0.89, log rank p value = 0.022; Hugo cohort:

HR 0.24, 95% CI 0.064–0.92, log rank p value = 0.038).

It should be noted that patients in these two cohorts were previously stratified into two groups according to

the RECIST criteria (Methods). In the Van Allen cohort, the overall tumor candidate neoantigen score of the

response group was significantly higher than the no response group (Figure 2D, p value = 0.013, Mann-

Whitney U test). In the Hugo cohort, however, there was no significant difference between the response

and no response group (Figure 2D, p value = 0.061, Mann-Whitney U test), possibly due to the small sample

size.

Incorporating Fitness Score into Our Score Scheme Boosts the Predictive Power in the Survival
Analysis

Previously, Luksza et al. (Łuksza et al., 2017) presented a fitness model to calculate the likelihood of

pMHC recognized by T-cell receptors (fitness score, Methods) by alignment neo-peptides with a set

of epitopes retrieved from IEDB. To activate a T-cell response, pMHC must be recognized by T-cell re-

ceptors. Therefore, we evaluated whether incorporating the fitness score into our score scheme could

boost the predictive power in the survival analysis. Our results showed that taking the fitness score

into consideration significantly separated patients in both cohorts in predicting the immunotherapy

outcome (Figure 2C). Although the patients could not be separated in the Hugo cohort without the

incorporation of the fitness score (Figure S2D), indicating that fitness model does boost predictive power

in the survival analysis.
Analysis of the TCGA Cohort Dataset

Overview of the Landscape of Fusion Candidate Neoantigens in the TCGA Dataset

In total, there are 67,502 predicted fusion candidate neoantigens among the 6552 TCGA samples. The

most common number of mismatches between the candidate neoantigen and the corresponding wild

type peptide is 3, and frameshift fusion produces up to 145 candidate neoantigens. In our study, the tumor

SNV&indel candidate neoantigen burden strongly correlated with the tumor SNV&indel mutation burden

(pearson R = 0.89, p value<2.23 10�16). As for fusion, the correlation was slightly weaker (pearson R = 0.74,

p value<2.23 10�16). Similar to the tumor candidate SNV&indel neoantigen burden (Thorsson et al., 2018),

the overall tumor candidate neoantigen score*CTL is not a prognostic factor for overall survival (Figure S3A)

except for TCGA BLCA. Previously, based on the mechanism of T-cell central tolerance, Turajlic defined an

SNV&indel candidate neoantigen with a half maximal inhibitory concentration (IC50) of less than 50 nM and

the corresponding wild-type peptide with an IC50 greater than 50 nM as the specific candidate neoantigen

(Turajlic et al., 2017). Because of self-immune tolerance, compared with nonspecific candidate neoanti-

gens, specific candidate neoantigens tend to have higher immunogenic potentials. Following this defini-

tion, we applied this idea to fusion candidate neoantigens. Because we used binding affinity percent

rank metric to filter peptides in the present study, a neoantigen with binding affinity percent rank %2

and a corresponding wild-type peptide with a binding affinity percent rank >2 was defined as a specific

candidate neoantigen (Jurtz et al., 2017). For different cancer types, the fusion-specific candidate neoan-

tigen burden per sample varied from 0 to 205, with amedian value of 0. In our study, fusionmutation burden

is the total number of fusions detected in a sample. The fusionmutation burden per sample varied from 0 to

55, with a median value of 1. The fusion candidate neoantigen burden per sample varied from 0 to 360, with

a median value of 0. Breast invasive carcinoma (BRCA) was the cancer type with the highest fusion mutation

burden per sample. Kidney chromophobe (KICH), kidney renal cell carcinoma (KIRC), and kidney renal

papillary cell carcinoma (KIRP) were the three cancer types with the lowest fusion mutation burden, fusion

candidate neoantigen burden, and fusion-specific candidate neoantigen burden, each with a median of 0

(Figure 3A).

Fusion Candidate Neoantigens Tend to Have Higher Immunogenic Potentials Than SNV&Indel
Candidate Neoantigens

For TCGA cohort data, the fusion mutation burden, candidate neoantigen burden, and specific candidate

neoantigen burden were notably lower than the SNV&indel mutation, candidate neoantigen, and specific
iScience 21, 249–260, November 22, 2019 253
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Figure 3. Analysis of the TCGA Cohort Dataset

(A) The landscape of the fusion mutation burden, fusion candidate neoantigen burden, and fusion-specific candidate

neoantigen burden in the 20 cancer types.

(B) The landscape of the fusion mutation burden, fusion candidate neoantigen burden, and fusion-specific candidate

neoantigen burden ratio in the 20 cancer types.

(C) The overview of the fusion and SNV&indel candidate neoantigen scores in the 20 cancer types. Except for PAAD,

READ, and THCA, the fusion candidate neoantigen scores were significantly higher than that of the SNV&indel candidate

neoantigen scores. Black star indicates p value>0.01.

(D) A fusion mutation was able to generate much more and high-quality candidate neoantigens than an SNV&indel

mutation.

(E) In contrast to the SNV&indel mutation burden, the fusion mutation burden was significantly higher in microsatellite

stable tumors.

Boxplots show the first, median, and third quartiles, and whiskers extend to 1.5X the interquartile range. Outlier points are

not shown. See also Tables S3 and S4.
candidate neoantigen burden in all cancer types (Figure 3B). Except for pancreatic adenocarcinoma

(PAAD), rectum adenocarcinoma (READ), and thyroid carcinoma (THCA), the score of fusion putative neo-

antigen was significantly higher than the score of SNV&indel candidate neoantigen in all cancer types (Fig-

ure 3C, Mann-Whitney U test, p value<0.01). Compared with SNV&indel, a fusion is able to produce more

putative neoantigens (Figure 3D, p value<0.01, Mann-Whitney U test). Intriguingly, candidate neoantigens

generated by fusion are muchmore likely to be specific candidate neoantigens (Figure 3D). Of 6,552 TCGA

tumor samples, 3,161 simultaneously harbored tumor fusion and SNV&indel putative neoantigens. In 1,018

of 3,161 tumor samples, the putative neoantigen with highest immunogenic potentials were generated by
254 iScience 21, 249–260, November 22, 2019



fusion. Given that the mean fusion candidate neoantigen burden per sample was notably lower than the

SNV&indel candidate neoantigen burden, this result further supports the fact that the fusion candidate

neoantigens have significantly higher immunogenic potentials (p value<0.001, binomial test).

