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ABSTRACT Oxidation of aromatic compounds can be mutagenic due to the accu-
mulation of reactive oxygen species (ROS) in bacterial cells and thereby facilitate
evolution of corresponding catabolic pathways. To examine the effect of the back-
ground biochemical network on the evolvability of environmental bacteria hosting a
new catabolic pathway, Akkaya and colleagues (mBio 9:e01512-18, 2018, https://doi
.org/10.1128/mBio.01512-18) introduced the still-evolving 2,4-dinitrotoluene (2,4-DNT)
pathway genes from the original environmental Burkholderia sp. isolate into the
genome of Pseudomonas putida KT2440. They show that the mutagenic effect of
2,4-DNT oxidation, which is associated with the accumulation of ROS and oxidative
damage on DNA, can be avoided by preserving high NADPH levels in P. putida. The
observations of this study highlight the impact of the cellular redox status of bacteria
on the evolvability of new metabolic pathways.
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Catabolic pathways for naturally occurring, mostly plant-derived aromatic com-
pounds are widely distributed in soil bacteria. Human-made xenobiotic com-

pounds, in contrast, have been in the biosphere for only a few decades, but bacteria
able to degrade such compounds have already been isolated. This demonstrates that
under selective pressure exerted by pollutants, microbes can develop the capacity to
degrade recalcitrant xenobiotics. For example, the ability to recognize and metabolize
nitroaromatics by microorganisms might have been evolved only recently, since many
nitroaromatic compounds are synthetic and have been introduced into the environ-
ment a short time ago (1). This process is still ongoing and therefore provides a good
model for studying mechanisms of evolutionary processes in real time.

New catabolic pathways can evolve rapidly in bacteria as a result of horizontal gene
transfer and point mutations that broaden the substrate range of preexisting enzymes
(2–7). Mutational processes are the driving forces of evolution, and their rates funda-
mentally determine evolvability. The spontaneous mutation rate is generally held at a
low level because most mutations are likely to be deleterious (8). However, bacterial
populations with higher mutation rates can adapt to novel environments faster than
those with lower mutation rates (9). Under certain circumstances, the frequency of
mutations can be temporarily elevated. For example, accumulation of oxidative or
alkylation damage in bacterial cells (10–12) and/or induction of the specific low-fidelity
DNA polymerases when DNA is damaged can temporarily elevate the mutation rate
(13, 14).

When present at a high concentration in cells, reactive oxygen species (ROS) have
harmful effects on biological macromolecules such as proteins and nucleic acids (15).
As mentioned above, oxidative damage to DNA is an important source of genetic
variations (12). The classic strategy for the degradation of aromatic compounds com-
prises an attack by oxygenases that hydroxylate and finally cleave the aromatic ring
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with the help of activated molecular oxygen (16). Oxygenases can produce ROS by
uncoupling of their catalytic mechanism (17). Moreover, it has been suggested that the
ROS levels are further increased when oxygenases act on substrates that do not fit well
in the active enzyme center (18). Thus, the evolution of new aerobic degradation
pathways for xenoaromatic compounds could be associated with intracellular ROS
generation, leading to elevated mutation frequency in cells.

A few years ago, Pérez-Pantoja and colleagues from Victor de Lorenzo’s laboratory
reported that the first enzyme for the 2,4-dinitrotoluene (2,4-DNT) degradation path-
way identified in Burkholderia sp. was not yet optimal for DNT degradation (7).
Phylogenetic analysis of the dnt gene cluster encoding DNT biodegradation indicated
that 2,4-DNT dioxygenase DntA, which catalyzes the initial oxidation of DNT, has been
evolved from naphthalene dioxygenase (7, 19). However, the growth of bacteria on
2,4-DNT was associated with generation of high levels of ROS and an elevated mutation
frequency (7). The production of ROS was associated with a faulty DNT dioxygenation
reaction of DntA, which was no longer optimal for naphthalene nor entirely advanta-
geous yet for DNT oxidation. Thus, the observations of this study provided a very good
example of how the faulty dioxygenation reaction of the evolving enzyme elevates
mutation frequency in the presence of new xenobiotic substrate and thereby acceler-
ates evolution of the degradation pathway of this substrate.

In an article in mBio, Akkaya and colleagues (20) have further elucidated molecular
mechanisms of evolution of xenobiotic degradation pathways by addressing the effect
of the background biochemical network on the evolvability of environmental bacteria
hosting a new catabolic pathway. The dnt genes encoding biodegradation of 2,4-DNT
in Burkholderia sp. were introduced into the genome of a Pseudomonas putida KT2440
derivative which was previously designed for improved genetic stability and better
heterologous gene expression (21–23). The effect of 2,4-DNT catabolism on intracellular
ROS production, redox stress, and genetic variability was assessed in the engineered P.
putida strain EM·DNT. It appeared that 2,4-DNT degradation resulted in ROS generation
and activation of cellular response to oxidative stress. At the same time, the frequency
of mutations was not significantly increased. This raised the question of what are the
mechanisms by which P. putida avoids the increased rate of mutagenesis in the
presence of ROS.

