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Abstract

Pituitary neuroendocrine tumours (PitNETs) associated with paragangliomas or 
phaeochromocytomas are rare. SDHx variants are estimated to be associated with 
0.3–1.8% of PitNETs. Only a few case reports have documented the association with 
MAX variants. Prolactinomas are the most common PitNETs occurring in patients with 
SDHx variants, followed by somatotrophinomas, clinically non-functioning tumours 
and corticotrophinomas. One pituitary carcinoma has been described. SDHC, SDHB and 
SDHA mutations are inherited in an autosomal dominant fashion and tumorigenesis 
seems to adhere to Knudson’s two-hit hypothesis. SDHD and SDHAF2 mutations most 
commonly have paternal inheritance. Immunohistochemistry for SDHB or MAX and loss 
of heterozygosity analysis can support the assessment of pathogenicity of the variants. 
Metabolomics is promising in the diagnosis of SDHx-related disease. Future research 
should aim to further clarify the role of SDHx and MAX variants or other genes in the 
molecular pathogenesis of PitNETs, including pseudohypoxic and kinase signalling 
pathways along with elucidating epigenetic mechanisms to predict tumour behaviour.

Introduction

Primary tumours of adenohypophyseal cells recently 
suggested to be redefined as pituitary neuroendocrine 
tumours (PitNETs) can rarely occur in association with 
paraganglioma (PGL) or phaeochromocytoma. These 
tumours may develop in patients with or without 
identifiable germline variants. The combination of PitNET 

and phaeochromocytoma/PGL (PPGL) is also uncommon 
but well-described in the setting of multiple endocrine 
neoplasia (MEN) type 1 whilst the association in MEN2 is 
probably coincidental. Succinate dehydrogenase (SDH) 
gene variants (collectively known as SDHx) can associate 
with PPGL (Baysal et  al. 2000). The association of PitNET 
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and PPGL in the setting of SDHx variant was established 
at the molecular level in 2012 (Xekouki et  al. 2012) and 
has since been known as the 3P (pituitary, paraganglioma, 
phaeochromocytoma) association (3PA) syndrome 
(Xekouki et  al. 2015). In some cases, no genetic alteration 
can be identified (Denes et  al. 2015). In addition to PPGL 
and PitNETs, SDHx variants may also result in renal cell 
carcinoma and gastrointestinal stromal tumour (Carney & 
Stratakis 2002, Malinoc et al. 2012). The lifetime PPGL-related 
penetrance of SDHA, SDHB and SDHC genes is 1.7, 8.3 and 
22.0%, respectively (Benn et al. 2018), while the penetrance 
of a paternally inherited SDHD pathogenic variant is 43.2% 
by age 60 years (Andrews et al. 2018). In decreasing order of 
frequency, germline mutations of SDHx genes have been 
found in PPGL, gastrointestinal stromal tumours, renal cell 
carcinoma and PitNETs, seemingly making PitNETs the least 
frequent of these SDHx-associated tumours (Evenepoel et al. 
2015). Exceptional reports of SDHx variants in a pancreatic 
neuroendocrine tumour and lymphoid malignancy have 
been documented (Renella et al. 2014, Niemeijer et al. 2015). 
In unselected PitNET cohorts, the prevalence of SDHx 
variants is 0.3–1.8% (Gill et  al. 2014, Xekouki et  al. 2015, 
MacFarlane et al. 2020, Mougel et al. 2020).

Germline MAX variants have been implicated in PPGL 
and renal oncocytoma, and somatic variants have been 
identified in small cell carcinoma of the lung (Romero 
et al. 2014, Kurschner et al. 2017). Other tumours reported 
in association with MAX variants include endometrial 
carcinoma, ganglioneuromas, neuroblastoma, pancreatic 
cancer, lung adenocarcinoma and breast cancer (Walker 
et  al. 2018, Seabrook et  al. 2021). In one study, germline 

MAX variants accounted for approximately 1% of PPGLs 
in patients with a negative RET, VHL, SDHB, SDHC, SDHD 
and TMEM127 genetic screen, thus making it a very rare 
cause of PPGL (Burnichon et  al. 2012). Data would tend 
to suggest that the presence of young onset bilateral 
PPGL or multifocal uniglandular phaeochromocytoma 
should raise the suspicion of a pathogenic MAX variant 
(Burnichon et al. 2012, Korpershoek et al. 2016, Seabrook 
et  al. 2021). The 3PA syndrome has now also been 
described in patients with MYC-associated factor X 
gene (MAX) variants (Roszko et al. 2017, Daly et al. 2018, 
Mamedova et  al. 2021). Two families with PPGL and 
multiple endocrine and non-endocrine tumours in the 
setting of MAX variants have raised the suggestion of 
naming this syndrome as multiple endocrine neoplasia 
type 5 (Seabrook et al. 2021).

This review summarises the inheritance and 
pathophysiology of SDHx and MAX variants, considers 
the clinical manifestations and discusses the evidence in 
reported cases of SDHx and MAX-associated PitNETs to date 
in order to provide an overview of the investigative strategy 
for these rare tumours.

SDH: pathophysiology

The SDH complex is located on the inner mitochondrial 
membrane and consists of four subunits: A, B, C and D, 
each coded by one of the SDHx genes (Fig. 1). The SDH 
complex is accompanied by an associated assembly factor, 
SDHAF2, which facilitates flavination of SDHA (Fig. 1). 

Figure 1
The SDH complex and its relationship to the 
mitochondrial membranes and mitochondrial 
cristae. Together the SDH subunits make up 
respiratory complex II. The hydrophobic SDHD 
and SDHC subunits anchor the complex within 
the inner mitochondrial membrane, while the 
hydrophilic SDHA and SDHB subunits catalyse the 
oxidation of succinate to fumarate as part of the 
tricarboxylic cycle. SDHAF2, also known as SDH5, 
is known to have roles in the flavination of SDHA 
and research into its roles and structure is 
ongoing (Sharma et al. 2020). Electrons generated 
by the tricarboxylic acid cycle (e-) reduce FAD to 
FADH2 in SDHA before proceeding through Fe-S 
clusters in SDHB. These electrons then reduce 
ubiquinone (Q) to ubiquinol (QH2) before being 
transported to the adjacent respiratory complex 
III. Mitochondrion image created with  
Biorender.com
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The hydrophobic C and D subunits act to anchor the SDH 
complex, and the hydrophilic A and B subunits are the sites 
for enzymatic activity (Fig. 1). SDHA and SDHB catalyse the 
oxidation of succinate to fumarate in the tricarboxylic acid 
cycle (also known as Krebs cycle or citric acid cycle) and 
transfer electrons from carbon oxidation within the cycle 
to ubiquinone within the electron transport chain (Fig. 1) 
(Rutter et al. 2010). With its roles in both the tricarboxylic 
acid cycle and the electron transport chain, the SDH 
complex is a linchpin of aerobic respiration.

