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H I G H L I G H T S

� Discovered a miRNA meta-signature associated with T2D via a data-driven pipeline.
� Validated in-silico findings against existing evidence and via downstream analyses.
� Meta-signature could help decode etiologic mechanisms and therapeutic targets of T2D.
� Broader utility of the pipeline for biomedical evidence synthesis is envisioned.
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A B S T R A C T

Background: MicroRNAs (miRNAs) are sought-after biomarkers of complex, polygenic diseases such as type 2
diabetes (T2D). Data-driven biocomputing provides robust and novel avenues for synthesizing evidence from
individual miRNA seq studies.
Objective: To identify miRNA markers associated with T2D, via a data-driven, biocomputing approach on high
throughput transcriptomics.
Materials and methods: The pipeline consisted of five sequential steps using miRNA seq data retrieved from the
National Center for Biotechnology Information Gene Expression Omnibus platform: systematic review; identifi-
cation of differentially expressed miRNAs (DE-miRNAs); meta-analysis of DE-miRNAs; network analysis; and
downstream analyses. Three normalization algorithms (trimmed mean of M-values; upper quartile; relative log
expression) and two meta-analytic algorithms (robust rank aggregation; Fisher's method of p-value combining)
were integrated into the pipeline. Network analysis was conducted on miRNet 2.0 while enrichment and over-
representation analyses were conducted on miEAA 2.0.
Results: A total of 1256 DE-miRNAs (821 downregulated; 435 upregulated) were identified from 5 eligible miRNA
seq datasets (3 circulatory; 1 adipose; 1 pancreatic). The meta-signature comprised 9 miRNAs (hsa-miR-15b-5p;
hsa-miR-33b-5p; hsa-miR-106b-3p; hsa-miR-106b-5p; hsa-miR-146a-5p; hsa-miR-483-5p; hsa-miR-539-3p; hsa-miR-
1260a; hsa-miR-4454), identified via the two meta-analysis approaches. Two hub nodes (hsa-miR-106b-5p; hsa-
miR-15b-5p) with above-average degree and betweenness centralities in the miRNA-gene interactions network
were identified. Downstream analyses revealed 5 highly conserved- (hsa-miR-33b-5p; hsa-miR-15b-5p; hsa-miR-
106b-3p; hsa-miR-106b-5p; hsa-miR-146a-5p) and 7 highly confident- (hsa-miR-33b-5p; hsa-miR-15b-5p; hsa-miR-
106b-3p; hsa-miR-106b-5p; hsa-miR-146a-5p; hsa-miR-483-5p; hsa-miR-539-3p) miRNAs. A total of 288 miRNA-
(K. De Silva).
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Figure 1. Methodologi
disease associations were identified, in which 3 miRNAs (hsa-miR-15b-5p; hsa-miR-106b-3p; hsa-miR-146a-5p)
were highly enriched.
Conclusions: A meta-signature of DE-miRNAs associated with T2D was discovered via in-silico analyses and its
pathobiological relevance was validated against corroboratory evidence from contemporary studies and down-
stream analyses. The miRNA meta-signature could be useful for guiding future studies on T2D. There may also be
avenues for using the pipeline more broadly for evidence synthesis on other conditions using high throughput
transcriptomics.
1. Introduction