The answer may lie in high production of NADPH that protects/stabilizes the P.
putida redox state. NADPH is an essential electron donor in all organisms. NADPH
provides the reducing power that drives various anabolic reactions, including those
responsible for the biosynthesis of all major cell components (24). NADPH is also
necessary in providing reducing equivalents to regenerate antioxidative defense sys-
tems following ROS detoxification (25). For example, regeneration of reduced forms of
glutathione and thioredoxin, which offer a first line of defense against ROS, utilizes
NADPH as the cofactor. Observations made in the soil bacterium Pseudomonas fluore-
scens show that redirection of metabolic pathways toward routes that regenerate
reducing power (e.g., NADPH) plays an important role in removal of ROS (26–28).
Traditionally, the dehydrogenases directly coupled to central carbon metabolism (e.g.,
the oxidative pentose phosphate [PP] pathway, the Entner-Doudoroff [ED] pathway,
and the isocitrate dehydrogenase step of the tricarboxylic acid [TCA] cycle) are involved
in NADPH generation, but other NADPH-generating enzymes (e.g., transhydrogenases,
ferredoxin NADP� oxidoreductases, and NAD� and NADH kinases) also play an impor-
tant role in the redox homeostasis (24). P. putida KT2440 is a soil bacterium with a
remarkable metabolic diversity, which enables it to degrade a wide variety of natural
and recalcitrant aromatic compounds, whereas the presence of the ED pathway along
with activities of the incomplete Embden-Meyerhof-Parnas (EMP) and PP pathways
(EDEMP cycle) helps to counteract both exogenous and endogenous oxidative stress
(29, 30). As the EDEMP cycle produces larger amounts of NADPH, it has been hypoth-
esized that this provides an explanation of why pseudomonads are frequent hosts of
operons that encode strong oxidative enzymes for biodegradation of aromatic pollut-
ants (29, 31). Moreover, it was recently demonstrated that P. putida KT2440 encodes
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two nucleotide transhydrogenases that preserve the redox balance of bacteria during
biodegradation of aromatic pollutants (32).

As the redox status of P. putida cells influences their sensitivity to ROS, which in turn
could affect mutagenic processes, Akkaya et al. (20) decided to alter the redox status of
bacteria in order to investigate the relationship between the redox status and the
mutation frequency in P. putida EM·DNT. Indeed, the mutagenic effect of the 2,4-DNT
degradation pathway was evident when the redox status of P. putida EM·DNT was
artificially perturbed by overproducing an NADH oxidase (Nox) from Streptococcus
pneumoniae. Furthermore, comparison of the spectrum of Rifr mutations occurring in
the rpoB gene revealed that the frequency of the occurrence of C-to-A transversions
was significantly increased in the Nox-overexpressing P. putida cells in the presence of
2,4-DNT. 8-OxoG (GO) is known to be one of the most stable and frequent base
modifications caused by oxygen radical attack on DNA (11). In order to mitigate the
mutagenic effect of 8-oxoG, bacteria have developed an oxidized guanine (GO) repair
system (33). The impairment of the GO repair system results in enhanced production of
G·C-to-T·A transversions (34). Hence, the results from the work of Akkaya et al. (20)
indicate that mutation rate can be affected by the endogenous redox status of the
corresponding cells, whereas the increased mutagenesis in cells with decreased redox
power is connected with DNA damage caused by ROS. Compared to the 2,4-DNT
mutagenic effects observed in Burkholderia sp., the more reductive redox status in P.
putida could provide effective protection against this mutagenic effect.

Taken together, this is an elegant study which demonstrates that the redox status
of cells affects evolvability of P. putida toward novel xenobiotic substrates. In addition
to biodegradation applications, P. putida is also employed as a cell factory in synthetic
biology (for recent reviews, see, e.g., references 31, 35, and 36). From the work of
Akkaya and colleagues, synthetic biologists can understand that achieving long-term
stability of engineered producer strains requires cultivation of bacteria in a regime
associated with high-level NADPH generation and ROS detoxification, whereas genetic
diversification could be accelerated due to mutagenicity of ROS under conditions when
NADPH becomes limiting. Thus, besides contributing to understanding mechanisms of
evolutionary processes of new catabolic pathways, this knowledge might be important
for bioengineering of P. putida with the purpose of bioproduction of value-added
chemicals. Many natural products of industrial importance are complex secondary
metabolites, the production of which often involves NADPH-dependent enzymes (24).
As the synthesis of toxic chemicals could be associated with increased amounts of ROS
and genetic instability of the engineered strains, the knowledge of connections be-
tween metabolism and evolvability of bacteria should be exploited for the rational
design and operation of cell factories.
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