
R E S E A R CH A R T I C L E

How are visual words represented? Insights from EEG-based
visual word decoding, feature derivation and image
reconstruction

Shouyu Ling1 | Andy C. H. Lee1,2 | Blair C. Armstrong1,3 | Adrian Nestor1

1Department of Psychology at Scarborough,

University of Toronto, Toronto, Ontario,

Canada

2Rotman Research Institute, Baycrest Centre,

Toronto, Ontario, Canada

3BCBL, Basque Center on Cognition, Brain,

and Language, Donostia, San Sebastián, Spain

Correspondence

Adrian Nestor, Department of Psychology at

Scarborough, University of Toronto, 1265

Military Trail, Scarborough, Ontario, M1C1A4,

Canada.

Email: anestor@utsc.utoronto.ca

Funding information

Natural Sciences and Engineering Research

Council of Canada

Abstract

Investigations into the neural basis of reading have shed light on the cortical locus

and the functional role of visual-orthographic processing. Yet, the fine-grained struc-

ture of neural representations subserving reading remains to be clarified. Here, we

capitalize on the spatiotemporal structure of electroencephalography (EEG) data to

examine if and how EEG patterns can serve to decode and reconstruct the internal

representation of visually presented words in healthy adults. Our results show that

word classification and image reconstruction were accurate well above chance, that

their temporal profile exhibited an early onset, soon after 100 ms, and peaked around

170 ms. Further, reconstruction results were well explained by a combination of

visual-orthographic word properties. Last, systematic individual differences were

detected in orthographic representations across participants. Collectively, our results

establish the feasibility of EEG-based word decoding and image reconstruction. More

generally, they help to elucidate the specific features, dynamics, and neuro-

computational principles underlying word recognition.
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1 | INTRODUCTION

Extensive work has been dedicated to elucidating the neural basis of

reading and its reliance on visual-orthographic representations. For

instance, much is known about the role played by the ventral

occipital-temporal cortex (vOT) in deriving such representations

(Dehaene & Cohen, 2011; Glezer, Jiang, & Riesenhuber, 2009; Price &

Devlin, 2011; Rauschecker, Bowen, Parvizi, & Wandell, 2012; Striem-

Amit, Cohen, Dehaene, & Amedi, 2012; Taylor, Rastle, & Davis, 2013).

Also, the speed and efficiency of processing visual-orthographic rep-

resentations, as revealed by their time course, has provided important

theoretical insights (Araújo, Faísca, Bramão, Reis, & Petersson, 2015;

Chen, Davis, Pulvermüller, & Hauk, 2015; Hauk, Davis, Ford,

Pulvermüller, & Marslen-Wilson, 2006). Yet, the nature and the visual

structure of such representations remain to be clarified.

One longstanding challenge, with considerable theoretical and

practical implications, is whether visual words could be discriminated

from one another based on the neural activity that they elicit (Suppes,

Lu, & Han, 1997). Recently, this challenge has been addressed with

the aid of pattern analyses (e.g., classification) as applied to functional

Magnetic Resonance Imaging (fMRI) (Baeck, Kravitz, Baker, & de

Beeck, 2015; Nestor, Behrmann, & Plaut, 2013), electrocorticography

(ECoG) (Hirshorn et al., 2016) or combinations of magnetoencepha-

lography (MEG) and EEG data (Chan, Halgren, Marinkovic, & Cash,

2011). These attempts have shed light on the visual-orthographic rep-

resentational space underlying reading, on its cortical locus, and on
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the extended time course of visual word discrimination. However, the

precise nature of the information that facilitates discrimination, as

well as its robustness and its variability across individuals remains to

be elucidated.

Relevantly here, neural-based image reconstruction (Chang &

Tsao, 2017; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009; Nestor,

Plaut, & Behrmann, 2016; Nishimoto et al., 2011; Shen, Horikawa,

Majima, & Kamitani, 2019) aims to reveal the content of fine-grained

visual representations by retrieving the appearance of visual objects

from neural activity prompted by their processing. For instance, sev-

eral fMRI studies have addressed the challenge of reconstructing the

appearance of single letters from fMRI patterns associated with their

reading (Miyawaki et al., 2008; Schoenmakers, Barth, Heskes, & van

Gerven, 2013; Thirion et al., 2006). Broadly, image reconstruction

informs the nature of the mapping between the visual world and neu-

ral representations: how exactly a visual pattern (e.g., corresponding

to a stimulus) is converted into a neural pattern and vice-versa

(Naselaris, Kay, Nishimoto, & Gallant, 2011). Critical to our purposes,

reconstruction can help to characterize the fidelity and the robustness

of visual representations underlying reading. Yet, to date, the applica-

tion of this methodology to single characters, rather than entire

words, has limited its psycholinguistic implications.

Here, we used pattern analysis of electroencephalography (EEG)

data and image reconstruction to uncover the structure of visual word

representations, their temporal dynamics, as well as individual differ-

ences associated with their processing. To be clear, while pattern

analysis may be able to shed light on multiple types of psycholinguistic

processing (e.g., semantic), the present work focuses mainly on visual

and orthographic processing. To this aim, here we collected EEG

recordings associated with reading 80 high-frequency nouns in

healthy adults and, then, we exploited spatiotemporal patterns associ-

ated with these words to decode and to reconstruct their visual

appearance from neural data. A key aspect of the method concerns

the use of representational similarity (Kriegeskorte, Mur, & Bandettini,

2008), applied here to EEG patterns, as a way to probe the structure

of a visual word representational space and, also, as a step in our

reconstruction procedure. Of note, both neural-based similarity and

objective image similarity are considered in the process of deriving

human and theoretical observer (TO) reconstructions. This approach

facilitates an evaluation of the veracity of visual representations

and/or their divergence from an image-based groundtruth.

Several hypotheses motivate the current work. First, our study

tested the hypothesis that EEG-based decoding and reconstruction of

visual words are feasible by virtue of their ability to capture both

visual and orthographic aspects of neural word representations. Sec-

ond, we hypothesized that word decoding and reconstruction exploit

an extensive temporal window, though dominated by specific tempo-

ral intervals (e.g., around the N170 component) in agreement with

previous ERP research. Third, we surmised that reconstruction may be

able to identify individual differences in visual-orthographic represen-

tations (e.g., with regard to the shape of specific letters).