Type 2 diabetes (T2D) is a chronic, polygenic disorder of multifac-
torial etiology, which affected nearly 462 million individuals worldwide
in 2017, equaling to 6.28% of the global population [1]. According to the
projections of the International Diabetes Federation, the prevalence of
T2D will increase by 25% by 2030 and 51% by 2045 [2]. The natural
history of T2D entails a relatively long, early asymptomatic period
characterized by subclinical disease, posing difficulties for its timely
diagnosis. The magnitude of this diagnostic dilemma is exemplified by
the reports that nearly half of the population with diabetes across the
world remains undetected [3]. Classic hallmarks of T2D include insulin
resistance primarily in skeletal muscle and adipose tissue, worsening
pancreatic β-cell failure, hyperglycemia, liver adiposity, and glucose
toxicity mediated chronic inflammation, inducing multiple direct and
indirect complications. While genetics, environment, and
gene-environment interactions all likely play key roles in the onset of
T2D, its pathogenic mechanisms are not fully known.
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Micro-RNAs (miRNAs) are highly sought-after as novel biomarkers of
complex diseases including T2D [4], as they demonstrate a high degree of
stability and reproducibility in various tissues and body fluids [5]. Be-
sides enhancing current diagnostic efforts, deeper analysis of miRNA
markers could also shed light on disease etiologies, guide drug target
identification and facilitate the ultimate development of precision ther-
apeutics [6]. These small (~22 nucleotides), evolutionarily
well-conserved, non-coding, single-stranded molecules have possible
roles in multiple pathological and physiological phenomena such as
cellular communications, angiogenesis, immune responses, and metas-
tasis via gene-regulating effects on target mRNA translation [7]. Over
60% of the protein-coding genes in the human genome are reportedly
regulated by miRNAs [8]. Recent studies ascribed certain miRNAs to T2D
pathogenesis-related functions such as insulin action and secretion [9],
insulin resistance and β-cell activity [10], glucose metabolism [11], as
well as adipogenesis and obesity [12].

Data-driven research forms a pillar of precision medicine whereas
multi-omics insights are fundamental to personalizing care pathways for
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Table 1. The distribution of differentially expressed miRNA identified in each RNA-seq dataset.

Dataset Tissue type/biospecimen # DE-miRNAa # Upregulated # Downregulated p-valueb

GSE139577 Circulatory 174 80 94 0.1339

GSE109266 Circulatory 838 207 631 <0.0001

GSE90028 Circulatory 172 99 73 0.0051

GSE174502 Adipose 62 45 17 <0.0001

GSE52314 Pancreatic 10 4 6 0.3833

Totalc – 1256 435 821 <0.0001

a: defined as miRNA with absolute log2 fold change >1 and Benjamini- Hochberg adjusted p-value < 0.05; b: computed by chi-squared test for two proportions; c:
including genes commonly expressed across multiple tissues.
DE-miRNA: differentially expressed miRNA.
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complex, heterogeneous diseases such as T2D. Avenues for high level
evidence synthesis are offered by expanding omics data repositories,
continuing advancement of data science, and the diminishing cost of next
generation sequencing techniques. Such large-scale studies could also
allow for the discovery of potentially novel pathobiological pathways of
heterogeneous diseases such as T2D, that would not be revealed in
smaller individual studies. Moreover, high throughput miRNA
sequencing is increasingly used and is preferred over traditional micro-
arrays, due to its added merits such as less technical biases, higher
multiplexing power, and the ability to detect previously uncharacterized
miRNAs [13]. While individual miRNA seq studies focused on T2D are
steadily reported, common drawbacks inherent in such studies are
noteworthy. Individual miRNA-disease association studies tend to be
under-powered due to small sample sizes, suffer from non-negligible
experimental noise, and are prone to yielding inconsistent findings
[14]. Meta-analysis is a viable approach for alleviating the biases of in-
dividual studies and merging their findings in order to derive high-level
evidence. Thus far, only a few meta-analyses of profiling studies focused
on miRNA-T2D associations have been conducted, all of which resorted
to pooling published summary measures [15, 16, 17]. However,
data-driven meta-analysis of raw, original omics data emanating from
individual studies, though computationally intensive, could yield more
Figure 2. Venn diagram depicting the number and overlap of differentially
expressed miRNA identified by each high throughput transcriptomics set.
Number of shared and non-shared miRNAs across the five sets are discernible.
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reliable and robust results, compared to using summary measures [18].
With the growing availability of large raw data repositories such as the
National Center for Biotechnology Information Gene Expression
Omnibus (NCBI GEO) [19], such novel computational analyses are now
possible.