The malfunctioning of the SDH complex secondary 
to SDHx mutations results in accumulation of succinate. 
Accumulated succinate can then enter the cytosol 
via the inner mitochondrial membrane dicarboxylic 
acid translocator followed by the outer mitochondrial 
membrane voltage-dependent anion channel (Selak 
et  al. 2005). This excess of succinate can disrupt prolyl 
hydroxylases within the cytosol resulting in the von 
Hippel–Lindau (VHL) protein dissociating from hypoxia-
inducible factor (HIF) (Selak et al. 2005). The stabilisation 
and subsequent accumulation of HIF results in a state of 
pseudohypoxia, which may contribute to tumorigenesis 
via epigenetic modifications, such as disruption of RNA 
networks (Puissegur et  al. 2011, Zhang et  al. 2019). For 
example, a HIF-1α-dependent increase of miR-210 and 
subsequent mitochondrial dysfunction in A549 human lung 
adenocarcinoma cells has been demonstrated (Puissegur 
et  al. 2011). Furthermore, SDHD is a miR-210 target and 
SDHD knockdown in A549 cells replicated miR-210-induced 
mitochondrial dysfunction and mitochondrial structural 
abnormalities (Puissegur et  al. 2011). In another lung 
adenocarcinoma cell model (EGFR-mutated H1975 cells), 
miR-147b repressed SDHD activity, which is known to result 
in HIF accumulation (Zhang et al. 2019). Hypermethylation 
also appears to be an important epigenetic mechanism. In a 
cohort of 145 PPGL, only one hypermethylated tumour did 
not have an SDHx variant. Hypermethylation was higher 
in SDHB-mutated PPGL when compared to SDHA, SDHC 
and SDHD cases, which may explain the greater metastatic 
potential of SDHB-mutated tumours (Letouze et  al. 2013). 
In this study, the authors hypothesised that succinate may 
limit demethylation by TET proteins and more recently 
it has been shown that inhibition of TET results in SDHB-
related hypermethylation, which acts in concert with  
HIF-2α-induced pseudohypoxia to promote a  
mesenchymal phenotype in Sdhb−/− cells in vitro and in vivo 
(Morin et  al. 2020). Additionally, elevated HIF-1α levels 
have been shown in an SDHD-mutated somatotrophinoma 
and the cytoplasm of Sdhb+/− mouse pituitary cells (Xekouki 
et al. 2012, 2015).

The role of SDHx variants in pituitary tumorigenesis is 
supported by a double knockout animal model (Xekouki 
et  al. 2015). Sdhb+/− mice have hypercellular pituitary 
glands with increased number of prolactin and growth 
hormone-positive cells (Xekouki et  al. 2015). Tumour 
cells in this model show large mitochondria with 
dysmorphic and/or absent mitochondrial cristae that are 
the site of SDH subunits (Fig. 1). It is hypothesised that 
pituitary hyperplasia could be one of the first steps in the 
development of SDHx-related PitNETs (Xekouki et al. 2015).

A transcriptomic analysis of 76 inherited and sporadic 
PPGLs identified 2 tumour clusters, one including SDHB, 
SDHD and VHL-mutated tumours (pseudohypoxic 
signalling cluster), and one comprising RET and NF1-
mutated (kinase signalling cluster) tumours (Dahia et  al. 
2005). MAX falls within the kinase signalling cluster. A 
third cluster driven by Wnt signalling including CSDE1 
and UBTF-MAML3 genes has also been recognised (Fishbein 
et al. 2017).

SDHx variants are well established in PitNETs while 
one highly proliferative macro somatotroph-lactotroph 
PitNET has been described in a 15-year-old with a germline 
VHL variant c.340G>C (p.Gly114Ser); the patient later 
developed a phaeochromocytoma (Tudorancea et  al. 
2012). It will be interesting to see if other genes identified 
in the pseudohypoxic cluster, such as SUCLG2, are also 
implicated in PitNET pathogenesis (Hadrava Vanova et al. 
2022). Growth hormone excess in association with optic 
glioma and germline NF1 variants has been reported, but 
a pathogenic role for NF1 and RET germline variants is yet 
to be elucidated in PitNETs. Germline Wnt-signalling gene 
variants are yet to be described in PitNETs, although beta-
catenin mutations are well established in the pathology of 
adamantinomatous craniopharyngioma.

The majority of SDHx-associated PitNETs reported to 
date have been tumours of the PIT1 lineage. This may be 
because PIT1 lineage PitNETs are simply more common, 
or alternatively, there may be a mechanistic explanation 
for this. For example, HIF-1 has many binding partners, 
one of these being the pituitary transcription factor 
PITX1 (Mudie et  al. 2014). PITX1 has been found to 
regulate HIF-dependent cellular survival in hypoxia and 
depletion of PITX1 in U2OS and HeLa cells resulted in 
increased apoptosis in hypoxic conditions (Mudie et  al. 
2014). Whether the elevated HIF levels arising from SDHx 
pathogenic variants may also inhibit apoptosis of PIT1-
derived pituitary cells resulting in hyperplasia progressing 
to overt tumorigenesis is an interesting consideration, 
and a recent study has established a link between HIF-1α 
excess and protein kinase A, CREB and downstream excess 
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growth hormone secretion via repression of PRKAR2B 
transcription (Lucia et al. 2020).

SDHx variants

SDHB, SDHA and SDHC mutations are commonly inherited 
in an autosomal dominant fashion. Tumorigenesis in PPGL 
adheres to Knudson’s two-hit hypothesis (Fig. 2A). Patients 
with PPGL most commonly develop their disease from 
paternally transmitted mutations in SDHD and SDHAF2; 
however, a few cases of maternal transmission of SDHD 
mutations resulting in PPGL do exist (Kunst et  al. 2011). 
Two different mechanisms have been suggested (Fig. 2B) 
(Hensen et al. 2004, Baysal et al. 2011). Proposed candidates 
for the unknown imprinted SDHD modifier gene shown 
in Fig. 2B include CDKN1C, SLC22A18 and H19 (Hoekstra 
et al. 2016, Björklund & Backman 2018).