Overall, our results show that: (a) pairwise word classification is

well above chance across participants (61–80% accuracy against 50%

chance level) and that image reconstruction can be achieved with a

level of accuracy closely matching that of word classification; (b) the

time course of classification/reconstruction peaks in the proximity of

the N170 component, though complementary information can be

found across an extensive temporal interval, and (c) the structure of

visual representations varies systematically across participants. More

generally, these results speak to the underexploited wealth of infor-

mation available in the EEG signal, accessible through pattern ana-

lyses, and to its ability to shed light on the fine-grained structure of

visual-orthographic representations.

2 | MATERIALS AND METHODS

2.1 | Participants

Eighteen healthy Caucasian adults were recruited from the University

of Toronto community in exchange for monetary compensation. One

participant was excluded due to technical difficulties with the EEG

recordings while three other participants were excluded due to left-

handedness. The remaining 14 right-handed participants (nine

females; age range: 20–26 years) were included in the analyses. Par-

ticipants listed English as their first language and the only language in

which they were fluent in speaking and writing. All participants had

normal or corrected-to-normal vision and reported no history of cog-

nitive or neurological impairment. All participants provided informed

consent and all experimental procedures were approved by the

Research Ethics Board at University of Toronto.

2.2 | Stimuli

Eighty word images of concrete nouns with consonant-vowel-

consonant (CVC) structure were used as experimental stimuli. The

words were selected from the UNION database (www.blairarmstrong.

net/tools/index.html) which includes words with frequencies higher

than or equal to one in the SUBTL word frequency norms

(Brysbaert & New, 2009) and words with syllabified pronunciations

from the CMU pronunciation dictionary (Bartlett, Kondrak, & Cherry,

2009). Stimuli were selected to balance the number of occurrences of

each letter at each position as much as possible in the context of the

experimental data set (e.g., each letter appeared at least twice in each

position). Psycholinguistic covariates explored including positional let-

ter frequency (M = 194.63, SD = 33.32, range: 133–256), positional

letter-bigram frequency (M = 16.64, SD = 4.38, range: 7–26), SUBTL

word frequency (M = 70.06, SD = 130.22, range: 1.22–569.92), ortho-

graphic Levenshtein distance (M = 1.16, SD = 0.19, range: 1.00–1.75),

number of orthographic neighbors(M = 16.61, SD = 4.51, range:

9–26), phonological Levenshtein distance (M = 1.08, SD = 0.17, range:

1.00–1.70) and number of phonological neighbors (M = 22.55,

SD = 6.81, range: 8–38).

Word stimuli were presented on a black background using mono-

spaced font Consolas lower-case font with white strokes. Word

images were created with a font size of 150, resulting in 247 × 151

pixel images. Stimuli were presented at the center of the screen
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against a black background and subtended a visual angle of

4.87 × 2.86� from a distance of 80 cm.

2.3 | Data collection

During the experiment participants were seated in a dimly lit room in

front of an LCD monitor (resolution: 1920 × 1080, refresh rate:

60 Hz). Participants were presented with sequences of experimental

stimuli and were asked to complete a go/no-go one-back image task

by pressing a designated key every time they noticed that a stimulus

was presented twice in a row. The experiment consisted of two ses-

sions conducted on two separate days. Each session contained

16 experimental blocks preceded by one training block that aimed to

familiarize participants with the task and the stimuli as well as to

direct their focus to the perceptual properties as opposed to the

semantic properties of the stimuli. Due to fatigue, one participant

completed only 14 blocks on the second session, resulting in a total of

30 completed blocks.

Specifically, each experimental block consisted of a sequence of

270 trials: 30 go trials and 240 no-go trials consisting of three repeti-

tions of each stimulus. Trial order was pseudorandomized so that rep-

etitions of one word, other than those on go trials, were separated by

at least 40 intervening trials. On each trial a stimulus was displayed

for 300 ms, then it was replaced by a white noise mask for 100 ms

and it was followed by a fixation cross for a duration ranging randomly

between 500 and 600 ms. The blocks were separated by self-paced

breaks. Each experimental session, including participant and equip-

ment setup, lasted around 2.5 hr. Stimulus presentation and response

recording relied on Matlab (Mathworks, Natick, MA) and

Psychtoolbox 3.0.8 (Brainard, 1997; Pelli, 1997).

2.4 | EEG acquisition and preprocessing

High-density EEG was recorded using a Biosemi ActiveTwo system

with 64 gelled electrodes mounted on an elastic cap using the 10/20

System. This system replaces conventional ground electrodes with the

common mode sense (CMS) active electrode and the driven right leg

(DRL) passive electrode. These two electrodes form a feedback loop

which drives the average potential of the subject to be roughly equiv-

alent to the analogue digital converter (ADC) reference voltage, which

serves as the amplifier's “zero.” Electrodes CMS and DRL served as

the online reference while AFz served as the ground. The reference

was computed offline based on the average of all electrodes. The EEG

signal was amplified at a sampling rate of 512 Hz. The electrode offset

was kept below 40 mV. The EEG were low-pass filtered using a fifth

order sinc filter with a half-power cutoff at 204.8 Hz and then digi-

tized at 512 Hz with 24 bits of resolution. All data were digitally fil-

tered offline (zero-phase 24 dB/octave Butterworth filter) with a

bandpass of 0.1–40 Hz. Then, data were separated into epochs, from

100 ms prior to stimulus presentation until 900 ms later, and

baseline-corrected. Specifically, the prestimulus period (−100 to 0 ms)

signal served as baseline and was subtracted from each trial.

“Go” trials as well as false alarm trials were excluded from ana-

lyses. Further, epochs with voltage exceeding ± 150 μV at any elec-

trode were excluded. After removing trials containing artifacts and/or

false alarms, an average of 99.4% of trials (range: 97.8–99.9% across

participants) were selected for further analysis. In particular, we note

that relatively few trials contained false alarms as participants per-

formed the go/no-go recognition task at ceiling (accuracy range:

95.8–99.7%; reaction time: 593–774 ms across participants). Of note,

neither accuracy, nor reaction time correlated significantly with

decoding or reconstruction accuracy across participants (p's > .32).