Rigorous biocomputing pipelines consisting of impeccable pre-
processing steps are required to gain accurate insights from miRNA seq
studies. In particular, normalization strategies are critically important, as
they are upstream factors that can strongly influence results [20]. While
there is no gold standard for miRNA seq data normalization [21], various
optimal methods have been proposed by previous studies [22]. Trimmed
mean of M (TMM), upper quartile (UQ), and relative log expression (RLE)
are standard normalization algorithms in an optimal miRNA seq pre-
processing pipeline [23] and various combinations of these in previous
studies yielded discordant results [20, 21, 22]. Meta-analytic algorithms
regularly used on high throughput transcriptomics include robust rank
aggregation (RRA) [24], p-value combining methods [25], and vote
counting [26]. Of these, vote counting was found inadequate as a
stand-alone meta-analytic strategy [27].

In this context, we aimed to identify miRNA markers of T2D via an
extensive biocomputing pipeline utilizing raw miRNA seq data in the
NCBI GEO repository. This consisted of five sequential steps: systematic
review; identification of differentially expressed miRNAs (DE-miRNAs);
meta-analysis of DE-miRNAs; network analysis; and downstream ana-
lyses. Three normalization strategies (TMM, UQ, RLE) and two meta-
analytic processes (RRA, Fisher's method of p-value combining) were
incorporated into the pipeline.

2. Methods

The analytic workflow is presented in Figure 1.

2.1. Systematic review

A preliminary search on the NCBI GEO platform was conducted on
July 1, 2021 using the search string ("diabetes mellitus"[MeSH Terms]
OR "diabetes insipidus"[MeSH Terms] OR diabetes[All Fields]) AND
"Homo sapiens"[porgn] AND "Non-coding RNA profiling by high
throughput sequencing"[Filter]. Publicly available data on the NCBI GEO
were thus utilized in this study and no new unpublished data were
included. All datasets resulting from this preliminary search were
manually assessed against pre-defined eligibility criteria. We included
miRNA seq sets focused on T2D with well-defined cases and controls,
conducted on humans, with adequate information on tissues of origin,
sample sizes, and feature annotation. Microarrays, lncRNA/circRNA,
datasets with no healthy controls, samples subjected to drug treatments/
other interventions, those focused on diabetes phenotypes other than
T2D, non-human studies, and super-series were excluded. Datasets
deemed eligible or unclear following this primary screening were
included in secondary screening with downloaded raw data files and
related publications.
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2.2. Data retrieval and pre-processing

All eligible raw miRNA seq supplementary files were retrieved from
the NCBI GEO platform while their phenotypic information was acquired
using the ‘getGEO’ function of the GEOquery R package [28]. In each
miRNA seq set, multiple probes hybridized to the same miRNA were
collapsed by calculating mean counts across samples. Lowly expressed
probes, defined as those with a mean raw count across samples <5, were
removed.

2.3. Normalization

We applied three normalization techniques (TMM, UQ, RLE) on raw
miRNA seq sets, via the edgeR R package [29]. A brief description of each
method follows.

2.3.1. Trimmed mean of M-values (TMM)
Considered as a robust technique for standardizing miRNA seq syn-

thesis ratios using a weighted trimmed mean of the log expression ratios,
this method was first proposed by Robinson and Oshlack [30]. The TMM
algorithm is based on fold-change (M) and absolute expression (A)
values, which are defined below.

For a specific miRNA ‘a’ with expression levels Ka1 and Ka2 under the
two conditions of interest, and N1 and N2 denoting the total number of
reads in the two libraries, respectively:

M¼ log2

�
Ka1=N1

Ka2=N2

�

A¼ 1
2
log2ððKa1 =N1ÞðKa2 =N2ÞÞ
Figure 3. Stacked bar charts depicting (a) the number of up- and down-regulated m
down-regulated miRNA in each high throughput transcriptomic set.
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Based on the assumption that most miRNAs are not differentially
expressed, the normalization factor for a given sample against a reference
sample is estimated as follows:

log2ðdbTMMÞ ¼
P

a2A0 ωabMabP
a2A0ωab

where,

Mab ¼ log2ðKab =NbÞ = ðKar =NrÞ;

ωab ¼ ðNb � KabÞ =NbKab þ ðNr �KarÞ =NrKar ;