The Fusion Mutation Burden Is Significantly Higher in Microsatellite Stable Tumors

Microsatellite instability (MSI), a pattern of hypermutation that occurs at genomic microsatellites, is caused

by defects in the mismatch repair system. The US Food and Drug Administration approved the high MSI

phenotype as a biomarker for immunotherapy (Le et al., 2015). MSI is highly positively correlated with

the tumor SNV&indel mutation burden (Bonneville et al., 2017). In this study, we further investigated the

relationship between MSI and the tumor fusion mutation burden in the TCGA cohort data. The proportion

of the MSI sample, as measured by the MANTIS score (Reeser et al., 2016), varied substantially across 20

cancer types. Because only colon adenocarcinoma (COAD), stomach adenocarcinoma (STAD), and uterine

corpus endometrial carcinoma (UCEC) had sufficient MSI samples for analysis (samples R15), we focused

on these three cancer types. Consistent with previous studies, MSI tumors had a significantly higher

SNV&indel mutation burden (Figure 3E). In contrast to the SNV&indel mutation burden, however, the

fusion mutation burden was notably lower in MSI tumors (STAD, UCEC p value<0.01, COAD p value =

0.012, Mann-Whitney U test). Furthermore, we investigated the relationship between the category of fusion

and the status of microsatellite. Fusion mutations were separated into two categories with respect to the

gene involved, i.e., driver gene fusion and passenger gene fusion (Gao et al., 2018; Table S3). The propor-

tion of MSS tumor harboring driver fusion is higher than that of MSI tumor (STAD, COAD 3.2% vs 1.2%,

UCEC 5% vs 0.6%). The driver fusion mutation burden was higher in MSS tumor (STAD, UCEC p value<0.01,

Mann-Whitney U test). These may be explained by the fact that as a result of mismatch repair system defi-

ciency, MSI tumors harbored notably more SNV&indel mutations, and these tumors are primarily driven by

SNV&indel mutations (Vaish and Mittal, 2002). By contrast, because fewer SNV&indel mutations exist, mi-

crosatellite stable (MSS) tumor cells are likely to rely on other mechanism to gain a growth advantage such

as producing driver fusion mutations.

Frameshift Fusion Candidate Neoantigens Tend to Have Higher Immunogenic Potentials Than
Inframe Fusion Candidate Neoantigens

In our study, fusions were also separated into three categories with respect to the frame of the 30 gene, i.e.,
noframe fusions, inframe fusions, and frameshift fusions. Among the 25,664 TCGA fusions, there were 9,284

noframe fusions, 7,738 frameshift fusions, and 8,642 inframe fusions, respectively. Not surprisingly, frame-

shift fusions can produce more candidate neoantigens due to the ability to create new ORF (Figure 4A,

p value<0.01, Mann-Whitney U test). On average, a frameshift fusion generates 6 candidate neoantigens,

and an inframe fusion generates 2.46 candidate neoantigens. Moreover, frameshift fusion candidate

neoantigens tend to have higher immunogenic potentials than inframe fusion candidate neoantigens (Fig-

ure 4B, p value<0.01, Mann-Whitney U test). It should be noted that compared with inframe fusion neoan-

tigens, frameshift neoantigens could increase the nonsense-mediated decay (NMD) mechanism, thereby

decreasing its own immunogenic potential. The main function of NMD is to reduce errors in gene expres-

sion by eliminating mRNA transcripts that contain premature stop codons. NMDwill potentially reduce the

expression level of frameshift fusion transcripts and thus their immunogenic potential. Our results indi-

cated that compared with samples without frameshift fusion mutation, NMD activity in samples harboring

frameshift fusion is slightly higher (Methods). Estimating NMD efficiency and taking expression level into

consideration when evaluating fusion peptides immunogenic potentials should make our score scheme

and conclusion more reliable. However, this factor was not incorporated in our score scheme in our present

study, because the expression information of fusion genes is unavailable.

Furthermore, we examined the relationship between the fusion frame’s status and the fusion’s

category. The TCGA fusions were separated into four categories with respect to the gene involved,

i.e., oncogene (Onco) fusion, tumor suppressor gene (TSG) fusion, kinase fusion, and passenger gene

fusion (Gao et al., 2018; Table S3). In total, 2,104 kinase fusions, 522 Onco fusions, 436 TSG fusions,

and 23,115 passenger fusions were observed. Onco fusions and kinase fusions are more likely to be in-

frame than those of passenger fusions, as preserving the ORF is required to keep their oncogenic func-

tion (Figure 4C, p value<0.01, chi-squared test). TSG fusion during creating a new ORF will reduce or lose

its function, which leads to tumorigenesis. In other words, TSG fusion is not required to maintain their

function during tumorigenesis. Therefore, the inframe ratio does not differ between TSG fusion and pas-

senger fusion.
iScience 21, 249–260, November 22, 2019 255
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Figure 4. Analysis of the TCGA Cohort Dataset

(A) A frameshift fusion was able to generate much more candidate neoantigens than that of an inframe fusion.

(B) Frameshift fusion candidate neoantigens have notably higher immunogenic potentials. ** indicates p value<=0.01

and * indicates p value<=0.05.

(C) The inframe ratio of Onco and kinase fusion were significantly higher than that of passenger fusion. Onco, oncogenic;

TSG, tumor suppressor gene.

(D) Candidate fusion neoantigens were extremely sparse.

(E) Several fusions occurred in most cancer types while several fusions only occurred in specific cancer types. Of 498 PRAD

tumor samples, 190 harbored the TMPRSS2-ERG fusion. Only 15 most recurrent fusions were displayed. Size in the plot

corresponds to the number of samples harbor that fusion.

Boxplots show the first, median and third quartiles and whiskers extend to 1.5X the interquartile range. Outlier points are

not shown. See also Tables S3 and S4.
Onco Fusion Mutations Tend to Have Lower Immunogenic Potentials Than Passenger Fusion
Mutations

Immunoediting, a dynamic process comprising immunosurveillance and tumor progression, describes the

relation between tumor cells and the immune system (Schreiber et al., 2011). Although the immune system

exerts negative selective pressure on tumors, it also helps to sculpt the tumor genotype. Mutations in the

driver gene, while conferring cells a selective growth advantage, render cells vulnerable to the immune sys-

tem as a result of generating neoantigens. In addition, driver mutations are necessary in the development

of cancers. As a consequence, driver mutations detected in tumors should be biased toward with lower

immunogenic potentials (Marty et al., 2018; Sun et al., 2017). The fusion score defined as the sum of
256 iScience 21, 249–260, November 22, 2019



Figure 5. neoFusion Workflow Overview

Gene fusions were detected by STAR-Fusion with RNA sequencing data. Translated fusion proteins output by STAR-

Fusion were chopped up into 9–11 kmers peptides until a stop codon. The pMHC binding affinity and binding affinity

percent rank were determined by NetMHCpan in binding affinity mode. Peptides with binding affinity percent rank %2

were reported as candidate neoantigens. Fusion candidate neoantigens were scored according to our score scheme and

ranked according to their scores. See also Figure S4.
candidate neoantigen scores generated by that fusion (Methods) showed that the Onco fusion score was

significantly lower than the passenger fusion score but not others (Methods).