Further, noisy electrodes were interpolated if necessary (no more

than two electrodes per subject) and ocular artifacts (i.e., blinks) were

removed using independent component analysis (exactly one compo-

nent was removed from each participant).

All EEG analyses were carried out using Letswave 6 (Mouraux &

Iannetti, 2008, RRID:SCR_016414), and MATLAB 9.0.

2.5 | Stimulus classification

Decoding relied on spatiotemporal patterns across 12 bilateral OT

electrodes (left: P5, P7, P9, PO3, PO7, O1 and right: P6, P8, P10,

PO4, PO8, O2). Their selection was motivated by their relevance for

word processing (e.g., robust N170 amplitudes) (Bentin, Mouchetant-

Rostaing, Giard, Echallier, & Pernier, 1999; Maurer, Zevin, &

McCandliss, 2008).

To derive spatiotemporal patterns for classification purposes, EEG

signals were first normalized across all trials by z-scoring data sepa-

rately for each electrode and each time bin. To be clear, normalization,

along with subsequent pattern classification steps, was conducted

separately for each participant allowing the evaluation of decoding

performance separately for each participant. Then, the data were

averaged for each stimulus across all epochs from two consecutive

blocks (i.e., for a maximum of six trials) in order to boost the signal-to-

noise ratio (SNR) of spatiotemporal patterns for classification pur-

poses (Grootswagers, Wardle, & Carlson, 2017; Nemrodov, Niemeier,

Patel, & Nestor, 2018) and to speed up processing times. This proce-

dure aimed to find the right balance between the number of observa-

tions per class, on the one hand, versus the number of trials that are

averaged into a single observation, on the other. The averaging

parameters (i.e., yielding 16 observations per class and six trials aver-

aged per observations) were guided by previous explorations of

experimental data not included in the current study.

Next, data were concatenated across 12 electrodes and multiple

time points to capture spatiotemporal information present in the EEG

signal. Specifically, data were concatenated across a large 50–650 ms

window, for temporally cumulative analyses aimed at boosting classifi-

cation accuracy. In addition, for the purpose of complementary ana-

lyses aimed at elucidating the temporal profile of word decoding

rather than boosting overall accuracy, data were concatenated across

consecutive 10 ms windows (5 bins*1.95 ms ≈ 10 ms) between −100

and 800 ms. These procedures both delivered 16 observations per

word for each participant either across the overall time course, in the

former case, or for each position of the sliding window, in the latter.
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To assess word discrimination thoroughly we considered the abil-

ity to classify each word (out of 80) from every other word (yielding a

total number of 3,160 word pairs). Pattern classification was con-

ducted for each pair of words for each participant, with the aid of lin-

ear SVM (c = 1) and leave-one-out cross-validation (i.e., 1 of 16 pairs

of observations was systematically left out for testing while the

remaining 15 were used for training). Classification accuracy was then

assessed both parametrically at the group level (one-sample two-

tailed t-tests against 50% chance level) and nonparametrically via per-

mutation tests separately for each participant (i.e., based on 1,000

random shuffles of classification labels). Multiple comparison correc-

tion was carried out via FDR in the case of 10 ms-based estimates

across the entire time course.

Cross-time classification followed a similar approach except that

the classifier was trained on any given 10 ms window and then tested

on every 10 ms window. Significance testing was carried out in this

case via two-tailed t-tests against chance followed by FDR correction.

2.6 | Image reconstruction

The current procedure builds upon a recent approach to facial image

reconstruction designed to exploit spatiotemporal information in neu-

roimaging patterns (Nemrodov et al., 2018; Nestor et al., 2016). Here,

we deployed this procedure to capture the structure of an EEG-

derived word space and its ability to support word image reconstruc-

tion. This procedure consisted of a sequence of steps as follows—see

Figure 1. First, a word similarity space was derived from the pairwise

classification of 79 words, after leaving out the reconstruction target.

Specifically, a 20-dimensional similarity space was estimated through

metric MDS, given that this number of dimensions accounted for a

significant proportion of the data variance for any participant

(e.g., over 70% for temporally cumulative analyses).

Second, a corresponding number of visual features (i.e., one for

each dimension of MDS-derived space) were computed for each

dimension through an approach akin to reverse correlation/image

classification (see [Murray, 2011] for a review). Notably, this approach

aims to synthesize stimulus features responsible for stimulus space

topography through a linear combination of stimulus images. Specifi-

cally, images were processed with a Gaussian filter with a 5-pixel ker-

nel size (previously optimized to boost reconstruction accuracy for

the theoretical observer). Then, a weighted sum of these images was

computed proportionally to the coordinates of the corresponding

words on any given dimension. Thus, the outcome of these computa-

tions delivers, for each dimension, a single feature, or “classification

image” (CIM).

Third, we considered the possibility that not all stimulus space

dimensions encode visual information (e.g., as opposed to higher-level

semantic information or just noise). Hence, to identify relevant fea-

tures, a permutation test was conducted to assess the presence of sig-

nificant information. Specifically, word identities were randomly

shuffled with respect to their coordinates on each dimension and a

corresponding feature was recomputed for a total of 1,000 permuta-

tions. Then, each true feature was compared to all permutation-based

features, pixel by pixel (two-tailed permutation test; FDR correction

across pixels; q < 0.05). Following this procedure, only features that

contained significant pixels were selected for reconstruction purposes.

F IGURE 1 Procedure for visual word decoding and reconstruction: (a) ERP traces across 12 bilateral occipitotemporal (OT) electrodes were
recorded for each; (b) linear classification was conducted across the corresponding spatiotemporal patterns; (c) discriminability estimates were
summarized by a similarity matrix; (d) a 20-dimension word similarity space was estimated from the similarity structure of the data using a leave-
one-out procedure (only two dimensions are displayed here for visualization purposes); (e) visual features were derived for each dimension and
evaluated for the presence of significant visual information, and (f) a word image corresponding to the left-out stimulus was reconstructed though
a linear combination of significant features
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Fourth, the target word was projected into the existing similarity

space. To this end, a new MDS solution was constructed for all

80 identities and aligned with the original one via Procrustes analysis

using the 79 common words between the two spaces. The resulting

alignment provides us with a mapping between the two spaces that

allows us to project the target word and to retrieve its coordinates in

the original space, for which visual features were derived. Of note,

this procedure enforces non-circularity by excluding the reconstruc-

tion target from the estimation of visual word features.