More recently, a further hypothesis for the parent-
of-origin effects of SDHD expression suggested maternal 
imprinting at a promoter for a large intergenic ncRNA, 
designated the name UPGL (untranslated in paraganglioma 
locus) downstream of SDHD on chromosome 11 (Fig. 3) 

(Baysal et  al. 2011). It is hypothesised that methylation 
of this locus controls long-range enhancer–promoter 
contacts, alteration of chromatin structures and 
subsequent downregulation of transcriptional activity of 
the SDHD gene (Baysal et al. 2011).

SDHB variants in PitNETs

SDHB (OMIM*185470) is located on chromosome 
1p36.13 and codes for the catalytic SDHB subunit of 
the SDH complex (Fig. 1). SDHB mutations manifest as 
familial PGL type 4. To date, there are 19 cases of SDHB-
associated PitNETs reported. Five have had LOH analysis 
undertaken (three showed LOH). Evidence is inconclusive 
in the remainder of SDHB-related PitNETs analysed (LOH 
not present/not evaluated, heterogeneous/positive 
immunohistochemistry (IHC)). In 13 patients, no tissue 
analysis has been undertaken (Fig. 4 and Table 1). Cases 
with tumour analysis are summarised in this subsection.

A 33-year-old male with the SDHB c.298T>C 
(p.Ser100Pro) variant was reported to have a 
macroprolactinoma managed with dopamine agonist 

Figure 2
(A) The Knudson hypothesis. A germline mutation 
of SDHA, SDHB or SDHC is inherited and a second 
hit such as a somatic mutation or chromosomal 
loss is acquired resulting in loss of heterozygosity 
(LOH). (B) The Hensen hypothesis is applicable to 
SDHD (Hensen et al. 2004). SDHD is a maternally 
imprinted gene located on the long arm of 
chromosome 11. The presence of a paternally 
imprinted tumour suppressor gene (S) on the 
short arm is hypothesised. In the usual paternal 
transmission of SDHD, the mutated paternal 
SDHD together with the lack of expression of a 
tumour suppressor gene and loss of maternal 
chromosome 11 can result in tumorigenesis  
(B middle panel). If the SDHD mutation is on the 
maternal chromosome, usually no tumour is 
observed, as even if the paternal chromosome 
with the normal SDHD is lost, the lack of 
functional SDHD is counteracted by an expressed 
tumour suppressor gene from the short arm of 
the maternal chromosome 11 (B middle panel). In 
the rare maternal transmission of SDHD 
mutations, two steps are required. The first is 
suggested to be a chromosomal recombination 
resulting in transfer of the maternal SDHD 
mutation to the paternal allele harbouring the 
imprinted tumour suppressor gene. The second is 
loss of the maternal chromosome 11. The tumour 
suppressor gene S located on the short arm of 
chromosomal 11 is currently unknown. SDHAF2 
also shows evidence of paternal imprinting (Kunst 
et al. 2011).
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and surgery. LOH at the SDHB locus was confirmed in the 
tumour tissue, suggesting a pathogenic role of the SDHB 
variant (Denes et  al. 2015). Furthermore, vacuoles were 
observed in neoplastic cells by microscopy. The patient’s 

mother carried the same variant and had been diagnosed 
with a macroprolactinoma aged 35 years. Her prolactinoma 
tissue also showed vacuolated cells (Denes et al. 2015).

A 31-year-old female with family history of PGL was 
diagnosed with macroprolactinoma requiring 2 surgeries, 
cabergoline and radiotherapy (Denes et al. 2015). She had 
a germline deletion of exon 6–8 of SDHB. The pituitary 
tissue showed loss of the whole gene on the other allele 
and negative SDHB IHC (Denes et al. 2015).

SDHB-associated pituitary carcinoma has been 
described in a 53-year-old patient bearing the c.587G>A 
(p.Cys196Tyr) variant (Tufton et  al. 2017). The lesion was 
clinically non-functioning (NF). Tumour cells expressed 
the steroidogenic factor 1 (SF1) but lacked the expression 
of pituitary hormones. The patient also had a history 
of PGL. Vacuoles typical of SDHB-mutated PitNETs were 
identified and again LOH was confirmed in the pituitary 
carcinoma tissue (Tufton et  al. 2017). After three cycles 
of temozolomide, the patient showed dramatic clinical 
improvement with stable MRI appearances. A slight 
reduction in the size of primary and metastatic lesions was 
noted after a total of ten cycles of chemotherapy.

Figure 3
Long-range enhancer–promoter contacts in SDHD gene expression. On 
the paternal allele, an enhancer can influence an SDHD promoter and 
thereby increase SDHD transcription. This occurs via a UPGL promoter, 
which remains unmethylated due to the competitive binding of a 
transcription factor (TF) preventing cohesin from engaging with a CpG 
island (CPI). On the maternal allele, the UPGL promoter is methylated 
(CH3), preventing the TF binding, which enables cohesin to bind to the 
CpG island and block the enhancer–promoter activity on SDHD. 
Consequently, the enhancer binds to an alternative promoter and there is 
downregulation of SDHD transcription.

Figure 4
(A) All cases of PitNETs reported in association with SDHx variants are summarised. Prolactinomas account for a significant proportion (59%). It is notable 
that there have only been eight cases where evidence consistent with a causative role for SDHx variant reported in the literature and all are macro 
PitNETs (B). The average age at diagnosis in this sub-cohort is 44 years (range 31–60). One patient had a mixed somatotroph–lactotroph tumour with 
clinical acromegaly (Xekouki et al. 2012); 75% of this subgroup had prolactin-expressing tumours. It is also possible that prolactinomas will be under-
represented in B as they are not routinely managed with surgery.
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Table 1 PitNETs reported in setting of SDHx variants.

Gene SDHx variant Sex

Age at 
diagnosis 

(years) Phenotype
VarSome 
prediction Reference

SDHB c.761insC (p.254fs*255) M 15 Unknown Pathogenic (Benn et al. 2006)
SDHB c.18C>A (p.Ala6Ala) F 43 Microprolactinoma Benign (Efstathiadou et al. 