Kab, Kar > 0.
Kab ¼ Read counts of the miRNA }a} in sample }b}Kar ¼ Read counts

of the miRNA }a} in sample }r}db ¼ scaling factor of the bth sampleNb ¼
Total number of reads per sample bth,

Nr ¼ Total number of reads per reference sample
0
r
0
,

A
0 ¼ miRNA set with untrimmed logfold changes & absolute expression

values.
The TMM is calculated as a weighted average after certain upper and

lower percentages of both M and A values (by default, 30% of M and 5%
of A, by the edgeR package [29]) are removed, while precision (inverse
variance) weights are used to account for disparities in read counts [30].
The library whose upper quartile is closest to the mean upper quartile is
chosen as the reference by edgeR [29].

2.3.2. Upper quartile (UQ)
In this method, following exclusion of transcripts with null raw counts

in all libraries, the scaling factor is determined by the 75th percentile of
reads [20], as follows.
iRNA in each high throughput transcriptomic set (b) the percentage of up- and
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db
UQ ¼Q

KabPA
 
a¼1Kab

!

where,

Q¼ 3 =4ðN þ 1Þth

Scaling entails the division of raw reads by the upper quartile of
counts in each sample and multiplication by the mean upper quartile
across all samples, as proposed by Bullard et al [31].

2.3.3. Relative log expression (RLE)
This algorithm, proposed by Anders and Huber [32], is also motivated

by the assumption that a majority of miRNAs are not differentially
expressed. The scaling factor, under this method, can be presented as
follows:

dRLEabc ¼
Kabc

mediana

0
B@ KabcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQB

b¼1

QC

c¼1
Kabc

BC
q

1
CA

where,
Kabc ¼ Observed number of reads/counts of the miRNA:

a 2 f1;……:;Ag

In the condition of interest:

b 2 f1;……::;Bg

For the biological replicate:
Figure 4. Distribution of differentially expressed miRNA in each dataset and the ov
circulatory (c) GSE174502: adipose (d) GSE52314: pancreatic [GSE109266 (circulato
used for analyses]. NO_NORM ¼ no normalization – raw counts used; RLE ¼ relative
UQ ¼ upper quartile normalization.
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c 2 f1;……::;Cg

The median library is enumerated via the geometric mean of all

samples while the median ratio of each sample to the median library is
considered as the scaling factor.

2.4. Differential expression analysis

Using the edgeR package in R version 4.1.0, differential expression
analysis was conducted on four matrices (matrices normalized by the
three methods described above, and non-normalized, original raw
counts) of each miRNA seq set. The miRNAs with absolute log2Fold
Change (FC) > 1 and Benjamini-Hochberg adjusted p-value < 0.05 were
defined as differentially expressed. For those DE-miRNAs found in mul-
tiple matrices, we selected the row containing the highest absolute
log2FC. Of note, one study (GSE109266) had directly provided infor-
mation on DE-miRNAs instead of raw supplementary files, which was
used in the current analysis.

2.5. Meta-analysis of differentially expressed miRNA

In order to derive a genome-wide meta-signature of miRNA markers
associated with T2D, we meta-analyzed the DE-miRNAs using two stra-
tegies: Fisher's p-value combining method via theMetaVolcanoR package
[33] and robust rank aggregation implemented in the RobustRankAggreg
package [24]. Brief explanations of the two algorithms follow.

2.5.1. Fisher's p-value combining method
Fisher's method combines p-values from a set of independent

tests, based on the same null hypothesis, according to the following
formula:
erlap across normalization methods (a) GSE139577: circulatory (b) GSE90028:
ry) provided differentially expressed miRNA information directly and these were
log expression normalization; TMM ¼ trimmed mean of M-values normalization;



Figure 5. Volcano plot depicting Fisher's p-value combining meta-analysis
output employed via MetaVolcanoR. Two highly perturbed genes were identi-
fied at metathr ¼ 0.01 (default threshold specified by the package). Red and
blue dots indicate hsa-miR-33b-5p (upregulated) and hsa-miR-539-3p (down-
regulated), respectively.
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χ22k � �2
Xk

ln
�
Pj
�
; given P � Unif ð0;1Þ
j¼1

where,
Pj ¼ p-value of the jth hypothesis test
k ¼ number of tests being pooled
Under the null hypothesis for a given test, its p-value conforms to a

uniform distribution on the interval [0,1] and the sum of k independent
tests attains a chi-squared distribution with 2k degrees of freedom.
Table 2. The meta-signature of micro-RNAmarkers associated with type 2 diabetes ide
rank aggregation.