Last, informative features were linearly combined proportionally

to the coordinates of the target word on each corresponding dimen-

sion. Then, their sum was added to the average of the 79 stimuli used

for feature derivation into an image reconstruction of the target.

The reconstruction procedure above was carried out in two com-

plementary manners: by considering word classification estimates sep-

arately for consecutive 10 ms windows between −100 and 800 ms or

by considering a single larger window between 50 and 650 ms. Fur-

ther, the results of each participant were either considered separately

or averaged across similarity matrices and then treated in the same

manner as the data of any single participant.

2.7 | Evaluation of reconstruction results

Reconstruction accuracy was assessed by comparing each

reconstructed stimulus with every filtered stimulus, with the aid of an

L2 pixelwise metric, and determining in each case whether the recon-

struction is closer to its intended target than to any other stimulus.

This procedure was carried out for entire words or separately for each

letter position (i.e., the first consonant, the middle vowel, and the third

consonant)—in the latter case each reconstructed letter was compared

against the corresponding image fragment.

Further, a single set of reconstructions, based on temporally

cumulative group-based data, was subjected to experimental evalua-

tion in a separate behavioral test. To this end, 20 new participants

(6 males and 14 females, age range: 16–27 years), who were all profi-

cient English speakers and whose first language relied on the Roman

alphabet, were requested to match image reconstructions to their tar-

gets in a two-alternative forced choice (2AFC) task. Specifically, each

of 80 word reconstructions was presented in the company of two

stimuli, one of which was the actual target and the other another

word stimulus. Thus, on each trial, a display was shown containing a

reconstructed image, at the top, and two stimuli side by side, at the

bottom. Each display was presented until participants made a

response to decide which stimulus was more similar to the top image

by pressing a designated left/right key. For each participant, any

reconstructed image was presented twice in the company of different

foils; thus, across participants, all 79 possible foils for a given recon-

struction were exhausted. Stimulus order was pseudorandomized so

that different reconstructed images appeared on consecutive trials

while target stimuli appeared equally often on the left/right side. Each

experimental session was completed over the course of 30 min.

Experimental-based estimates of reconstruction accuracy results

were measured as the proportion of correct matches across

participants and tested for significance tested against chance (50%)

using a one-sample two-tailed t-test.

2.8 | Word similarity and visual theoretical observer

Multiple sources of pairwise word similarity were considered as fol-

lows: (a) visual similarity based on L2 image distances across pairs of

stimuli; (b) orthographic similarity measured as the number of shared

letters at each letter position; (c) phonological similarity based on esti-

mates of pairwise phoneme confusability (Cutler, Weber, Smits, &

Cooper, 2004) averaged across letter positions, and (d) semantic simi-

larity computed as the Euclidean distance between pairs of words

based on GloVe vectors (Pennington, Socher, & Manning, 2014).

The pairwise discriminability for every 10 ms interval was corre-

lated with the corresponding estimates of pairwise word similarity

above. Temporally cumulative word discriminability was also exam-

ined with the aid of multiple linear regression using the similarity esti-

mates above.

In addition, a visual theoretical observer was constructed by using

the objective measures of visual similarity above as inputs for the

reconstruction procedure. Its accuracy was then computed for entire

words and, also, separately for each letter position.

3 | RESULTS

3.1 | Visual word classification

Participants viewed 80 word stimuli, consisting of high-frequency nouns

with a three-letter CVC structure—see prior work (Laszlo & Federmeier,

2011) for a characterization of the EEG signal elicited by such stimuli.

Pattern classification was conducted across ERP traces corresponding

to these stimuli across multiple electrodes—we detail here results

obtained from 12 bilateral occipitotemporal (OT) electrodes as they

yielded equivalent or better results to those obtained from all elec-

trodes, as described below. Specifically, we aimed to estimate the dis-

criminability of each pair of word images for each participant from

spatiotemporal (i.e., channels x temporal points) patterns—see Figure 1

for flowchart of the decoding and reconstruction procedure.

First, classification was conducted on temporally cumulative data

from a large interval ranging between 50 and 650 ms poststimulus

onset. The average classification accuracy across participants

(M = 71.5%, SD = 5.9%) was higher than chance (two-tailed one-

sample t-test against 50% accuracy: t[13] = 13.59, p < .001) (Figure 2).

Additional permutation tests confirmed that decoding accuracy was

above chance for every single participant (p's < .001).

To examine the temporal profile of word discrimination, pattern

classification was conducted next separately for ~10 ms windows

(i.e., 5 time bins × 1.95 ms) between −100 and 800 ms relative to

stimulus onset. The resulting classification time course evinced a long

interval of above-chance classification (two-tailed t-tests against

chance; FDR-corrected; q < 0.05) (Figure 3a). Classification reached

significance around 100 ms and it peaked at 200 ms (M = 61.4%,
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SD = 4.4%), in the proximity of the N170 ERP component—see

Figure S1 for ERP traces.

Given that the temporally cumulative analysis above, which con-

sidered a single large temporal interval, resulted in higher classification

accuracy than the peak performance across multiple smaller temporal

windows, it is likely that complementary information about word

decoding exists at different points in time. To assess this hypothesis,

we evaluated cross-time generalization by training a classifier on data

from any given 10 ms window and, then, testing it on every 10 ms

window. This analysis revealed above-chance classification across

time, especially between 100 and 600 ms (two-tailed one-sample t-

tests against chance; FDR correction, q < 0.01), indicating that

relevant information is maintained over time and—see Figure S2, thus,

some degree of redundancy. However, off-diagonal cells,

corresponding to different temporal windows for training and testing,

yielded relatively low levels of accuracy, consistent with poor general-

ization across time and, thus, with the presence of complementary

information over time.