2014)
SDHB c.423+1G>A (Splicesite) F 60 Macroprolactinoma Pathogenic (Denes et al. 2015)
SDHB c.770dupT (p.Asn258Glufs*17) F 50 Micro NF PitNET Pathogenic (Denes et al. 2015)
SDHB c.298T>C (p.Ser100Pro) M 33 Macroprolactinoma Pathogenic (Denes et al. 2015)
SDHB c.298T>C (p.Ser100Pro) F 35 Macroprolactinoma Pathogenic (Denes et al. 2015)
SDHB Deletion exon 6–8 F 31 Macroprolactinoma Pathogenic (Denes et al. 2015)
SDHB c.587G>A (p.Cys196Tyr) F 53 Gonadotroph 

carcinoma
Pathogenic (Tufton et al. 2017)

SDHB c.298T>C (p.Ser100Pro) F 56 Macroprolactinoma Pathogenic (Maher et al. 2018)
SDHB c.587-591DelC (Intronic) F 74 Macro 

somatotrophinoma
Uncertain 

significance
(Saavedra et al. 2019)

SDHB c.689G>A (p.Arg230His) M 72 Somatotrophinoma Pathogenic (Xekouki et al. 2015)
SDHB c.642+1G>A (p.Gln214His) F 50 Microprolactinoma Pathogenic (Xekouki et al. 2015)
SDHB c.487T>C (p.Ser163Pro) F 14 Micro 

corticotrophinoma
Benign (Xekouki et al. 2015)

SDHB c.487T>C (p.Ser163Pro) M 10 Micro 
corticotrophinoma

Benign (Xekouki et al. 2015)

SDHB Large deletion exon 1 F 38 Macroprolactinoma Pathogenic (Guerrero Pérez et al. 
2016)

SDHB c.5C>T (p.Ala2Val) F 49 Microprolactinoma Uncertain 
significance

(De Sousa et al. 2017)

SDHB c.24C>T (p.Ser8Ser) M 70 Prolactinoma Benign (De Sousa et al. 2017)
SDHB Unknown F 38 Macroprolactinoma Unknown (Gorospe et al. 2017)
SDHB c.166-170delCCTA (p.Ala6Leu) M 45 Macro NF PitNET* Pathogenic (Guerrero-Perez et al. 

2019)
SDHD c.298_301del (p.Thr100fs) M 37 Macro 

somatotrophinoma
Pathogenic (Xekouki et al. 2012)

SDHD c.242C>T (p.Pro81Leu) F 33 Macroprolactinoma Pathogenic (Varsavsky et al. 2013)
SDHD c.274G>T (p.Asp92Tyr) M 60 Macroprolactinoma Pathogenic (Papathomas et al. 

2014)
SDHD c.274G>T (p.Asp92Tyr) F 56 Macro 

somatotrophinoma
Pathogenic (Papathomas et al. 

2014)
SDHD c.149A>G (p.His50Arg) F 16 Micro 

corticotrophinoma
Benign (Xekouki et al. 2015)

SDHD c.242C>T (p.Pro81Leu) F 23 Macroprolactinoma Pathogenic (Xekouki et al. 2015)
SDHD c.53C>T (p.Ala18Val) M 12 Micro 

corticotrophinoma
Likely pathogenic (Xekouki et al. 2015)

SDHD c.315-?_480+?del M 31 Macro NF PitNET Pathogenic (Lemelin et al. 2019)
SDHC c.256–257insTTT (p.Phe85dup) M 60 Macroprolactinoma Uncertain 

significance
(Lopez-Jimenez et al. 

2008)
SDHC c.380A>G (p.His127Arg) M 53 Macroprolactinoma Likely pathogenic (Denes et al. 2015)

(Hussein et al. 2021)
SDHC c.403G>C (p.Glu110Gln) F 34 Microprolactinoma Benign (De Sousa et al. 2017)
SDHC c.20+74A>G (Intronic) M 41 Macroprolactinoma Uncertain 

significance
(De Sousa et al. 2020)

SDHC c.405+1G>T (Splicesite) M 17 Macroprolactinoma Pathogenic (Mougel et al. 2020)
SDHA c.1873C>T (p.His625Tyr) M 30 Macro NF PitNET Uncertain 

significance, 
likely 
pathogenic

(Dwight et al. 2013)

SDHA c.725_736del (p.Ser243_
Arg246del) and 
c.989_990insTA 
(p.Ala331ThrfsTer18)

M 62 Macro Silent Lactotroph 
PitNET

Likely pathogenic 
and pathogenic 
respectively

(Gill et al. 2014)

SDHA c.969C>T (p.Gly323Gly) M 53 NF PitNET Benign (Denes et al. 2015)

(Continued)
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In two further cases, the evidence for causation is 
considered inconclusive. One 56-year-old female patient 
bearing the SDHB c.298T>C (p.Ser100Pro) variant was 
diagnosed with macroprolactinoma (Maher et al. 2018). She 
had no syndromic disease. Her initial response to cabergoline 
was unsatisfactory. Surgical resection was undertaken. 
Histologically, the tumour cells showed considerable 
vacuolisation of the cytoplasm. The immunoreaction 
for SDHB showed normal expression suggesting that the 
SDHB variant might not have been causative and that a 
phenocopy was plausible. The most recent PitNET reported 
in association with an SDHB variant (c.587-591DelC 
frameshift) occurred in a 74-year-old female diagnosed 
with a macro somatotrophinoma on a background of 
metastatic PGL (Saavedra et al. 2019). Some neoplastic cells 
showed vacuoles. SDHA staining was retained whilst SDHB 
expression was reportedly heterogeneous from intensely 
positive immunostaining in some tumour cells to absent 
protein expression in others; no LOH was identified. The 
authors hypothesised this was a phenocopy, or alternatively, 
that partial loss of SDHB expression could have been 
pathogenic (Saavedra et al. 2019).