miRNA Meta-p value/ρ scorea

Identified by meta-analysis with p-value combining method

hsa-miR-33b-5p 6.87E-138

hsa-miR-539-3p 7.92E-140

Identified by meta-analysis with robust rank aggregation

hsa-miR-15b-5p 0.0224214885

hsa-miR-106b-3p 0.0490074419

hsa-miR-106b-5p 0.0260325689

hsa-miR-146a-5p 0.0438733059

hsa-miR-483-5p 0.0241123607

hsa-miR-539-3p 0.0003613095

hsa-miR-1260a 0.0224214885

hsa-miR-4454 0.0447624691

a: p-value combining meta-analysis in MetaVolcanoR computes a meta-p score based on
score based on p-values of DEmiRNAs in individual studies.
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Recent reports confirmed the robustness of this method, including its
ability to detect incomplete associations, outperforming other conven-
tional meta-analysis techniques [25].

2.5.2. Robust rank aggregation
Based on the null hypothesis of unassociated inputs, RRA is a

parameter-free meta-analytic algorithm which is resistant to outliers,
bias, and noise.

For a normalized rank vector ν, reordered as ν1 � …… � νn,
βk,n(ν) indicates the probability of ύk �νk, given the rank vector ύ is
produced by the null model of uniform distribution. The probability
of ύk � y, under the null model, can then be written as a binomial
probability:

βk;nðyÞ : ¼
Xn
l¼k

�
n
l

�
ylð1� yÞn�l

The meta score ρ of the rank vector ν, is expressed as the minimum of
p-values, based on the assumption that the number of informative ranks
is not known:

ρðvÞ¼ mink¼1;…::;n βk;nðvÞ
Details of the RRA algorithm, proposed by Kolde et al., are available

elsewhere [24].

2.6. Network analysis

Network analysis of the meta-signature was carried out on themiRNet
2.0 [34], which, by default, defines hub-nodes as those miRNAs with
above-average degree and betweenness in the miRNA-target gene in-
teractions network. These two measures of centrality can be defined as
follows:

2.6.1. Degree centrality

Degree centralityðhÞ¼ dðhÞ
n� 1

where,
d(h) ¼ degree of the vertex ‘h’
n ¼ sum of all the vertices in the network graph

2.6.2. Betweenness centrality

Betweenness centralityðhÞ¼ 2
ðn� 1Þðn� 2Þ

X
h 6¼a6¼b2H

φa;bðhÞ
φa;b
ntified by the two meta-analytic strategies: p-value combining method and robust

Expressed in Regulation

Adipose, Circulatory Up

Circulatory Down

Circulatory Down

Circulatory Down

Circulatory Down

Circulatory Down

Circulatory Down

Circulatory Down

Circulatory Down

Circulatory Down

meta log2 fold-change across studies while robust rank aggregation computes a ρ



Figure 6. The miRNA-gene interactions network visualized in miRNet 2.0. The two hub-nodes (hsa-miR-106b-5p & hsa-miR-15b-5p) with above-average degree and
betweenness are highlighted.

Table 3. Topological characteristics of the miRNA-gene interactions network.

miRNA ID Degree Betweenness Hub node status

Mean ¼ 296 Mean ¼ 510899.445555

hsa-miR-15b-5p 760 1322515.59471805 Yes

hsa-miR-146a-5p 203 367850.990663118 No

hsa-miR-106b-5p 1091 1871815.20015558 Yes

hsa-miR-33b-5p 101 166566.827091811 No

hsa-miR-106b-3p 76 123910.221308144 No

hsa-miR-483-5p 143 253701.019330487 No

hsa-miR-1260a 162 288253.085747575 No

hsa-miR-4454 58 96535.6018030646 No

hsa-miR-539-3p 67 106946.459182154 No
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where,