To assess our choice of electrodes, we conducted the temporally

cumulative analysis on all 64 electrodes and compared the results

with those obtained from 12 OT electrodes described above. On aver-

age, decoding accuracies based on all electrodes were slightly lower

(M = 70.1%, SD = 5.1%) and the difference was marginally significant

(t[13] = 1.84, p = .09). In light of these findings, all subsequent results

are based on data recorded from OT electrodes.

3.2 | Representational similarity analyses and visual
similarity space

To evaluate the similarity structure of word decoding results, pairwise

word classification estimates were averaged across participants and

compared against other measures of word similarity. Specifically,

EEG-based estimates were compared against visual, orthographic,

phonological and semantic measures of word similarity (see Methods).

First, we conducted a multiple linear regression with pairwise

EEG-based word discriminability obtained from the temporally cumu-

lative analysis as outcome, and visual, orthographic, phonological, and

semantic similarities as predictors. Visual similarity (b = 0.003,

t[3155] = 29.68, p < .001) and orthographic similarity (b = 0.06,

t[3155] = 9.27, p < .001), but not phonological or semantic similarity,

made significant independent contributions to predicting EEG-based

word discriminability.

Next, in order to examine the temporal profile of word recogni-

tion, we correlated each psycholinguistic similarity measures with

EEG-based word discriminability for every 10 ms windows between

F IGURE 2 Accuracy of word classification and image
reconstruction, based on a 50–650 ms temporal window, for each of
14 participants. Estimates were above chance for all participants
(p's < .001, permutation test). Classification and reconstruction
accuracies were comparable in magnitude and correlated across
participants (r = .86, p = .0001)

F IGURE 3 (a) The time course of word discrimination revealed by pattern classification for 9.75 ms windows between −100 and 800 ms.
Classification reached significance at 114 ms post-stimulus onset and peaked at 200 ms. (b) The time course of reconstruction obtained by
performing image reconstruction for 9.75 ms windows between −100 and 800 ms. Performance reached significance at 125 ms poststimulus
onset and peaked at 190 ms (gray shading marks intervals of above-chance accuracy, two-tailed one-sample t-test, q < 0.01; blue/red shading
marks 95% confidence intervals across participants)
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−100 and 800 ms relative to stimulus onset. An evaluation of these

estimates across time showed significant correlations between the

EEG data on one hand, and visual similarity, orthographic similarity,

and phonological similarity on the other (see Figure 4; Pearson corre-

lation; FDR-corrected; q < 0.01). These correlations appear to peak

for visual, orthographic, and phonological similarity, in the proximity

of the N170 component—see Discussion for the relationship between

orthographic and phonological similarity. For semantic similarity, the

correlation reached significance only for two brief intervals

(372–392 ms and 748–758 ms).

As expected, given the nature of the experimental task and the

location of the signals considered, the largest correlations were found

between EEG-based estimates and measures of visual similarity. To

clarify and to visualize the nature of the specific information

structuring the EEG-based similarity space we proceeded in two

steps. First, we constructed a visual word space by applying metric

multidimensional scaling (MDS) to pairwise word classification—see

Figure 5a for an example based on the data of a single representative

participant. Then, we synthesized classification images (CIMs),

through a linear combination of stimulus images, separately for each

of 20 dimensions of this space, with the aim of capturing the visual

information underlying the topography of the space.

An examination of the corresponding CIMs showed their potential

value in encoding orthographic information—for instance, the first

dimension in Figure 5b appears to encode the difference between the

vowel “i” on the one hand, and the vowels “o” and “u” on the other.

Overall though, CIMs appear to summarize visual features that go

beyond the shapes of letters present at a single position.

3.3 | Visual word image reconstruction

Word image reconstruction was carried out next by linear combina-

tions of CIMs in an effort to approximate the visual appearance of

novel stimuli (i.e., CIMs were systematically derived from 79 stimuli

and then used to reconstruct one left-out stimulus). Then, reconstruc-

tion accuracy was assessed objectively based on pixelwise image simi-

larity between reconstructions and stimuli (see Figure 6 for examples

of reconstructions).

This analysis was carried out, first, for temporally cumulative

data between 50 and 650 ms separately for each participant. Mean

reconstruction accuracy across participants was 71.2% (SD = 6.3%; t

[13] = 12.55, p < .001). In addition, permutation tests confirmed

that each of the 14 participants yielded above-chance reconstruc-

tion accuracies (p's < .01). An examination of classification accuracy

and reconstruction accuracy also revealed that the two estimates

were highly correlated across participants (r = .86, p = .0001)

(Figure 2) (For an additional evaluation of reconstruction accuracy,

its robustness and its relationship with pairwise visual word

F IGURE 4 Correlations between EEG-based word discriminability
(i.e., average accuracy of pairwise word classification) and estimates of
visual, orthographic, phonological and semantic similarity. Word
discriminability, estimated for 9.75 ms windows between −100 and
800 ms, was significantly correlated with the first three measures
across extensive intervals, but only briefly with semantic similarity
(color bars at the top mark intervals of significant
correlation, q < 0.01)

F IGURE 5 Example of
(a) multidimensional word space
derived from a 50 to 650 ms temporal
window, and (b) CIMs corresponding
to the first two dimensions
synthesized from this word space
through a linear combination of
stimulus images. For convenience, the
figure shows only the first two
dimensions for one representative
participant (the two dimensions
account for 7.6 and 6.5% of the
variance, respectively)
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similarity see Supporting information, Visual similarity and image

reconstruction.).

Further, the time course of reconstruction accuracy was examined

for consecutive 10 ms windows between −100 and 800 ms. In agree-

ment with the time course of word classification, reconstruction per-

formance reached significance shortly after 100 ms and peaked at

190 ms in the proximity of the N170 ERP component, M = 63.5%,

SD = 5.7% (Figure 3b. For an illustration of word reconstruction across

time, see also Movie 1.

To further boost accuracy, we considered the possibility that aver-

aging the similarity matrices of the participants may increase the SNR

of the data used for reconstruction purposes (Cowen, Chun, & Kuhl,

2014; Nemrodov et al., 2018). Specifically, a single average similarity

matrix across the 14 participants was used for word space derivation,

feature synthesis and word reconstruction. This manipulation led to

robust performance over time; for instance, peak performance

reached 70.4% (Figure S3) compared to the 63.5% average obtained

for single-participant reconstructions. In addition, temporally-

cumulative reconstruction reached 84.5% accuracy (p = .001, permu-

tation test) which is significantly higher than the corresponding results

of any single participant (all p's < .001, permutation test).