SDHD variants in PitNETs

SDHD (OMIM*602690) is located on chromosome 11q23 
and encodes the anchoring SDHD subunit (Fig. 1) (Baysal 
et al. 2000). Mutations in SDHD are responsible for familial 
PGL type 1. Maternal imprinting of this gene was presumed 
for some time due to the apparent exclusive paternal 
transmission of SDHD mutations. More recently, maternal 
transmission of SDHx mutations has been recognised 
to result in PGL (Figs 2B and 3) (Hensen et al. 2004, Yeap 
et  al. 2011, Burnichon et  al. 2017). The occurrence of a 
maternally inherited SDHD variant associated with PitNET 
has yet to be reported. There are currently eight cases of 

SDHD-related PitNETs in the literature, with an additional 
case described in this review. Of these nine patients, one 
had LOH, two had heterogeneous IHC and the majority 
(56%) did not have any analysis undertaken in tumour 
tissue (Table 1). The evidence for those cases subjected to a 
more in-depth analysis is discussed later.

The first SDHD variant-linked PitNET was 
reported in 2012 in a 37-year-old male diagnosed with 
somatotrophinoma and the c.298_301del (p.Thr100fs) 
variant (Xekouki et  al. 2012). SDHD IHC showed reduced 
and patchy SDHD expression. LOH was identified. Two 
other patients were reported in 2014. A 60-year-old male 
with macroprolactinoma had the c.274G>T (p.Asp92Tyr) 
variant. Tumour cells lacked SDHB staining at IHC but 
expressed SDHA; preserved SDHA IHC being a recognised 
phenomenon in SDHB, SDHC and SDHD pathogenic 
variants (Oudijk et  al. 2019). LOH was present. The 
evidence thus suggests a causative role of the SDHD variant 
(Papathomas et al. 2014). The second patient was a 56-year-
old female with the same SDHD c.274G>T (p.Asp92Tyr) 
variant. She was diagnosed with macro somatotrophinoma. 
SDHA and SDHB expression was retained in tumour cells. 
No LOH was identified in the PitNET (Papathomas et  al. 
2014).

SDHC variants in PitNETs

SDHC is one of the anchoring subunits of the SDH complex. 
The gene (OMIM*602413) is mapped on chromosome 
1q23.3 (Fig. 1). SDHC-associated PitNETs are less frequently 
reported (n = 5) than those associated with SDHB and 
SDHD variants. To date, there has been no comprehensive 
report of PitNET secondary to a pathogenic SDHC variant 
(Fig. 4). The first PitNET associated with SDHC variant was 
reported in 2008. No IHC or LOH analysis was undertaken 
in tumour tissue (Table 1) (Lopez-Jimenez et  al. 2008). 

Gene SDHx variant Sex

Age at 
diagnosis 

(years) Phenotype
VarSome 
prediction Reference

SDHA c.91C>T (p.Arg31*) F 27 Prolactinoma Pathogenic (Denes et al. 2015)**
SDHA c.91C>T (p.Arg31*) F 49 Macroprolactinoma Pathogenic (Niemeijer et al. 2015)
SDHA c.757_758del (p.Val253Cys*67) M 42 Macroprolactinoma Pathogenic (Mougel et al. 2020)
SDHA c.1753C>T (p.Arg585Trp) M 37 Macroprolactinoma Uncertain 

significance
(Mougel et al. 2020)

SDHAF2 c.-52T>C (Intronic) M 84 Macro 
somatotrophinoma

Uncertain 
significance

(Denes et al. 2015)

*This PitNET had focal positivity for prolactin and FSH. **The 27-year-old female with SDHA variant also had a concomitant VHL c.589G>A (p.Asp197Asn) 
variant.

Table 1 Continued.
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Two cases were reported in 2017 (De Sousa et  al. 2017). 
A 34-year-old female with a microprolactinoma and 
a 63-year-old female with pituitary gangliocytoma 
and primary hyperparathyroidism (De Sousa et  al. 
2017). Both cases carried an SDHC variant of unknown 
significance c.403G>C (p.Glu110Gln, VarSome predicted 
benign). However, no GH expression was identified in 
the gangliocytoma by De Sousa and colleagues and no 
somatotrophinoma was present in the tissue submitted 
for pathological assessment. In addition, the expression of 
growth hormone-releasing hormone was not evaluated in 
tumour tissue. The microprolactinoma expressed SDHB by 
IHC, reinforcing the prediction that this is a benign variant 
(De Sousa et al. 2017). The most recently described patient 
was a 17-year-old male with cystic macroprolactinoma and 
the pathogenic variant c.405+1G>T (splicesite) (Mougel 
et al. 2020). Tumour cells expressed SDHB. No cytoplasmic 
vacuoles were present and no LOH was proven suggesting 
this case might be a phenocopy (Mougel et al. 2020). Other 
cases of SDHC-associated PitNETs have been described but 
without supportive tissue analysis (Table 1).

SDHA variants in PitNETs

SDHA (OMIM*600857) is located on chromosome 5p15.33. 
To our knowledge, seven cases of PitNET in setting of SDHA 
variants have been reported (Dwight et al. 2013, Gill et al. 
2014, Denes et  al. 2015, Niemeijer et  al. 2015). Of these 
cases, two had LOH and three had no SDHA and SDHB 
expression in neoplastic cells.

The patient described by Gill and colleagues was a 
62-year-old male with a 30 mm cystic, clinically NF-PitNET 
(Gill et al. 2014). Neoplastic cells were stained for prolactin 
and SDHA, whilst no staining for SDHB was present. No 
cytoplasmic vacuoles were described. Further analysis 
identified two inactivating somatic variants; a deletion 
on exon 6 (c.725_736del) and an insertion on exon 8 
(c.989_990insTA) (Gill et al. 2014).

Another SDHA variant c.969C>T (p.Gly323Gly) variant 
(synonymous variant, predicted benign) was reported in a 
53-year-old patient with an NF-PitNET and family history 
of NF-PitNET (father). The same patient had a history of 
nephroblastoma at the age of 1 year, 2 liposarcomas at 32 
and 40 years, retroperitoneal PGL and renal oncocytoma 
both at the age of 50 years (Denes et al. 2015). The tissue 
from his PitNET did not show LOH or loss of SDHA and 
SDHB expression, suggesting that the SDHA variant was 
not causative. The variant c.969C>T was absent in his 
father’s NF-PitNET (Denes et al. 2015).