Highly Recurrent Candidate Neoantigens Tend to Have Extremely Low Immunogenic Potentials

Only 5.8% fusion candidate neoantigens in the TCGA cohort data were shared between patients (Fig-

ure 4D). We found that highly recurrent candidate neoantigens have extremely low immunogenic poten-

tials. For example, the neoantigen score of KMALNSEAL, a candidate neoantigen generated by

TMPRSS2-ERG, which presents in 38% PRAD, only ranks at the 92nd percentile (Figure 4E). The low immu-

nogenic potential of highly recurrent fusion candidate neoantigens clearly suggests that neoantigen-

based cancer vaccination immunotherapy must be personalized.
DISCUSSION

Fusion, which is an important class of somatic mutations, is an ideal source of tumor-derived neoantigens

for creating an ORF. Compared with SNV&indel-based neoantigens, however, fusion-based neoantigens

are not well characterized. A comprehensive literature review indicated that INTEGRATE-neo is the only

existing in silico tool for fusion neoantigen prediction; however, it cannot assess their immunogenic poten-

tials, which can be substantially different due to a single nucleotide mismatch (Bjerregaard et al., 2017). In

this study, we propose an effective tool neoFusion for fusion neoantigen identification (Figure 5).
iScience 21, 249–260, November 22, 2019 257



Furthermore, a rational score scheme to quantitatively assess the identified fusion neoantigen immuno-

genic potentials is presented (Figure 5).

By analyzing the ICB cohort dataset, we found that (1) neither the tumor fusion candidate neoantigen

burden nor the tumor fusion candidate neoantigen score*CTL was associated with the immunotherapy

outcome in the two melanoma ICB cohorts, indicating that the tumor fusion candidate neoantigen burden

may not be a predictive biomarker for the immunotherapy response; (2) in the Van Allen cohort, only the

overall tumor candidate neoantigen score*CTL and burden*CTL significantly separated patients. In the

Hugo cohort, only the overall tumor candidate neoantigen score*CTL, score, and burden separated

the patients. Taking together, all the metrics except the overall tumor candidate neoantigen score*CTL

have their limitations in immunotherapy response prediction in these two cohorts, indicating the rationality

and effectiveness of our score scheme; (3) so far, a higher PD-1 or PD-L1 expression (Garon et al., 2015), a

higher neoantigen load, the microsatellite instability, and a higher peripheral baseline TCR diversity

(Postow et al., 2015) are all reported to be associated with a better immunotherapy outcome; therefore,

prediction of the response to immunotherapy is still an open question and a comprehensive model to accu-

rately predict patient response is still lacking, likely requiring much more data to train and refine. We

believe that the neoantigen score, tumor microenvironment such as CTL score, and other types of neoan-

tigens besides SNV&indel based should be taken into consideration in predicting the immunotherapy

outcome; (4) in these two ICB cohorts, tumor fusion candidate neoantigen burden and score were notably

lower than tumor SNV&indel candidate neoantigen burden and score, respectively; therefore, adding

them to the overall tumor candidate neoantigen burden and score does not improve the prediction accu-

racy of immunotherapy response. However, recently Yang et al. identified a patient exhibited complete

response to anti-PD1 immunotherapy despite a low SNV&indel mutation burden and demonstrated that

the patient elicited a T-cell response to neoantigen generated by fusion (Yang et al., 2019). Therefore, in

certain cancer types such as BLCA, since the tumor fusion candidate neoantigens contribute to a relatively

high proportion of the overall tumor candidate neoantigens, taking tumor fusion candidate neoantigens

into consideration may improve the prediction of immunotherapy outcome.

Through comparing the TCGA fusion candidate neoantigens with the TCGA SNV&indel candidate neoan-

tigens, we presented the following findings: (1) fusion, which is able to create novel ORF, generate 6-fold

more candidate neoantigens and 11-fold more specific candidate neoantigens as SNV&indel. Compared

with the SNV&indel candidate neoantigen burden, the fusion candidate neoantigen burden per sample

was notably lower. Nevertheless, fusion candidate neoantigens tend to have notably higher immunogenic

potentials. In 32.2% TCGA patients, candidate neoantigens with the highest immunogenic potentials were

produced by fusion, making fusion neoantigens a better source for cancer vaccines; (2) similar to the

SNV&indel candidate neoantigen burden, the fusion candidate neoantigen burden strongly correlated

with the fusion mutation load. Furthermore, both types of candidate neoantigens were extremely sparse.

Although several recurrent fusion candidate neoantigens exist, they usually have extremely low immuno-

genic potentials, further indicating that cancer vaccination strategies based on neoantigens must be

personalized (Schreiber et al., 2011). To be recurrent, mutations must confer tumor cells a selective advan-

tage. Producing neo-peptides that do not attract the attention of the human immune system confer such an

advantage. Therefore, those highly recurrent fusion peptides such as KMALNSEAL in PRAD usually have

low immunogenic potentials.

The comparison between passenger fusionmutations and other types of fusionmutations indicated that (1)

Onco fusion mutations tend to have lower immunogenic potentials than passenger fusion mutations. Onco

fusion mutations, while conferring cells a selective growth advantage, render cells vulnerable to the im-

mune system as a result of generating neoantigens. Cancer cells that harbor Onco fusion mutations poorly

bound to MHC are thus positively selected during tumorigenesis. As tumor cells grow and activate mech-

anisms to evade the immune system, passenger mutations are acquired regardless of their affinities to the

MHC complex (Marty et al., 2018). Therefore, Onco fusion mutations tend to have lower immunogenic po-

tentials than passenger fusion mutations; (2) similar to Onco fusionmutations, TSG fusionmutations should

have lower immunogenic potentials than passenger fusion mutations. However, the immunogenicity score

did not differ between passenger fusion mutations and TSG fusion mutations. These may be explained by

the fact that, in contrast to Onco fusions, TSG fusions tend to be under-expressed and thus insufficient to

generate a T-cell response (Gao et al., 2018). In conclusion, neoantigens produced byOnco and TSG fusion

mutations are less likely to induce a T-cell response, and passenger fusion neoantigens may have particular

relevance for vaccine.
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Limitations of the Study

Our study presents the first comprehensive profile of fusion neoantigens from a pan-cancer perspective,

which provides useful clues for personalized cancer vaccination-based immunotherapy. Several limitations

should be noted: (1) 8 kmer and 12 kmer and above peptides can also be displayed by MHC I; however, in

the present study, only the most common 9–11 kmer peptides were considered; (2) the fusion expression

level factor was not incorporated in our score scheme in the present study, because such information was

absent; however, knowledge accumulated in immunotherapy community will make the accurate and objec-

tive evaluation of the peptides immunogenic potential feasible in the future.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

QUANTIFICATION AND STATISTICAL ANALYSIS

Survival analysis was performed using the Kaplan-Meier method provided by survival R (version 3.4.4) pack-

ages. The log rank test and Cox proportional hazard model were used to assess the correlation between

metrics and overall survival. We used a one-sided nonparametric Mann-Whitney U test for non-normally-

distributed variables to assess the difference in mean or median for a continuous variable between two

groups. All statistical analyses were performed with the Python 3 SciPy, and NumPy libraries. The param-

eters of software used in our study were set as default without explicitly stated.