To further explore the generalizability of our reconstruction

results, we compared the reconstructed words not only to the

80 words in our stimuli set, but to all possible CVC pseudo/words

constructed by considering all possible combinations of letters occur-

ring in each position in our stimuli set, for a total of

750 pseudo/words. The average reconstruction accuracy was slightly

lower (M = 68.8%, SD = 5.1%; t[13] = 7.37, p < .001), but still well

above chance.

A complementary assessment of group-based reconstruction

results also considered experimental data, instead of objective

pixelwise similarity, from a novel group of 20 naïve participants. Spe-

cifically, data from a two-alternative forced choice (2AFC) task involv-

ing the match of word reconstructions to their stimulus targets

(vs. any possible stimulus foil) confirmed that reconstructions were

successful (M = 81.8%, SD = 6.6%; two t-test against 50% chance

across participants, t[19] = 21.56, p < .001).

3.4 | Visual letter reconstruction

To bridge our results with previous investigations into single-letter

reconstructions, we proceeded to compute the reconstruction accu-

racy for each letter position. Of note, this analysis can reveal potential

differences in accuracy across different letter positions and facilitate

an examination of the contribution of each letter position to whole-

word image reconstruction.

To this end, we assessed group-based reconstruction accuracies

separately for each position. This analysis revealed that the middle

vowel has the highest reconstruction accuracy relative to the first

consonant (paired permutation test, p = .001) and the last consonant

(paired permutation test, p = .001) (Figure 7).

The result above is particularly intriguing given the importance of

consonants for word recognition (Vergara-Martínez, Perea, Marín, &

Carreiras, 2011). Two possible mechanisms might be responsible for

this difference across letter positions. The first possibility concerns

the central position of the vowel at fixation and thus, it is privileged

encoding in the EEG signal. In other words, the vowel may be better

reconstructed because there is more information related to its visual

processing in the EEG signal. Another explanation stems from the fact

that vowels might be objectively more discriminable than consonants,

for instance, because there are fewer vowels than consonants in

Roman scripts.

To examine this latter possibility, a visual theoretical observer was

constructed based on a similarity matrix derived from the objective

pixelwise image similarity of the original stimuli (see Methods). The

theoretical observer assumes access to all visual information, thus

providing a theoretical upper limit for EEG-based reconstruction.

F IGURE 6 Examples of stimuli and reconstructed words based on a 50–650 ms temporal window from a single representative participant.
The first row shows word stimuli and the second row displays corresponding reconstructed word images. The values at the bottom left of each
image indicate objective accuracy based on pixel-wise image similarity. The values at the bottom right indicate experimental estimates from a
separate group of participants. The superior performance of reconstruction in the vowel position, relative to the two consonant positions, can be
observed in the figure
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The overall accuracy of this theoretical observer for entire words was

98.9% (Figure 7).

More relevant to the current question, we computed the recon-

struction accuracy for each letter position, and found, in this case, no

apparent advantage of the middle vowel relative to the first and last

consonant of the word (Figure 7). Hence, differences in accuracy

across position emerge from the structure of empirical data rather

than from the nature of the method or from the visual properties of

the stimuli. In particular, performance for vowels was not superior

because vowels are more visually discriminable than consonants.

Another possibility we considered is that letters more frequent in

the stimulus set at a given position are more accurately reconstructed

due to the overrepresentation of their visual features in the derived

CIMs. However, a correlation between relative letter frequency and

letter reconstruction accuracy did not reveal any significant correla-

tion at any position (all p's > 0.05). Therefore, the higher EEG-based

reconstruction accuracy of the middle vowel appears to be due to its

central placement in the visual field rather than a direct outcome of

the objective properties of the stimulus set. The central position of

the vowel along with the smaller number of vowels relative to conso-

nants may lead participants to assign more weight to vowel informa-

tion. At the same time, though we do point out that the results above

indicate above-chance sensitivity to all letter positions.

Relevantly here, while vowels yield higher reconstruction accura-

cies relative to consonants, they may have lower discriminative value

for word identification and reconstruction. Specifically, reconstructed

vowels only distinguish between five sets of words containing five dif-

ferent potential vowels while consonants can distinguish between

substantially more sets of words containing 15 and 10 different

potential consonants in the first and the third position, respectively.

To address this possibility, we have conducted an additional analysis

aimed at clarifying the contribution of each letter position to word

reconstruction. Specifically, we have correlated reconstruction accu-

racy for each letter position with word reconstruction while partialling

out the contribution of the other two positions. This analysis was con-

ducted across the 80 word stimuli for participant-averaged recon-

struction estimates. Interestingly, the results showed that both the

first consonant and the last made significant contributions to word

reconstruction (r = .72, p < .001 and r = .61, p < .001, respectively)

while the vowel only made a marginally significant contribution

(r = .19, p = .097).

Thus, while vowel reconstruction shows the highest levels of

reconstruction accuracy per position, it contributes the least to word

reconstruction. This result provides further evidence for the ability of

reconstruction to capture information across multiple letter positions

and, also, it provides convergence with the importance of consonants

for word recognition, as noted above (Vergara-Martínez et al., 2011).

3.5 | Individual differences

While the analyses above capitalize on the similarity of data structure

across participants to boost overall reconstruction accuracy, con-

versely, it is important to consider individual variability and the source

of such variability in our data. From a methodological standpoint, this

analysis could also inform the ability of reconstruction techniques to

shed light on individual differences in perception more generally.

To this end, first, we computed typicality estimates based on the

reconstruction accuracies of each participant. Specifically, the typical-

ity of one participant was measured as the correlation between the

reconstruction accuracies of all 80 stimuli from that participant and

the average reconstruction accuracies from all other participants. All

typicality estimates were above chance (all p's < .001) in agreement

with the presence of similar data structure across participants, as

noted above. At the same time, an examination of typicality and accu-

racy across participants (Figure S4) showed no systematic relationship

(Spearman correlation, p = .45). Thus, the reconstruction procedure is

effective even for less typical participants and its success is not

impacted by participant typicality.