A male with SDHA c.1873C>T (p.His625Tyr) variant 
(VarSome uncertain significance, likely pathogenic) was 
diagnosed with NF-PitNET at the age 30 years (Dwight 
et  al. 2013). SDHA and SDHB IHC showed no expression 
in the PitNET tissue. Paradoxically, the WT allele was 
retained; however, the authors suggested this might have 
been due to insufficient DNA to complete the analysis 
therefore missing the presence of an additional somatic 
second hit or alternatively failing to detect an epigenetic 
modification of the WT allele (Dwight et  al. 2013). A 
49-year-old female with SDHA c.91C>T (p.Arg31Ter) 
variant and macroprolactinoma was reported by Niemeijer 
and colleagues. Tumour tissue showed no SDHB and SDHA 
expression alongside LOH, suggesting the SDHA variant 
was contributory (Niemeijer et al. 2015).

The most recent case of SDHA variant was reported in 
a 37-year-old male with SDHA c.1753C>T (p.Arg585Trp) 
variant and macroprolactinoma. Surgery was undertaken 
due to poor compliance with medical therapy. Analysis 
of the tissue revealed SDHB staining, no vacuoles and no 
LOH, suggesting a phenocopy (Mougel et al. 2020).

SDHAF2 variants in PitNETs

The gene encoding the SDH assembly factor 2 
(OMIM*613019) is mapped on chromosome 11q12.2. To 
our knowledge, no evidence supportive of a causative 
SDHAF2 variant in PitNETs has been reported (Fig. 4).

PitNET and PPGL in the setting of SDHx 
variant without tumour analysis

Many other reports have described PitNETs with PPGL 
associated with SDHx variant without tissue-based 
analysis to support a causative role for an SDHx variant. 
It is therefore possible that a considerable proportion of 
these cases could be phenocopies. A summary of SDHx-
associated PitNET and PPGL including such cases is 
outlined in Table 1.

MAX: pathophysiology

MAX codes for the MAX protein, a component of the 
MYC signalling pathway. The protein forms heterodimers 
with C-MYC via basic-helix-loop-helix zipper (bHLHZ) 
domain interactions. These heterodimers can then bind 
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to target DNA sequences or E-BOX sequences to regulate 
transcription of genes involved in cell proliferation and 
cell growth (Fig. 5). Like SDHx, epigenetics may play 
a role in MAX-associated tumorigenesis. Notably, the 
same microRNA (miR-210) implicated in SDHx-related 
disease has roles in MNT/MAX/MYC-mediated cellular 
proliferation (Walker et al. 2005, Zhang et al. 2009).

MAX variants in PitNETs

MAX is located on chromosome 14q23.3 and appears to 
behave as a tumour suppressor gene with inactivating 
mutations resulting in a failure of dimerisation with MYC 
and unchecked downstream gene transcription. Germline 
and somatic MAX variants can result in familial and 
sporadic PPGL, respectively (Burnichon et al. 2012). MAX 
variants have been reported in the setting of uniparental 
disomy, with a tendency towards paternal transmission, 
like that seen in SDHD and SDHAF2 (Comino-Méndez et al. 
2011, Burnichon et al. 2012).

PitNETs have been reported in the setting of germline 
MAX variants. The possibility of MAX-associated syndromic 
disease being defined as multiple endocrine neoplasia type 

5 has been mooted (Seabrook et al. 2021). Sporadic isolated 
or familial isolated pituitary adenoma in association with 
MAX variant has not yet been reported. One possible 
case of familial acromegaly with germline MAX variant 
(c.223C>T (p.Arg75Ter), VarSome pathogenic) has been 
documented (Mamedova et  al. 2021), but the details on 
transmission are limited as the proband’s father was 
deceased. Based on old photographs showing acromegalic 
features, a history of receiving pituitary radiotherapy 
and sudden death (classical presentation of undiagnosed 
phaeochromocytoma), a familial syndromic disease with 
pituitary involvement in MAX germline variant seems 
possible (Mamedova et al. 2021).

Although microscopic features have not been reported 
for any MAX-associated PitNET, it appears they belong to 
the PIT1 lineage (prolactinomas and somatotrophinomas) 
(Roszko et  al. 2017, Daly et  al. 2018, Kobza et  al. 2018, 
Seabrook et  al. 2021). A report documented a 25-year-
old presenting with hyperprolactinaemia responsive to 
cabergoline and a large PitNET. The patient re-presented at 
the age of 38 years with acromegaly. It is possible that the 
lesion was a mammosomatotroph or mixed somatotroph–
lactotroph PitNET with growth hormone excess only 
becoming clinically evident later in life. The distinction 

Figure 5
The role of MAX in tumorigenesis: MAX 
heterodimerises with MAD transcription factors 
and acts to repress the oncogenic MYC protein. 
MAX mutations impair heterodimerisation 
resulting in downstream unchecked MYC activity. 
Germline variants of RET, NF1, PTEN and 
TMEM127 have been implicated in PPGL, but not 
in PitNETs. As shown in the figure, the proteins 
they transcribe have roles in the MYC pathway.
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between primary and secondary acromegaly has been 
a challenge in a kindred with a phaeochromocytoma 
expressing growth hormone-releasing hormone (Seabrook 
et al. 2021).

Investigative strategy for tumours in the 
setting of SDHx and MAX variants

Histopathological analysis

Cytoplasmic vacuoles and/or nuclear pseudo-inclusions 
and inclusions are a feature of SDHx-associated PitNETs 
(Denes et  al. 2015, Tufton et  al. 2017). Optically clear 
pseudo-inclusions are cytoplasmic invaginations into 
the nucleoplasm whilst inclusions result from the 
accumulations of proteins within the nucleus (Ip et  al. 
2010). The exact nature of nuclear inclusions can be difficult 
to establish, but they have been observed in the pituitaries 
of Sdhb+/− mice (Xekouki et al. 2015). There is some evidence 
that SDHx variants can have structural and functional 
consequences on the mitochondrial assembly complex and 
the mitochondrial cristae (Gimenez-Roqueplo et al. 2001, 
Kim et al. 2015, Xekouki et al. 2015) and that fragmented 
mitochondria can be engulfed by cytoplasmic vacuoles 
before being extruded (Nakajima et  al. 2008). Whether 
damage to mitochondria causes vacuoles and nuclear 
pseudo-inclusions/inclusions is yet to be proven (Tufton 
et  al. 2017, MacFarlane et  al. 2020). Neuropathologists 
should be aware of these morphological appearances and 
report tumours with prominent cytoplasm vacuolisation, 
raising the possibility of a germline SDHx variant as such 
a diagnosis has repercussions on genetic screening and 
familial counselling (Tufton et al. 2017). PitNET types and 
subtypes reported in association with SDHx variants include 
mainly prolactinomas, somatotrophinomas and clinically 
NF-PitNETs (Fig. 4). Five corticotroph PitNETs have been 
reported. Two in patients with a likely pathogenic variant 
and three in patients with likely non-pathogenic variants. 
Thyroid-stimulating hormone-secreting tumours are yet to 
be reported.