DATA AND CODE AVAILABILITY

neoFusion is available at https://github.com/bm2-lab/neoFusion, with a Docker version at https://hub.

docker.com/r/bm2lab/neoFusion/.

The mass spectrum data: ten breast cancer cell line RNA-sequencing data were downloaded fromSe-

quence Read Archive (NCBI: SRP026537). The corresponding MS proteomics data were

downloaded from ProteomeXchange Consortium (proteomecentral.proteomexchange.org, PXD006406).

The immune checkpoint blockade cohort data: two cohorts of melanoma datasets were downloaded from

the database of Genotypes and Phenotypes (dbGaP: phs000452.v2.p1) and SRA (NCBI: SRP070710),

respectively. The overall survival and progression-free survival data and other data needed were retrieved

from the original article supplementary.

The TCGA cohort data: TCGA fusion, oncogene, kinase gene, and tumor suppressor gene lists were

retrieved from Gao et al. (Gao et al., 2018). The TCGA whole-exome sequencing (WES) VCFs and corre-

sponding expression profile files were downloaded from TCGA website. HLA allele information was re-

quested from The Cancer Immunome Atlas (https://tcia.at/home; Thorsson et al., 2018). The landscape

of microsatellite instability of TCGA tumor samples were obtained from Bonneville et al.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.10.028.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China (Grant No. 2017YFC0908500,

2016YFC1303205), National Natural Science Foundation of China (Grant No. 61572361), Shanghai Ris-

ing-Star Program (Grant No. 16QA1403900), Shanghai Municipal Health Commission Innovative integra-

tion for molecular oncology (Grant No. 2019CXJQ03) and Shanghai Natural Science Foundation Program

(Grant No. 17ZR1449400).

AUTHOR CONTRIBUTIONS

Q.L., Z.M.L., and C.Z. conceived the study. Z.T.W., C.Z., Z.B.Z., and M.G. analyzed the tumor sample data.

Z.T.W., Q.L., Z.M.L., and C.Z. wrote the manuscript with assistance from other authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.
iScience 21, 249–260, November 22, 2019 259

https://github.com/bm2-lab/neoFusion
https://hub.docker.com/r/bm2lab/neoFusion/
https://hub.docker.com/r/bm2lab/neoFusion/
http://proteomecentral.proteomexchange.org
https://tcia.at/home
https://doi.org/10.1016/j.isci.2019.10.028


Received: July 25, 2019

Revised: September 6, 2019

Accepted: October 15, 2019

Published: November 22, 2019
REFERENCES

Balachandran, V.P., Łuksza, M., Zhao, J.N.,
Makarov, V., Moral, J.A., Remark, R., Herbst, B.,
Askan, G., Bhanot, U., Senbabaoglu, Y., et al.
(2017). Identification of unique neoantigen
qualities in long-term survivors of pancreatic
cancer. Nature 551, S12–S16.

Bjerregaard, A.M., Nielsen, M., Hadrup, S.R.,
Szallasi, Z., and Eklund, A.C. (2017). MuPeXI:
prediction of neo-epitopes from tumor
sequencing data. Cancer Immunol. Immunother.
66, 1123–1130.

Bonneville, R., Krook, M.A., Kautto, E.A., Miya, J.,
Wing, M.R., Chen, H.Z., Reeser, J.W., Yu, L., and
Roychowdhury, S. (2017). Landscape of
microsatellite instability across 39 cancer types.
JCO Precision Oncol. 2017, 1–15, https://doi.org/
10.1200/po.17.00073.

Church, S.E., and Galon, J. (2015). Tumor
Microenvironment and Immunotherapy: the
whole picture is better than a glimpse. Immunity
43, 631–633.

Gao, Q., Liang, W.W., Foltz, S.M., Mutharasu, G.,
Jayasinghe, R.G., Cao, S., Liao, W.W., Reynolds,
S.M., Wyczalkowski, M.A., Yao, L., et al. (2018).
Driver fusions and their implications in the
development and treatment of human cancers.
Cell Rep. 23, 227–238.e3.

Garon, E.B., Rizvi, N.A., Hui, R., Leighl, N.,
Balmanoukian, A.S., Eder, J.P., Patnaik, A.,
Aggarwal, C., Gubens, M., Horn, L., et al. (2015).
Pembrolizumab for the treatment of non-small-
cell lung cancer. N. Engl. J. Med. 372, 2018–2028.

Hugo, W., Zaretsky, J.M., Sun, L., Song, C.,
Moreno, B.H., Hu-Lieskovan, S., Berent-Maoz, B.,
Pang, J., Chmielowski, B., Cherry, G., et al. (2017).
Genomic and transcripomic features of response
to anti-PD-1 therapy in metastatic melanoma.
Cell 168, 542.

Jurtz, V., Paul, S., Andreatta, M., Marcatili, P.,
Peters, B., and Nielsen, M. (2017). NetMHCpan-
4.0: improved peptide–MHC class I interaction
predictions integrating eluted ligand and
peptide binding affinity data. J. Immunol. 199,
3360–3368.
260 iScience 21, 249–260, November 22, 2019
Lauss, M., Donia, M., Harbst, K., Andersen, R.,
Mitra, S., Rosengren, F., Salim, M., Vallon-
Christersson, J., Törngren, T., Kvist, A., et al.
(2017). Mutational and putative neoantigen load
predict clinical benefit of adoptive T cell therapy
in melanoma. Nat. Commun. 8, 1–10.

Le, D.T., et al. (2015). PD-1 blockade in tumors
with mismatch-repair deficiency. N. Engl. J. Med.
372, 2509–2520.

Liu, X.S., and Mardis, E.R. (2017). Applications of
immunogenomics to cancer. Cell 168, 600–612.

Marty, R., Thompson, W.K., Salem, R.M., Font-
Burgada, J., Zanetti, M., and Carter, H. (2018).
Evolutionary pressure against MHC class II
binding cancer mutations. Cell 175, 416–428.e13.

Mertens, F., Johansson, B., Fioretos, T., and
Mitelman, F. (2015). The emerging complexity of
gene fusions in cancer. Nat. Rev. Cancer 15,
371–381.

Murugan, A., et al. (2012). Statistical inference of
the generation probability of T-cell receptors
from sequence repertoires. Proc. Natl. Acad. Sci.
U S A 109, 16161–16166, https://doi.org/10.1073/
pnas.1212755109.

Postow, M.A., Manuel, M., Wong, P., Yuan, J.,
Dong, Z., Liu, C., Perez, S., Tanneau, I., Noel, M.,
Courtier, A., et al. (2015). Peripheral T cell
receptor diversity is associated with clinical
outcomes following ipilimumab treatment in
metastatic melanoma. J. ImmunoTherapy Cancer
3, 23.