For completeness, we also estimated the typicality of group-based

reconstructions, relying on an average confusability matrix, and of the

theoretical observer. Specifically, these estimates were computed as

the correlation between the corresponding reconstruction accuracies

across 80 words and the average reconstruction results across all

14 participants. As expected, group-based data scored high on typical-

ity given that they rely primarily on a data structure common across

participants (Pearson correlation, r = .89, p < .001). In contrast, the

theoretical observer, while still significant, scored low on typicality

(r = .38, p < .001). This is consistent with our results above indicating

that the theoretical observer stands out from human data, for

instance, through better access to visual information relating to the

first and last consonant of a word.

Further, to identify and to visualize individual differences in the

representation of words across participants, we computed the

F IGURE 7 Reconstruction accuracy for whole words was first
calculated from the group-based average data, based on a 50–650 ms
temporal window, and based on the theoretical observer.
Reconstruction accuracy was then calculated separately for each
letter position. The advantage of the middle vowel was apparent for
EEG data but not for the theoretical observer (permutation
test, ***p < .001)
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average reconstruction accuracy of all words separately for each pixel

and each participant. Then, PCA was conducted across the heatmaps

of all participants (Figure 8a). Lastly, we computed averages of these

maps, separately for each PCA dimension, weighted proportionally to

the z-scored coefficient corresponding to each participant on a given

dimension. Thus, such weighted sums provide new CIMs illustrating

different sources of participant variability. An examination of these

CIMs (Figure 8b) indicate that individuals vary primarily in their ability

to capture information in the central position, as illustrated for the

first principal component. However, additional visual cues, such as the

lower part of the last consonant illustrated for the second component,

are also a source of individual variability.

3.6 | Additional psycholinguistic analyses

While our investigation is primarily focused on visual-orthographic

processing of single words, an exploration of multiple psycholinguistic

variables and their impact on word decoding could be informative.

Specifically, such an exploration may provide a more complete picture

of the perceptual and linguistic processes underlying reading and pave

the way for dedicated studies of such processes relying on pattern

analyses of EEG signals.

Accordingly, to explore the dependence of word classification on

a variety of psycholinguistic variables, multiple regression analysis was

conducted to account for the average EEG-based discriminability of

each word across participants. To this aim, we considered seven psy-

cholinguistic measures estimated across English words irrespective of

length and format (i.e., not just CVC). Specifically, we considered:

positional letter frequency, positional letter-bigram frequency

(i.e., sublexical covariates), word frequency, orthographic Levenshtein

distance, number of orthographic neighbors, phonological Levenshtein

distance and number of phonological neighbors. Each of these mea-

sures was correlated with the discriminability of each word, computed

as the average accuracy of its EEG-based classification across a

50–650 ms interval from all other 79 words. Of note, we considered

here EEG classification rather than reconstruction results, since the

latter depend on the former. Also, we reasoned that reconstruction

captures primarily visual aspects of neural processing while decoding

may be facilitated by multiple linguistic properties of the stimuli and,

thus, contain a richer and more diverse structure.

The results of this analysis pointed to word frequency (b = 5.04e-

05, t[72] = 2.48, p = .015) and the number of orthographic neighbors

(b = 0.01, t[72] = 2.05, p = .044) as significant predictors making an

independent contribution to accounting for EEG data. To assess the

robustness of these results we performed this analysis again using

psycholinguistic measures estimated exclusively across CVC words.

This analysis rendered qualitatively similar results, though the number

of orthographic neighbors only provided a marginally significant con-

tribution this time (b = 0.02, t[72] = 1.87, p = .066) (For an additional

examination of these measures with respect to their impact on indi-

vidual differences, see Supporting information, Psycholinguistic vari-

ables and individual differences.).

To align our current results with the literature, we repeated the

multiple regression analysis for the average EEG-based discriminability

of each word across participants with psycholinguistic measures

obtained from the UNION database while taking the natural logarithm

of SUBTL word frequency. This analysis showed similar numerical

trends to the raw frequency data but did not reach statistical

significance.

The pairwise EEG-based word discriminability for every 10 ms

interval was also correlated with the corresponding estimates of

semantic similarity obtained from the word2vec model (Mikolov,

Chen, Corrado, & Dean, 2013). No significant correlations were

found.

4 | DISCUSSION

Reading relies on the ability to identify words quickly and reliably by

access to their visual-orthographic characteristics (Carreiras, Arm-

strong, Perea, & Frost, 2014; Perfetti, 2007; Verhoeven, Reitsma, &

Siegel, 2011). The present work aims to uncover the structure of

underlying word representations with the aid of pattern analysis and

reconstruction techniques as applied to EEG data. Our results demon-

strate the feasibility of decoding and reconstructing visual words from

neural data. These results evince several noteworthy aspects, as

follows.

First, word decoding reveals a representational space shaped by

visual and orthographic features consistent with that found by fMRI

investigations of the visual word form area (vWFA) (Baeck et al.,

2015; Nestor et al., 2013). Specifically, sensitivity to letter identity is

found for every letter position across a relatively large and well-

F IGURE 8 Individual differences in word reconstruction based on
a 50–650 ms temporal window. (a) PCA was applied to pixelwise
accuracy heatmaps (for convenience, only the first two PCs are
plotted). Each blue dot represents one of 14 participants while orange
marks group-averaged data and green marks the theoretical observer.
(b) Classification images were computed for each component to
illustrate sources of individual variability: Heatmaps illustrate
components of variability in pixelwise reconstruction accuracy across

participants. Specifically, PC1 indicates that participants vary primarily
in how accurately they represent the vowel in the central position
while PC2 indicates that participants also vary in how accurately they
represent the bottom part of the second consonant
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controlled pool of words (e.g., having the same length and CVC struc-

ture). Of note, orthographic similarity accounts for the structure of

the data beyond pure visual similarity, suggesting sensitivity to visual

forms more abstract than the pictorial content of a given stimulus

(Carreiras, Armstrong, & Dunabeitia, 2018). Additional correlations

between decoding accuracy, on one hand, and word frequency and

the number of orthographic neighbors, on the other, also confirm the

impact of linguistic processing on our results.