The introduction of lineage restricted pituitary 
transcription factors (PIT1, TPIT and SF1) and of GATA3 by 
immunohistochemistry will improve the identification of 
cell lineages of SDHx-associated NF-PitNET. There is little 
evidence to suggest that standard proliferative markers such 
as Ki-67 or mitotic count are increased in SDHx-mutated 
PitNETs. As mentioned, the light microscopic features of 
PitNETs in the setting of a germline MAX variants have 
never been documented. Clinically, MAX-associated 

PitNETs are similar to SDHx with a predominance of 
tumours causing hyperprolactinaemia and acromegaly.

SDHA, SDHB and MAX IHC

Immunostains for SDHB and SDHA show positive granular 
cytoplasmic staining in non-SDHx-mutated cells (van 
Nederveen et al. 2009). Bi-allelic inactivation of any SDHx 
genes can result in degradation of SDHB. Absence or weak 
SDHB staining can therefore be supportive of SDHx variants 
being contributory to disease (Gill 2018). In one study, lack of 
SDHB expression at IHC demonstrated a sensitivity of 100% 
and specificity of 84% (van Nederveen et al. 2009). Studies 
have suggested that SDHB IHC can be positive in the setting 
of SDHA and SDHD variants. This finding is interesting and 
requires further investigation (Ugarte-Camara et  al. 2019, 
Sato & Inomoto 2020, Snezhkina et al. 2020). False positive 
staining may account for this, but other possibilities include 
haploinsufficiency or a somatic mutation that may result 
in a dysfunctional SDH complex, which is still detectable 
by IHC (Ugarte-Camara et al. 2019). SDHB IHC is a cheap, 
reliable, readily available and quick test to screen tumours 
with vacuolar changes. However, a diagnostic algorithm 
suggested considering confirmatory functional tests (LOH 
or metabolomics) regardless of the SDHB IHC results, which 
can be employed as a screening step (MacFarlane et al. 2020).

The immunostain for MAX can also be used to assess 
its involvement in the pathogenesis. Expression in tumour 
cells theoretically refutes variant pathogenicity; however, 
in one of the studies, positive MAX IHC was seen in 3 
out of 16 phaeochromocytomas with pathogenic MAX 
variant in the presence of LOH (Burnichon et  al. 2012). 
This suggests, similarly to SDHB staining, a cautious and 
thorough approach to interpretation of MAX IHC should 
be considered.

Loss of heterozygosity

LOH can support the tumorigenic role of a variant, 
but LOH is not confirmatory. In a small series of 
phaeochromocytomas, four of five SDHB-mutated and 
two of four SDHD-mutated cases demonstrated LOH, 
suggesting alternative genetic mechanisms (Weber 
et  al. 2012). Methylation has been heavily implicated in 
SDHx-related disease as alternative mechanism causing 
silencing of the WT allele. Other possible mechanisms 
include haploinsufficiency or an additional variant in an 
alternative gene. Searching for LOH may hold more weight 
in tumours with MAX variants, with 16/18 tumours in one 
study demonstrating LOH and the 2 without LOH carrying 
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MAX variants of unknown significance (Burnichon et  al. 
2012, Seabrook et al. 2021).

Metabolomics

Metabolomics is a technique used to assess the biochemical 
functional status of cells/tissue samples via analysis of 
small molecule metabolites using NMR spectroscopy or 
mass spectroscopy and can be performed ex vivo or in vivo. 
The technique can be used in targeted and non-targeted 
approaches. SDHx mutations result in disruption of the SDH 
complex, leading to a break in Krebs cycle and accumulation 
of succinate. Therefore, succinate can be measured as a 
surrogate marker for defective SDH. Metabolomics with in 
vivo magnetic resonance spectroscopy has been utilised in 
assessing PitNET tissue of an SDHB variant carrier in one 
previous instance. Results did not show any accumulation of 
succinate (Casey et al. 2018). The following case description 
highlights the contribution of metabolomics in assessing 
the pathogenic function of SDHx variants.

Case description
A 32-year-old male with maternally inherited pathogenic 
SDHD c.242C>T (p.Pro81Leu) variant (Yeap et  al. 2011, 
Xekouki et al. 2012, Denes et al. 2015) was diagnosed with 
acromegaly (insulin-like growth factor-1 105.3 nmol/L; age-
adjusted reference range 11.6–32.2 nmol/L; nadir growth 
hormone 9.3 ng/mL on oral glucose tolerance testing) and 
concomitant hyperprolactinaemia (3182 mIU/L; reference 
range 63–245 mIU/L). He had secondary hypogonadism. 
The other tests of anterior pituitary function were normal. 
MRI revealed a large pituitary tumour invading the 
sphenoid sinus and eroding the clivus (Fig. 6A). No variants 
were found in the AIP, MEN1 and CDKN1B genes. The 
patient’s father did not have SDHx variants. The patient 
underwent transsphenoidal surgery. Light microscopic 
features of the resected PitNET are shown in Fig. 6B.

Given the young age, tumour histotype and the 
presence of cytoplasmic vacuoles, the possibility that the 
SDHD variant resulted in the tumour was considered. In 
addition, the same SDHD exon 3 c.242C>T (p.Pro81Leu) 
missense variant resulting in maternally transmitted 
disease was also previously reported (Hensen et  al. 2004, 
Denes et al. 2015, Xekouki et al. 2015). SDHB IHC showed 
normal expression and metabolomic profiling confirmed 
that the SDHD variant was not tumorigenic (Fig. 6B and C). 
This result has informed the future screening strategy for 
this patient and his family.