Reeser, J.W., et al. (2016). Performance evaluation
for rapid detection of pan-cancer microsatellite
instability with MANTIS. Oncotarget 8, 7452–
7463, https://doi.org/10.18632/oncotarget.
13918.

Rooney,M.S., Shukla, S.A., Wu, C.J., Getz, G., and
Hacohen, N. (2015). Molecular and genetic
properties of tumors associated with local
immune cytolytic activity. Cell 160, 48–61.

Schreiber, R.D., Old, L.J., and Smyth, M.J. (2011).
Cancer immunoediting: integrating immunitys
roles in cancer suppression and promotion.
Science 331, 1565–1570.
Sun, Z., Chen, F., Meng, F., Wei, J., and Liu, B.
(2017). MHC class II restricted neoantigen: a
promising target in tumor immunotherapy.
Cancer Lett. 392, 17–25.

Thorsson, V., Gibbs, D.L., Brown, S.D., Wolf, D.,
Bortone, D.S., Ou Yang, T.H., Porta-Pardo, E.,
Gao, G.F., Plaisier, C.L., Eddy, J.A., et al. (2018).
The immune landscape of cancer. Immunity 48,
812–830.e14.

Turajlic, S., Litchfield, K., Xu, H., Rosenthal, R.,
McGranahan, N., Reading, J.L., Wong, Y.N.S.,
Rowan, A., Kanu, N., Al Bakir, M., et al. (2017).
Insertion-and-deletion-derived tumour-specific
neoantigens and the immunogenic phenotype: a
pan-cancer analysis. Lancet Oncol. 18, 1009–
1021.

Vaish, M., and Mittal, B. (2002). DNA mismatch
repair, microsatellite instability and cancer. Indian
J. Exp. Biol. 40, 989–994.

Van Allen, E.M., Miao, D., Schilling, B., Shukla,
S.A., Blank, C., Zimmer, L., Sucker, A., Hillen, U.,
Foppen, M.H.G., Goldinger, S.M., et al. (2015).
Genomic correlates of response to CTLA-4
blockade in metastatic melanoma. Science 350,
https://doi.org/10.1126/science.aad0095.

Vitiello, A., and Zanetti, M. (2017). Neoantigen
prediction and the need for validation. Nat.
Biotechnol. 35, 815.

Yang, W., Lee, K.W., Srivastava, R.M., Kuo, F.,
Krishna, C., Chowell, D., Makarov, V., Hoen, D.,
Dalin, M.G.,Wexler, L., et al. (2019). Immunogenic
neoantigens derived from gene fusions stimulate
T cell responses. Nat. Med. 25, 767–775.

Zhou, C., Zhu, C., and Liu, Q. (2019). Toward
in silico identification of tumor neoantigens in
immunotherapy. Trends Mol. Med. https://doi.
org/10.1016/j.molmed.2019.08.001.

Łuksza, M., Riaz, N., Makarov, V., Balachandran,
V.P., Hellmann, M.D., Solovyov, A., Rizvi, N.A.,
Merghoub, T., Levine, A.J., Chan, T.A., et al.
(2017). A neoantigen fitness model predicts
tumour response to checkpoint blockade
immunotherapy. Nature 551, 517–520.

http://refhub.elsevier.com/S2589-0042(19)30407-9/sref1
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref1
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref1
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref1
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref1
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref1
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref2
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref2
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref2
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref2
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref2
https://doi.org/10.1200/po.17.00073
https://doi.org/10.1200/po.17.00073
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref4
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref4
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref4
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref4
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref5
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref5
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref5
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref5
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref5
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref5
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref6
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref6
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref6
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref6
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref6
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref7
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref7
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref7
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref7
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref7
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref7
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref8
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref8
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref8
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref8
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref8
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref8
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref9
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref9
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref9
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref9
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref9
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref9
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref10
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref10
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref10
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref11
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref11
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref12
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref12
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref12
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref12
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref13
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref13
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref13
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref13
https://doi.org/10.1073/pnas.1212755109
https://doi.org/10.1073/pnas.1212755109
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref15
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref15
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref15
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref15
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref15
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref15
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref15
https://doi.org/10.18632/oncotarget.13918
https://doi.org/10.18632/oncotarget.13918
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref17
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref17
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref17
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref17
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref18
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref18
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref18
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref18
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref19
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref19
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref19
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref19
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref20
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref20
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref20
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref20
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref20
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref21
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref21
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref21
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref21
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref21
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref21
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref21
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref22
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref22
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref22
https://doi.org/10.1126/science.aad0095
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref24
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref24
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref24
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref25
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref25
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref25
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref25
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref25
https://doi.org/10.1016/j.molmed.2019.08.001
https://doi.org/10.1016/j.molmed.2019.08.001
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref27
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref27
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref27
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref27
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref27
http://refhub.elsevier.com/S2589-0042(19)30407-9/sref27


ISCI, Volume 21
Supplemental Information
The Landscape of Tumor Fusion

Neoantigens: A Pan-Cancer Analysis

Zhiting Wei, Chi Zhou, Zhanbing Zhang, Ming Guan, Chao Zhang, Zhongmin Liu, and Qi
Liu



Van Allen cohort

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Low fusion neoantigen score
High fusion neoantigen score

p=0.968

p=0.16

Low CTL
High CTL

p=0.49

Hugo cohort

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p=0.078

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25 30 35

C

O
ve

ra
ll 

su
rv

iv
al

O
ve

ra
ll 

su
rv

iv
al

0 50
Months

10 20 30 40

0 50
Months

10 20 30 40

Sex

Age

Overall 
neoantigen
score*CTL

(N=39)

(N=39)

(N=39)

0.79

0.99

0.44

(0.38 − 1.65)

(0.97 − 1.02)

(0.22 − 0.89)

0.526

0.589

0.022 *

# Events: 35; Global p−value (Log−Rank): 0.10954 
AIC: 206.86; Concordance Index: 0.62

Hazard ratio

Sex

Age

(N=25)

(N=25)

(N=25)

0.73

1.00

0.24

(0.172 − 3.13)

(0.954 − 1.05)

(0.064 − 0.92)