φa;b ¼ number of shortest paths between vertices a and b

φa;bðhÞ¼numberof shortest pathsbetweenverticesa& bpassing

throughvertexh

n ¼ Total number of vertices in the network=graph

As the densely and tightly connected hub nodes in biological net-
works [35] tend to be critical functional regulators as well, they are
sought after in precision medicine approaches [36]. We visualized the
miRNA-target gene interactions network on miRNet 2.0 and determined
the network attributes including hub nodes, modules, and continents
versus islands.
2.7. Downstream analyses

Functional enrichments were detected via downstream analyses on
the miRNA Enrichment Analysis and Annotation Tool 2.0 (miEAA 2.0)
[37]. Enrichment analysis entailed the detection of highly conserved-
7

(defined as conserved in at least 5 species) and high confidence- (those
miRNAs with high probability expression profiles via small read map-
pings) sets. Through over-representation analysis, we detected
miRNA-disease associations at a false discovery rate <0.05, and visual-
ized them on miEAA2.0 as disease-miRNA association map and
word-cloud figures.

3. Results

3.1. Systematic review

As shown in S1 Table, the preliminary search identified 34 eligible
datasets, 8 of which were selected for secondary screening. A summary of
these 8 datasets is provided in S2 Table. Three of these (GSE151496,
GSE160308, GSE178721) had no adequate and conclusive information
on the diabetes phenotype, and were therefore excluded. The final five
sets selected for subsequent analysis emanated from circulatory (n ¼ 3;
GSE139577, GSE109266, GSE90028), adipose (n ¼ 1; GSE174502), and
pancreatic (n ¼ 1; GSE52314) tissues. These comprised 113 samples in
total (97 circulatory; 9 adipose; 7 pancreatic), of which 56 were T2D- and
57 were non-T2D control- samples (S2 Table).



Figure 7. The default disease-miRNA associations map illustrating the top 100 associations, produced by miEAA 2.0. Three miRNAs (hsa-miR-15b-5p, hsa-miR-106b-
3p, hsa-miR-146a-5p) are highly over-represented.

K. De Silva et al. Heliyon 8 (2022) e08886
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3.2. DE-miRNAs

As shown in Table 1, 1256 DE-miRNAs in total were identified across
the five datasets. The number of DE-miRNAs in circulatory, adipose, and
pancreatic tissues were 1184, 62, and 10, respectively. The majority of
DE-miRNAs (977/1256) were exclusive to each dataset (GSE109266 ¼
706; GSE90028¼ 170; GSE139577¼ 69; GSE174502¼ 31; GSE52314¼
1) (Figure 2). The dataset containing the greatest number of DE-miRNAs
was GSE109266, while the total number of down-regulated miRNAs
were significantly larger than the sum of up-regulated miRNAs (821
down-regulated and 435 up-regulated; p < 0.0001) (Table 1; Figure 3).
The proportions of miRNAs identified as differentially expressed by all
three normalization algorithms as well as via raw counts in the four
datasets: GSE139577; GSE90028; GSE174502; and GSE 52314 were
147/174; 117/172; 53/62; and 4/10, respectively (Figure 4).

3.3. Meta-analyses

The meta-signature consisted of two miRNA markers identified by
Fisher's p-value combining method (hsa-miR-33b-5p, hsa-miR-539-3p)
(Figure 5) and eight miRNAmarkers elucidated by RRA (hsa-miR-15b-5p,
hsa-miR-106b-3p, hsa-miR-106b-5p, hsa-miR-146a-5p, hsa-miR-483-5p,
hsa-miR-539-3p, hsa-miR-1260a, hsa-miR-4454) (Table 2). One miRNA
marker, i.e. hsa-miR-539-3p was identified by both methods, resulting in
a meta-signature of 9 miRNAs. Of the 9 miRNAs, 8 were down-regulated
while a single miRNA (hsa-miR-33b-5p) was up-regulated. Also, hsa-miR-
33b-5p was differentially expressed in both circulatory and adipose tis-
sues, while all other miRNAs constituting the meta-signature were
exclusively found in circulatory tissues (Table 2).