The performance of metabolomics appears far 
superior to SDHB IHC. The detection of succinate as an  

SDHx-related tumour screening test has shown remarkable 
sensitivity and specificity (Imperiale et  al. 2015). The 
succinate:fumarate ratio also has excellent performance 
with sensitivity and specificity of 93% and 97%, respectively 
(Richter et al. 2014). In a recent assessment of IHC vs novel 
metabolomics and machine learning techniques, IHC 
resulted in a specificity of 86.7–93.8% in PPGL vs 99.2% 
of metabolomics (Wallace et  al. 2020). The sensitivity of 
both techniques was comparable (85.2% for SDHB IHC and 
88.1% for metabolomics) (Wallace et al. 2020).

Metabolomics has predominantly been applied to 
tumour tissue. Its application to liquid biopsy and the 
possibility of obtaining rapid results on urine or blood 
to detect accumulated metabolites circulated from 
SDHx-related tumours could change future clinical 
practice (Martins et  al. 2019). However, further data 
and understanding of the peripheral metabolomics 
signatures of heterozygous carriers vs affected patients 
must be developed before the technique can be routinely 
implemented in the clinical setting.

Management of SDHx-mutated PitNETs

Just over 50% of the PitNET tissue examined in the 
literature to date shows evidence of SDHx variants playing 
a role in tumour development. No comprehensive study 
performing whole exome or genome sequencing has 
been performed. Therefore, the causative role of an 
SDHx variant can only be confirmed in a small number 
of PitNETs. The evidence to suggest that SDHx-mutated 
PitNETs should be managed any differently to sporadic 
PitNETs is inconclusive. That said, it is evident that the 
incidence of PPGL in PitNET patients is significantly 
higher than expected (2 in 828 cases vs 0.33 expected) 
(Denes et  al. 2015). Moreover, a mechanism has been 
established in an animal model suggesting that not all 
PitNET-PPGL cases are coincidental. Clinicians should 
be mindful of the potential for dual endocrine pathology 
and consider having a lower threshold to screen for PPGL 
in PitNET patients. In patients with PitNET in association 
with SDHx variant, it may be prudent to consider annual 
serum prolactin and insulin-like growth factor-1 levels 
during follow-up. In addition, screening MRIs should 
include imaging of the neck and may visualise some of the 
skull base so large PitNETs could be detected by standard 
SDHx variant radiological follow-up.

Sixty-seven percent of the reported SDHx-associated 
PitNETs and 100% of PitNETs with a causative SDHx variant 
were larger than 1 cm (macro) at diagnosis (Fig. 4), but 
tumour size and even invasion do not necessarily indicate 
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aggressiveness. The pituitary carcinoma reported by Tufton 
and colleagues might indicate a potential aggressive 
behaviour of SDHx-mutated PitNETs (Tufton et  al. 2017). 
Notably, both the carcinoma and metastases responded 
to the alkylating agent temozolomide. Resistance to first-

generation somatostatin receptor ligand has been reported 
in one case (Xekouki et al. 2012). The majority of reported 
prolactinomas have responded well to dopamine agonists. 
In one case of macroprolactinoma and dopamine-
secreting PGL in the setting of SDHC germline variant, 

Figure 6
(A) Preoperative T1-weighted coronal MRI 
sequence displaying the extension in the left 
hemi-sinus. (B) Histopathologically, the tumour 
shows a biphasic pattern with a component of 
large cells with weakly eosinophilic cytoplasm 
(bottom left of the field) and a component with 
denser cellularity and cells with eosinophilic 
cytoplasm (top right of the field) (B1, HE – ×20); 
some tumour cells show vacuolated cytoplasm, 
indicated by white arrows (B2, HE – ×40); the 
immunostain for growth hormone highlights 
neoplastic somatotroph cells (B3, 
immunoperoxidase, ×20); Neoplastic cells show 
ubiquitous nuclear expression of the 
transcription factor PIT1 (B4, immunoperoxidase 
– ×20). (C) High-resolution NMR spectroscopy 
analysis shows the patient’s sample in blue in 
comparison to a control SDHx-mutated PGL 
sample in red. A succinate peak at 2.4 ppm is 
seen in the control PGL but is absent in the 
pituitary case, showing that the maternally 
inherited SDHD variant has not resulted in SDHD 
dysfunction.
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the authors described the PGL responding to dopamine 
agonist therapy intended to treat the lactotroph PitNET. 
They highlighted the potential clinical pitfall of dopamine 
agonist therapy lowering 3-methoxytyramine levels 
and obscuring biochemical evidence of PGL metastases 
(Hussein et al. 2021).

The pseudohypoxia induced by accumulation 
of succinate is likely to cause changes in the tumour 
microenvironment. This may be a fruitful avenue for 
biomarkers and therapeutic targets in aggressive SDHx-
mutated PitNETs. Metabolic profiling has documented 
increased levels of methionine, glutamine and myoinositol 
in SDHx-related PPGLs (Imperiale et  al. 2015), indicating 
that targeting of metabolic pathways could have future 
therapeutic potential in these rare PitNETs.

Management of MAX-associated PitNETs

There is not enough evidence on PitNETs in the setting of 
MAX germline variants to comment on management and 
on behaviour. MAX-associated lactotroph tumours seem to 
have a good biochemical response to dopamine agonists. 
The response of MAX-associated somatotroph tumours to 
somatostatin receptor ligands has been less convincing 
and multimodal therapies have been required (Roszko 
et  al. 2017, Daly et  al. 2018, Kobza et  al. 2018, Seabrook  
et al. 2021).

Conclusions

PitNETs caused by SDHx and MAX variants are rare. Several 
studies reported co-existing PPGL and PitNET with SDHx 
variant, but many of them did not perform tumour tissue 
analysis.

The immunoreactions for SDHB and MAX and LOH 
analysis are useful tools to support or refute the contribution 
of SDHx and MAX variants to disease, but these techniques 
have limitations. For this reason, metabolic profiling of 
SDH-associated disease is likely to have an important role 
in the future.

A vast amount remains to be learned about PitNET 
pathogenesis in the setting of SDHx and MAX variants 
and particularly on the role of pseudohypoxic and kinase 
signalling pathways in pituitary disease, which may reveal 
novel biomarkers and medical therapies. Pituitary tumours 
thought to be caused by SDHx and MAX variants are indeed 
rare. While the data does not firmly establish that the 
presence of these variants predicts future tumour behaviour, 
close follow-up of these patients would seem prudent.
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