0.675

0.939

0.038 *

# Events: 12; Global p−value (Log−Rank): 0.17137 
AIC: 65.55; Concordance Index: 0.73

Hazard ratioD

Overall 
neoantigen
score*CTL

0 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Months

O
ve

ra
ll 

su
rv

iv
al

Low fusion neoantigen burden
High fusion neoantigen burden

p=0.181

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0A

p=0.304

10 20 30 40

B

Figure S1. Survival analysis with different metrics. Related to Figure 2.
(A) The tumor fusion candidate neoantigen burden could not separate patients in both cohorts.
(B) The tumor fusion candidate neoantigen score could not separate patients in both cohorts.
(C) The CTL is not related to immunotherapy outcome in both cohorts.
(D) Multivariate cox regression showed that the overall tumor candidate neoantigen score*CTL
was associate with checkpoint inhibitors outcome, independent of age and sex. Hazard ratio with
95% confidence interval was shown for overall neoantigen score*CTL, Age and Sex.
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Figure S2. Survival analyses with different metrics. Related to Figure 2.
(A) The overall tumor neoantigen burden is related to immunotherapy outcome in the Hugo 
cohort, while not in the Van Allen cohort.
(B) The overall tumor neoantigen score is related to immunotherapy outcome in the Hugo 
cohort, while not in the Van Allen cohort.
(C) The overall neoantigen burden*CTL is related to immunotherapy outcome in theVan Allen 
cohort, while not in the Hugo cohort.
(D) Incorporating fitness score in our score scheme improves the accuracy in immunotherapy 
outcome prediction. 
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Figure S3. The overall tumor candidate neoantigen score*CTL is not a prognostic factor 
for overall survival. Related to Figure 2.
(A) The overall tumor candidate neoantigen score*CTL is not a prognostic factor for overall 
survival except for TCGA BLCA (20 cancer types were tested). Taking fusion candidate 
neoantigens into consideration improves the prediction accuracy of overall survival.
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Figure S4. The negative logistic function and the distribution of q-values. Related to Figure 4 and 5.
(A) The negative logistic function of L(x), and m indicates the mismatch between the candidate 
neoantigen and the corresponding normal peptide.
(B) The distribution of q-values of the comparison between passenger fusion and Onco fusion.
(C) The distribution of q-vaues of the comparison between passenger fusion and TSG fusion.
(D) The distribution of q-values of the comparison between passenger fusion and kinase fusion.
TSG: tumor suppressor gene; Onco: oncogene



Transparent Methods 

neoFusion for fusion neoantigen prediction and immunogenic potential 

assessment  

A comprehensive literature review indicated that INTEGRATE-neo (Zhang, Mardis and 

Maher, 2017) is the only existing in silico tool for fusion neoantigen prediction. Several 

issues, however, remain to be overcome (1) In constructing peptides, INTEGRATE-neo 

only considered peptides spanning the fusion breakpoints. However, frameshift fusions 

can create new ORF, as a result all the downstream translated protein sequence alter 

and fusion candidate neoantigens may be missed by the INTEGRATE-neo; (2) 

INTEGRATE-neo do not assess the immunogenic potential of fusion candidate 

neoantigens. Here, we present neoFusion, a pipeline for fusion neoantigen prediction 

and prioritization with a quantitative score schema (Figure 5). Tools used in our fusion 

neoantigen prediction pipeline such as STAR-Fusion are based on literature survey and 

the state-of-the-art tools are chosen. For convenience, end users can take fusions or neo-

peptides detected by themselves as input to neoFusion to assess neo-peptides 

immunogenic potentials. neoFusion outputs list of putative neoantigens generated by 

fusions and prioritizes these candidate neoantigens based on their immunogenicity 

scores. neoFusion is written by python, and it can be easily installed and deployed with 

Docker version. neoFusion comprises the following four main steps: data preprocessing, 

fusion detection and filtering, fusion neoantigen prediction, and fusion candidate 

neoantigen scoring and ranking (Figure 5). 

 

Data preprocessing: Illumina adaptors, low quality (phred score below 20) and N 

bases of raw RNA sequencing data are removed by Trimmomatic-0.36 (Bolger, Lohse 

and Usadel, 2014). Although single-end sequencing data is supported by neoFusion, 

paired-end data are highly recommended. 

 

Fusion detection and filtering: Several bioinformatics methods and software have 

been developed to identify fusion transcripts from RNA-Seq. In our pipeline we employ 

STAR-Fusion to detect fusions as STAR-Fusion show a higher sensitivity in detecting 

the fusions reporting in previous TCGA studied (Gao et al., 2018). Fastq files are 

mapped to the human reference genome (build hg38) followed by fusion calling using 

STAR-Fusion (parameters: --examine_coding_effect; Haas et al., 2017). Fusions having 

FFPM less than 0.1 (fusion fragments per million total reads) or not supporting by 

LargeAnchor reads are filtered. Furthermore, fusions reported in normal samples were 

filtered, including the ones from GTEx tissues (The Genotype-Tissue Expression 

project) and non-cancer cell study. Fusions were separated into three categories with 

respect to the frame of the 3’ gene, i.e., noframe fusions (breakpoint at UTR, intron or 

non-coding RNA. Those noframe fusions are not an obvious fusion protein based on 

the reference coding region annotations and they are filtered to reduce false positives 

in predicting fusion neoantigens; Haas et al., 2017; Kim and Zhou, 2018), inframe 

fusions (fusion do not create transcript frameshift) and frameshift fusions. 

 



Fusion neoantigen prediction: For each predicted fusion, we obtained the translated 

protein sequence output by STAR-Fusion and constructed 9-11 kmers (default 

parameter) peptides. Peptides existing in the human reference proteome were not likely 

to be neoantigens and they were filtered to reduce false positives. HLA alleles were 

determined (unless provided) from RNA sequencing data by OptiType (Szolek et al., 

2014), which, with the default setting, achieved ~97% accuracy. pMHC binding affinity 

and binding affinity percent rank were predicted by NetMHCpan version 4.0 (Jurtz et 

al., 2017) in binding affinity mode with other parameters set as default. Peptides with 

binding affinity percent rank <=2 are reported as candidate neoantigens (Nielsen and 

Andreatta, 2016); The binding affinity percent rank was used for filtering as the authors 

of NetMHCpan demonstrated that different MHC molecules present epitopes at distinct 

binding thresholds. Specifically, for example, set 500nM binding affinity threshold to 

filter peptides that would not be presented by HLA-A02:02 is fine, however this 

threshold maybe not suitable for HLA-B07:02. Therefore, binding affinity percent rank 

was proposed for peptides filtering and proven to be more accurate: for each allele, 

NetMHCpan translated the predicted binding affinity values to a percentile score by 

comparing them to the predicted binding affinities of a set of 400000 random natural 

peptides. 

 

Fusion candidate neoantigen scoring and ranking: We quantitatively assessed the 

immunogenic potential of candidate neoantigens by their candidate neoantigen scores 

and prioritized candidate neoantigens according to their scores. We aimed to prioritize 

neo-peptides that are likely to be presented by MHC I on the cell surface and recognized 

by T cells. 

 

Candidate neoantigen score scheme 

The following features were used to construct our candidate neoantigen score scheme 

based on our previous work (Zhou et al., 2019). 

C: Combined score of binding affinity, proteasomal C’ terminal cleavage, and TAP 

transport efficiency, as output by NetCTLpan (Stranzl et al., 2010). One of the first steps 

involved in MHC I neoantigen presentation is the degradation of intracellular proteins 

by the proteasome. Only a subset of the peptides is transported by transporter associated 

with TAP complex into the endoplasmatic reticulum. 