3.4. Network analyses

The miRNA-gene interactions network derived by miRNet 2.0 is pre-
sented in Figure 6, while the details of the network are shown in S3
Table. Two miRNAs with above average betweenness and degree cen-
tralities, namely, hsa-miR-15b-5p and hsa-miR-106b-5p were demarcated
as hub nodes (Table 3, Figure 6). Topologically, the network constituted
of nine modules, each clustered around a specific miRNA. Those two
modules around the two hub nodes formed large and dense sub-networks
characterized as continents while the remainder formed smaller sub-
networks stipulated as islands (Figure 6).

3.5. Downstream analyses

Functional enrichment analyses determined five miRNA markers
(hsa-miR-33b-5p; hsa-miR-15b-5p; hsa-miR-106b-3p; hsa-miR-106b-5p;
hsa-miR-146a-5p) as highly conserved while seven miRNAs (hsa-miR-
33b-5p; hsa-miR-15b-5p; hsa-miR-106b-3p; hsa-miR-106b-5p; hsa-miR-
146a-5p; hsa-miR-483-5p; hsa-miR-539-3p) constituted the highly confi-
dent set (S4 Table). Over-representation analysis identified 288 signifi-
cant miRNA-disease associations in total, including hyperglycemia,
diabetes complications, diabetic retinopathy and many other chronic
cardiometabolic diseases and neoplastic conditions, the details of which
are presented in S5 Table. As shown in Figure 7, three miRNAs (hsa-miR-
15b-5p, hsa-miR-106b-3p, hsa-miR-146a-5p) were highly enriched across
a majority of miRNA-disease associations. The top 100 enriched diseases
associated with the 9 miRNA markers according to Benjamini-Hochberg
adjusted p-values are visualized as a word-cloud in S1 Figure.

4. Discussion

In this in-silico analysis, we identified a genome-wide meta-signature
of nine miRNA markers associated with T2D via a data-driven, bio-
computing workflow. Biological plausibility of the findings was validated
through downstream analyses and in the backdrop of contemporary
literature. We envisage that the proposed biocomputing workflow would
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be widely adoptable for studies using data-driven approaches on high
throughput transcriptomics for biomarker discovery, including systemic
or tissue non-specific meta-signatures.

A recent high throughput plasma sequencing study revealed the
down-regulation of three of the circulating miRNAs present in the
identified meta-signature (hsa-miR-15b-5p, hsa-miR-106b-3p, hsa-miR-
106b-5p), in association with incident T2D [38]. Multiple studies attest to
the upregulation of hsa-miR-33b-5p in circulatory and adipose tissues in
the presence of dysglycemia. It has been reported that increased hsa--
miR-33b-5p levels associate with both insulin resistance and adiposity
[39], and leads to impaired insulin signaling as well as reduced fatty acid
oxidation [40]. Moreover, upregulation of hsa-miR-33b-5p in cultured
adipocytes inhibited GLUT4 – a key gene involved in insulin-mediated
glucose transport and homeostasis [41]. Conversely, the inhibition of
miR-33 was found to be able to overcome the harmful effects of diabetes
on atherosclerosis [42]. Lower circulating levels of hsa-miR-146a were
associated with both T2D and prediabetes, playing a potential role in
inflammation, as per a case-control study [43]. Another experimental
study revealed that hsa-miR-146a-5p is downregulated in human aortic
endothelial cells in the presence of high glucose, acting as a mediator of
high-glucose induced endothelial inflammation [44]. A nested
case-control study found significantly decreased hsa-miR-483-5p levels in
the plasma of individuals with prediabetes which indicated its potential
utility as a diagnostic predictor/circulating biomarker of β-cell function
[45]. Significant downregulation of hsa-miR-539-5p was previously
detected in the circulation of individuals with uncontrolled diabetes [46]
while another study discovered its implications on both diabetes and the
heart [47]. Down-regulation of both hsa-miR-1260a [48,49] and hsa--
miR-4454 [49] in the circulation of individuals with T2D was also pre-
viously reported. Reduced circulating hsa-miR-4454 levels are associated
with early onset obesity as well [50]: a condition that could quadruple
the risk of subsequent development of T2D [51]. Concordant findings
from contemporary studies with respect to the meta-signature are sum-
marized in S6 Table.