Second, visual word features were derived directly from the struc-

ture of the EEG data and used for the purpose of word image recon-

struction. Previous work has reconstructed single characters such as

letters from fMRI patterns in visual cortex (Schoenmakers et al., 2013;

Shen et al., 2019; Thirion et al., 2006) or visualized their representa-

tion through psychophysical methods (Gosselin & Schyns, 2003)—see

also complementary work (Pasley et al., 2012) targeting ECoG-based

speech reconstruction. In contrast, the current results demonstrate,

for the first time to our knowledge, the ability to reconstruct the

visual appearance of whole words from neural recordings. Specifically,

accuracy was above chance for every letter position confirming that

reconstruction retrieves the appearance of the entire word rather

than of a single later. Of note, reconstruction accuracy was well above

chance for every participant (range: 58–77%) and even higher when

combining the data of multiple participants (84.50%). Thus, recon-

struction results are quite robust and, moreover, they serve to clarify

and to visualize the information underlying neural decoding.

Third, we find that the time course of decoding and reconstruction

peaks around 200 ms after stimulus onset, in the proximity of the

N170 component, but reaches significance earlier, soon after 100 ms.

These findings are consistent with access to lexical orthographic infor-

mation for familiar words between 100 and 200 ms (Araújo et al.,

2015; Dufau, Grainger, Midgley, & Holcomb, 2015; Hauk et al., 2006;

Sereno, Rayner, & Posner, 1998) as well as with the significance of

the N170 component for orthographic processing, presumably driven

by a vWFA neural generator (Brem et al., 2006). Interestingly though,

cross-temporal generalization as well as temporal cumulative analyses

suggest the presence of complementary information across an

extended temporal interval, roughly between 100 and 600 ms. One

likely explanation for this result is a quick and efficient reading mecha-

nism that allows subsequent refinement, as illustrated by the need to

distinguish between highly confusable words (Hirshorn et al., 2016).

Fourth, we find that participants vary considerably in how typi-

cally they represent words relative to one another, yet that does not

determine reconstruction success. More importantly, we extract visual

templates that account for individual differences in word representa-

tions. These templates reveal differences in sensitivity to the visual

encoding of the middle vowel as well as of the lower part of the last

consonant, possibly related to different reading strategies and/or dif-

ferent types and degrees of language experience (Seidenberg & Mac-

Donald, 2018). Thus, neural-based image reconstruction can shed

light on visual-orthographic differences in reading and, in doing so,

complement the extensive work on phonological and semantic indi-

vidual differences (Brady, Braze, & Fowler, 2011).

More generally, from a methodological standpoint, the current

findings demonstrate and illustrate the ability of EEG signals to sup-

port the recovery and the visualization of fine-grained neural repre-

sentations, such as those supporting reading. Recent work (Nemrodov

et al., 2018) has demonstrated the feasibility of EEG-based image

reconstruction for human face stimuli. Here, we confirm this demon-

stration by appealing to a new class of visual stimuli and, thus, open

the door to more extensive and varied applications of image recon-

struction to EEG data.

Of particular interest in this sense is clarifying the nature of the

representations accessible through reconstruction. The differential

retrieval of information across letter positions, as reported above, may

speak to this issue. Specifically, the privileged encoding of the middle

vowel, likely driven by its central fixation, suggests access to more

general, early visual representations. Given the importance of conso-

nants for word recognition (Vergara-Martínez et al., 2011), it is possi-

ble that such representations are subsequently refined into more

abstract ones, subject to language-specific constraints, such as the

need to identify consonants correctly. At the same time, we note that

orthographic word processing relies on flexible representations sensi-

tive to task demands (Chen et al., 2015; Yang & Zevin, 2014). Hence,

a different experimental task involving deeper lexical-semantic

processing than the one-back memory task used here, may provide

access to higher-level word representations.

Relevantly here, an important challenge for future work concerns

the ability to reconstruct the appearance of entire sentences rather

than single words through the use of image reconstruction methods

relying on more complex combinations of visual and psycholinguistic

features. This would allow investigating the interplay of multiple fac-

tors impacting discourse (Van Berkum, Brown, Zwitserlood,

Kooijman, & Hagoort, 2005), including semantics and phonology,

which largely fell outside the scope of the present work. In particular,

the nature of the experimental task as well as the large number of

word repetitions likely diminished our ability to capture semantic

effects (Rossell, Price, & Nobre, 2003; Rugg, 1985). Also, in the

absence of words with irregular pronunciation, the correlation of pho-

nological and orthographic properties made difficult disentangling

their distinct contributions to neural processing. Thus, it is possible

that the structure of the EEG data also reflects phonological effects,

especially given the role of rapid phonological feedback to posterior

visual areas in stabilizing grapheme string representations. The exten-

sion of our present findings to different stimulus sets and languages

with more complex grapheme-phoneme mapping will be particularly

relevant in this respect and, also, help assess their cross-linguistic

validity (Rueckl et al., 2015; Share, 2008).

Importantly, the evaluation of individual differences, as illustrated

above, carries relevance for the study of dyslexia. Impaired visual

expertise for print appears to play a role in the development of at

least some subtypes of dyslexia (Helenius, Tarkiainen, Cornelissen,

Hansen, & Salmelin, 1999; Maurer et al., 2007; Paulesu et al., 2001).

Hence, image reconstruction could provide a valuable means of

revealing impaired visual processing and representations in individuals
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with dyslexia and of refining our understanding of the subtypes of this

disorder (Zoubrinetzky, Bielle, & Valdois, 2014).

To conclude, our work illustrates the benefit of a new approach to

the study of visual word representations. Theoretically, our results

help to uncover the visual-orthographic structure of such representa-

tions as well as the temporal dynamics of their processing. Methodo-

logically, they showcase the ability of pattern analyses as applied to

EEG data to reveal the fine-grained structure of neural representa-

tions. More generally, the current work paves the way to in-depth

studies of reading, via EEG-based image reconstruction, in healthy

individuals as well as in those with visual deficits.
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