Rm: The binding affinity percent rank of the candidate neoantigen, as output by 

NetMHCpan 4.0. 

Rn: The binding affinity percent rank of the candidate neoantigen corresponding wild 

type peptide. The wild type peptide, a single peptide as long as and most similar to the 

candidate neoantigen with up to 4 mismatches in the human reference proteome, was 

determined by pepmatch_db_x86_64 program with default parameter (Bjerregaard et 

al., 2017). 

m: Mismatch between candidate neoantigen and the corresponding wild type peptide. 

H: The hydrophobicity of amino acids at the TCR contact residues is a strong hallmark 

of CD8+ T cell-mediated immunity (Chowell et al., 2015). In our previous work, three 

eXtreme Gradient Boosting (XGBoost) machine-learning models were trained to 



predict the probability of pMHC recognized by T cells (Zhou et al., 2019). Briefly, 

immunogenic peptides (pMHCs with a T cell response) and non-immunogenic peptides 

(pMHCs without a T cell response) were collected from the Immune Epitope Database 

and Analysis Resource (Vita et al., 2009). Then, the hydrophobicity of amino acid was 

used as the input feature to train the model. 

R (fitness score): Recently, several methods measuring the T cell recognition 

probability of pMHC were proposed based on sequence comparison analysis. Here we 

used the neoantigen fitness model presented by Luksza et al. to calculate the T cell 

fitness score (Luksza et al., 2017). Briefly, the model gives R, the likelihood that a 

neoantigen will be recognized by the TCR repertoire, by alignment with a set of 

peptides retrieved from IEDB. These peptides are linear epitopes from human 

infectious diseases that are positively recognized by T cells after class I MHC 

presentation. The model assumed that a neoantigen is more likely to be immunogenic 

if the neoantigen is more similar to those peptides. R was defined by a multistate 

thermodynamic model in which sequence similarity was treated as a proxy for binding 

energy. To assess the sequence similarity between a neoantigen with peptide sequence 

s and an IEDB epitope e, gapless alignment with a BLOSUM62 amino acid similarity 

matrix was computed and their alignment scores denoted as |𝑠, 𝑒| . For a given 

neoantigen with peptide sequence s, the T cell recognition score was calculated as:  

R =  𝑍(𝑘)−1 ∑ 𝑒𝑥𝑝(−𝑘(𝑎 − |𝑠, 𝑒|))𝑒∈𝐼𝐸𝐷𝐵     (1) 

where a represents the horizontal displacement of the binding curve, k sets the steepness 

of the curve at a, and 

𝑍(𝑘) = 1 + ∑ 𝑒𝑥𝑝 (−𝑘(𝑎 − |𝑠, 𝑒|))𝑒∈𝐼𝐸𝐷𝐵     (2) 

Which represents the partition function over the unbound state and the all-bound state. 

Here, k=4.87 and a=26, which were determined in the original study. 

 

The likelihood of peptide presented by MHC I is defined as: 

𝐴 = 𝐶 ∗ 𝐿(𝑅𝑚)   (3) 

The likelihood of pMHC recognized by T cells is defined as:  

    𝐵 = 𝐻 ∗ 𝑅 ∗ (1 − 2−𝑚𝐿(𝑅𝑛))    (4) 

The candidate neoantigen score is defined as: 

𝑆 = 𝐴 ∗ 𝐵    (5) 

Where L(x) is a logistic function given by: 

𝐿(𝑥) =
1

1+𝑒5(𝑥−2)    (6) 

L(x) is a negative logistic function (Bjerregaard et al., 2017; Figure S4A). This function 

gives a value approaching 0 for a high binding affinity percent rank, a midpoint at a 

binding affinity percent rank of 2, and a value of one for a lowbinding affinity percent 

rank. The constant 2 defines the inflection point and it was chosen since a binding 

affinity percent rank of 2 is the recommened cutoff for peptide binding. The equation 

(1 − 2−𝑚𝐿(𝑅𝑛)) is a penalized function when scoring the candidate neoantigens: If 

the candidate neoantigen corresponding wild type peptide has a low dissociation 

constant, tolerance mechanisms will remove TCRs that are specific to the wild type 



peptide. Owing to cross-reactivity, candidate neoantigen specific TCRs could be 

reduced. 

 

It should be note that (1) All the factors relevant to immunogenic potential in our score 

scheme is not fusion candidate neoantigen specific. Therefore, our score scheme can be 

employed to evaluate the immunogenic potential of the SNV&indel based candidate 

neoantigens as well as the fusion based candidate neoantigens; (2) The exact 

determinants of immunogenicity are not well understood, the score scheme is designed 

empirically based on current knowledge. Our score scheme can be updated when further 

knowledge related to immunogenicity becomes available. 

 

Evaluation of the rationality and effectiveness of our proposed score scheme 

To evaluate the rationality of our proposed score scheme, we applied it to five public 

peptides datasets with experimentally confirmed immunogenic and non-immunogenic 

peptides (Table S5). Of the five peptides datasets, four are SNV&indel mutation based 

neo-peptides, one is fusion mutation based neo-peptides recently validated by Yang 

(Robbins et al., 2013; Rajasagi et al., 2014; Carreno et al., 2015; Gros et al., 2016; 

Yang et al., 2019). Furthermore, to evaluate the performance of our proposed score 

scheme, we compared it with other available tools, including the neoantigen fitness 

model (Luksza et al., 2017), MuPeXI 1.2 (Bjerregaard et al., 2017), neopepsee (Kim et 

al., 2018) and a tool available at IEDB (Calis et al., 2013) that were all developed for 

peptides immunogenic potential evaluation. Peptides were scored according to our 

score scheme and these tools (Table S5). Area under the precision-recall curve (PR-

AUC) and area under the receiver operating characteristic curve (ROC-AUC) were used 

to benchmark the performance. In 2 of 5 peptides datasets, our score scheme presented 

the highest ROC-AUC and in 3 of 5 peptides datasets, our score scheme presented the 

highest PR-AUC, indicating its superiority and rationality. 

 

The following definitions are also presented related to our evaluations: 

specific candidate neoantigen: a candidate neoantigen with binding affinity percent 

rank <=2 and the corresponding wild type peptide with binding affinity percent rank >2. 