Systems biology insights on miRNA-T2D associations, rendered by
network analyses are noteworthy. Since the two hub nodes (hsa-miR-
106b-5p & hsa-miR-15b-5p) which formed epicenters of the two most
densely and extensively connected sub-networks might have crucial
functional roles as well [35, 36], further research on their roles on T2D
pathogenesis is warranted. Another insightful observation was the
disproportionately high representation of three markers (hsa-miR-15b-5p,
hsa-miR-106b-3p, hsa-miR-146a-5p) within the miRNA-disease associa-
tions network, which suggested that they likely have key roles in the
development of not only T2D but also other cardiometabolic diseases and
co-morbidities via multiple cross-talk and pleiotropic mechanisms. The
highly conserved- and confident sets of miRNAs, as well as the large
number of miRNA-disease associations identified by downstream ana-
lyses, provide important guidance and directions on the miRNA markers
of T2D to inform future studies. Therefore, future studies focusing on the
functions of the miRNAs constituting the meta-signature, including their
roles in pathobiological pathways of T2D and as potential biomarkers of
T2D-associated comorbidity, would be informative. Longitudinal studies
exploring the mRNA and protein expression of identified miRNAs are
also recommended as they might assist us in determining whether
plausible targets of these miRNAs predict the onset of incident T2D.

The predominance of circulatory miRNAs in the meta-signature could
have resulted from the nature of the origins of data sources. A vast ma-
jority of miRNA seq data emanated from circulatory tissues, while only a
few DE-miRNAs were uncovered in adipose and pancreatic tissues. It
should be noted, however, that the circulating miRNAs are often
preferred as minimally-invasive biomarkers. They have clear merits
including remarkable stability, relatively easy detectability, high sensi-
tivity, and the ability to provide mechanistic insights via their dynamic
expression patterns under different pathological or physiological condi-
tions [52]. The meta-signature derived by current analysis may therefore
have greater clinical value as a potential diagnostic tool of T2D.
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Nevertheless, the lack of miRNA seq data from other tissue types was a
limitation, which may need to be attended to in the quest for unravelling
the complex pathobiology of T2D. The divergent nature of datasets
emanating from different tissues and producing vastly different amounts
of DE-miRNAs, may have influenced the meta-analytic outputs. Conse-
quently, meta-analyses may have lacked sufficient sensitivity to identify
all miRNA markers associated with T2D, in the current study.

Given the lack of consensus on gold standard algorithms for
normalizing and meta-analyzing high throughput transcriptomics, it
would be prudent to apply a nuanced mix of these techniques, as was
done in the current analysis, instead of resorting to a random, single
method. While both contemporary evidence and downstream analysis
outputs corroborated our findings, further in-vitro and in-vivo experi-
mental studies are recommended to validate the meta-signature of T2D
derived via in-silico analyses in the present study. As the miRNA seq
databases are gradually getting scaled up, we underscore the potential
value of data-driven meta-analyses of high throughput transcriptomics
which have hitherto been utilized only sparsely, compared to more
abundant meta-analyses of the aggregate measures reported in published
studies. Lastly, the proposed biocomputing pipeline could be widely
adopted as a robust evidence synthesis strategy in data-driven, high
throughput transcriptomics studies focused on various other conditions.

5. Conclusions

In this study, a meta-signature of DE-miRNAs associated with T2D
was discovered via a data-driven, biocomputing pipeline on high
throughput transcriptomics. In-silico findings were validated against
corroboratory evidence from contemporary studies and via downstream
analyses. The miRNA meta-signature could be useful for guiding future
studies such as those aimed at unravelling pathological mechanisms and
effective therapeutics of T2D. There may also be avenues for using the
proposed pipeline more broadly for evidence synthesis on other condi-
tions using high throughput transcriptomics data.
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