Due to self-immune tolerance, compared with non-specific candidate neoantigens, 

specific candidate neoantigens tend to have higher immunogenic potential (Turajlic et 

al., 2017). 

fusion mutation burden ratio = 
fusion mutation burden

SNV&indel mutation burden
 

fusion candidate neoantigen burden ratio = 
fusion candidate neoantigen burden

SNV&indel candidate neoantigen burden
 

 

fusion specific candidate neoantigen burden ratio = 
fusion specific candidate neoantigen burden

SNV&indel specific candidate neoantigen burden
 

candidate neoantigen per mutation: candidate neoantigens a mutation can generate 

specific candidate neoantigen per mutation: specific candidate neoantigens a 

mutation can generate 



specific candidate neoantigen per candidate neoantigen = 

specific candidate neoantigen burden

candidate neoantigen burden
 , a metric to evaluate the likelihood that a candidate 

neoantigen is the specific candidate neoantigen 

 

Analysis of the MS cohort dataset 

We analyzed 10 breast cancer cell lines in the MS dataset obtained from Rozanov 

(Rozanov et al., 2018). MHC I bound peptides were eluted by MHC I 

immunoprecipitation and the eluted peptides were analyzed by mass spectrometry. 

Fusion candidate neoantigens were predicted following our neoFusion pipeline with 

RNA sequencing data. We used ProteoWizard (Chambers et al., 2012) to convert Raw 

MS data to mzML format. For each cancer cell line, MS data were searched against the 

human reference proteome downloaded from UniProt concatenated with fusion 

candidate neoantigens. MS data were searched with Comet (Eng, Jahan and Hoopmann, 

2013) and filtered with Percolator (Käll et al., 2007) to identify fusion peptides 

presented by MHC I at a false discovery rate of 1%. Comet software parameters were 

set as in the original article. Peptide-spectrum matches were visualized by xiSPEC 

(Kolbowski, Combe and Rappsilber, 2018), a web-based spectrum viewer. 

 

In our study, all the predicted fusion candidate neoantigens were scored and prioritized 

according to our score scheme. It should be noted during scoring those predicted fusion 

neoantigens, only the likelihood of peptides presentation by MHC was calculated as 

those peptides were eluted from pMHC complexes. The fusion candidate neoantigen 

TAISPIAVLPR in HCC1806 (92 fusion candidate neoantigens in total) and 

APKSSSGFSL in HCC1428 (29 fusion candidate neoantigens in total) rank 6/92 and 

2/29, respectively (Table S1). The probability of the co-occurrence of such two ranks 

or lower is equal to 0.0236. 

 

Analysis of the ICB cohort dataset  

Two ICB cohorts with whole-exome sequencing and RNA sequencing data were 

downloaded. Among 39 patients with melanoma treated by anti-CTLA-4 in the Van 

Allen cohort, 17 patients had responses, 22 patients had no responses. Among 25 

patients with melanoma treated by anti-PD-1 in the Hugo cohort, 12 patients had 

responses, 13 patients had no responses. Fusion candidate neoantigens were predicted 

following our neoFusion pipeline. SNV&indel candidate neoantigens of the Van Allen 

cohort were determined by our inhouse pipeline. In brief, somatic SNV&indel VCFs 

were generated following GATK (Van der Auwera et al., 2013) best practices workflow. 

Mutations should pass all the criteria described in the VCF file. Mutations with an 

allelic frequency less than 0.05, coverage less than 15X, or supported by fewer than 5 

reads were filtered. SNV&indel VCFs of the Hugo cohort were obtained from the 

supplementary material of the original article. We utilized StringTie (Pertea et al., 2015) 

to quantify the gene expression level in transcripts per million (TPM). HLA alleles of 

each sample were inferred from the RNA sequencing data by OptiType. VCFs and 

expression profile files were inputted to the MuPeXI program to predict SNV&indel 



neoantigens (parameter, peptide length: 9,10,11; reference version: hg38). SNV&indel 

candidate neoantigen expression threshold was set to 1 TPM. Fusion and SNV&indel 

candidate neoantigen score were calculated according to our score scheme. 

 

The tumor fusion candidate neoantigen score (TFS) was defined as the sum of the fusion 

candidate neoantigen score. The tumor SNV&indel candidate neoantigen score (TSS) 

was defined as the sum of the SNV&indel candidate neoantigen score. The overall 

tumor candidate neoantigen score was defined as: TNS = TFS + TSS. Like Luksza et 

al., the cytotoxic lymphocyte (CTL) fraction was used as the proxy for immune 

cytolytic activity (Luksza et al., 2017). Gene expression profile files output by StringTie 

were inputted to MCPcounter (Becht et al., 2016) to derive the CTL fraction. 

 

Survival analysis was performed using the Kaplan-Meier method, with p-value 

determined by a log-rank test. Samples were split by the median value cutoff. Survival 

data were retrieved from the original study. The hazard ratio was determined through a 

Cox proportional hazards model. Multivariate Cox regression was performed using the 

overall tumor candidate neoantigen score*CTL, considering sex and age. 

 

Analysis of the TCGA cohort dataset 

Of 9624 tumor samples representing 33 tumor types, 25664 fusions were retrieved from 

Gao et al. (Gao et al., 2018; Table S3). In addition, 7489 tumors SNV&indel VCFs 

from 20 solid tumor types were downloaded from TCGA. Finally, only 6552 samples 

possessed fusion mutation, SNV&indel mutation, and HLA allele information 

(Thorsson et al., 2018). Fusion neoantigens were predicted following our neoFusion 

pipeline. Somatic SNV&indel VCFs and corresponding expression files were 

downloaded from TCGA and inputted to the MuPeXI program to predict SNV&indel 

neoantigens. Predicted fusion neoantigens and predicted SNV&indel neoantigens were 

scored using our score scheme (Table S4). The landscape of the microsatellite 

instability of TCGA tumor samples was obtained from Bonneville (Miya et al., 2017). 

As suggested by Bonneville, for all cases, a threshold of 0.4 was set to differentiate 

samples with high microsatellite instability from those with microsatellite stability.  

 

SMG1, SMG5, SMG6, SMG7, UPF1, UPF2, UPF3A and UPF3B genes were selected 

as the biomarkers of nonsense-mediated decay (Han et al., 2018). The TCGA sample 

expression files were downloaded from TCGA website. Compared with samples 

without frameshift fusion mutation, except for the SMG6 and UPF3A genes, the 

expression level of other genes in samples harboring frameshift fusion are slightly 

higher (10%~20%, Student’s t-test, p-value<0.01). 

 

The fusion score was calculated as the sum of candidate neoantigen scores generated 

by that fusion. For the fusion that occurred multiple times, its median value was used 

to represent its fusion score. In total, there were 8634 passenger fusion scores, 844 

kinase fusion scores, 204 Onco fusion scores and 172 TSG fusion scores. One-sided 

Mann-Whitney U hypothesis test might be affected by extremely different sample size. 



To control sample size effect, we randomly sampled 600 passenger fusion scores and 

we compared them with fusion scores of other categories. We repeated random 

sampling procedure for 10000 times and we plotted the distribution of the corrected p-

values to determine whether the passenger fusion scores are significantly different from 

other categories. It is shown that the Onco fusion score was significantly lower than the 

passenger fusion score, but not others (Figure S4B-D). 

 

TCGA BLCA CTL fraction information was obtained from Thorsson (Thorsson et al., 

2018), and overall survival information was downloaded from TCGA website. 
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