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Abstract

Background: Droplet-based single-cell RNA sequence analyses assume that all acquired RNAs are endogenous to cells.
However, any cell-free RNAs contained within the input solution are also captured by these assays. This sequencing of
cell-free RNA constitutes a background contamination that confounds the biological interpretation of single-cell
transcriptomic data. Results: We demonstrate that contamination from this ”soup” of cell-free RNAs is ubiquitous, with
experiment-specific variations in composition and magnitude. We present a method, SoupX, for quantifying the extent of
the contamination and estimating ”background-corrected” cell expression profiles that seamlessly integrate with existing
downstream analysis tools. Applying this method to several datasets using multiple droplet sequencing technologies, we
demonstrate that its application improves biological interpretation of otherwise misleading data, as well as improving
quality control metrics. Conclusions: We present SoupX, a tool for removing ambient RNA contamination from
droplet-based single-cell RNA sequencing experiments. This tool has broad applicability, and its application can improve
the biological utility of existing and future datasets.
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Introduction

Droplet-based single-cell RNA sequencing (scRNA-seq) has en-
abled quantification of the transcriptomes of hundreds of thou-
sands of cells in single experiments [1, 2]. This technology un-
derpins recent advances in understanding normal and patho-
logical cell behaviour [3–8]. Moreover, large-scale efforts to cre-
ate a ”Human Cell Atlas” critically depend on the accuracy and
cellular specificity of the transcriptional readout produced by
droplet-based scRNA-seq [9, 10].

A core assumption of droplet-based scRNA-seq is that each
droplet, within which molecular tagging and reverse transcrip-
tion take place, contains messenger RNA (mRNA) from a single
cell. Violations of this assumption, which may distort the inter-
pretation of scRNA-seq data, are common in practice. Clear ex-
amples include droplets that contain multiple cells (doublets),

and empty droplets. Attempts to detect and remove doublets are
an active area of research [11–13].

Another phenomenon that violates this assumption is the
sequencing of cell-free RNA from the input solution, admixed
with a cell in its enclosing droplet. It is recognized that these
contaminating non-endogenous RNAs are present even within
datasets of the highest quality [2]. Here, we show that this
”soup” of cell-free mRNAs is ubiquitous and non-negligible
in magnitude. Because the character and extent of ambient
mRNA contamination varies by experiment, with increased
contamination in necrotic or complex samples, ambient mR-
NAs may significantly confound the biological interpretation of
scRNA-seq data. We present SoupX, a method for quantifying
the extent of ambient mRNA contamination whilst purifying
the true, cell-specific signal from the observed mixture of
cellular and exogenous mRNAs.
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In this article we begin by briefly describing the SoupX
method. Following this we consider a range of datasets, summa-
rized in Supplementary Table S1. We first investigate 2 “species
mixing” datasets run on the Chromium 10X [2] and DropSeq
[14] platforms, which allow us to directly identify contaminat-
ing mRNAs and test our method’s accuracy. We then demon-
strate how SoupX can be applied in practice using a dataset of
peripheral blood mononuclear cells (PBMCs) [2]. We further ex-
plore the biological benefits of SoupX using a complex ”kidney
tumour” dataset, which consists of 12 kidney tumour biopsies
[15]. As a final test, we apply our method to human fetal liver
data [16]. We conclude with some general remarks about ambi-
ent RNA contamination, other tools to correct for its effect, and
the consequences of failing to account for the presence of am-
bient RNAs.

The SoupX Method

Droplet-based scRNA-seq methods produce counts of unique
molecular identifiers (UMIs) for genes in thousands of cells.
The aim of an scRNA-seq experiment is to infer the number of
molecules present for each type of gene within each cell from
these data. However, the observed counts arise from a mixture
of mRNAs produced by the captured cell and those present due
to background contamination. SoupX aims to remove the con-
tribution of the cell-free mRNA molecules from each cell and
recover the true molecular abundance of each gene in each cell.

The algorithm consists of the following 3 steps (summarized
in Fig. 1):

(1) Estimate the ambient mRNA expression profile from empty
droplets.

(2) Estimate (or manually set) the contamination fraction, the frac-
tion of UMIs originating from the background, in each cell.

(3) Correct the expression of each cell using the ambient mRNA ex-
pression profile and estimated contamination.

SoupX produces a modified table of counts, which can be
used in place of the original count matrix in any downstream
analysis tool.

To estimate the background expression profile we consider
all droplets with <Nemp UMIs, which we assume unambiguously
do not contain cells. The fraction of background expression from
gene g, bg, is then given by,

bg =
∑

d ng,d∑
d
∑

g ng,d
, (1)

where ng,d is the number of counts for gene g in droplet d and the
sum over d is taken over all droplets with <Nemp UMIs (Fig. 1).
The species-mixing experiment allows us to compare how ac-
curately bg recapitulates the true background expression found
within each cell, revealing that any value of Nemp < 100 produces
a good correlation, with the best correlation given when Nemp <

10 (Supplementary Fig. S2).
The most challenging part of using SoupX is estimating or

specifying the number of UMIs in each cell that are contributed
by background contamination. In general, the observed number
of UMIs for gene g in cell c is given by

ng,c = mg,c + og,c, (2)

where mg,c are the cell endogenous counts and og,c are the counts
from the background. We assume that the relative abundance

of genes that make up the background does not differ between
cells, which allows us to write,

og,c = Ncρcbg, (3)

where Nc = ∑
gng,c, and ρc is the background contamination frac-

tion. In general mg,c is unknown and what we are aiming to mea-
sure. To proceed, we assume that there is a combination of genes
and cells for which mg,c = 0 exists. The genes for which mg,c = 0
for a given cell are those genes that are strong negative markers
of the cell type c. For example, the gene HBB is a strong positive
marker for erythroid cells (red blood cells) but should not be ex-
pressed in any other cell type. So for any cell c that is not an ery-
throid cell, HBB will not be expressed (i.e., mH B B,not Erythroid = 0).

Given a set of genes/cells for which we can assume that there
is no cell endogenous expression (i.e., mg,c = 0) we calculate the
cell-specific contamination fraction,

ρc =
∑

g ng,c

Nc
∑

g bg
, (4)

where the sum is taken across all genes in cell c for which it is
assumed mg,c = 0. SoupX optionally uses clustering information
to refine the set of cells for which it can be assumed that mg,c =
0. If it can be shown for any cell c in cluster P that mg,c > 0, then
it is assumed that mg,c > 0 for all c ∈ P (see Supplementary Fig.
S1).

If known from prior biological knowledge, the set of
genes/cells for which it can be assumed that mg,c = 0can be pro-
vided as input to SoupX. Where this is not known in advance,
we provide an automated alternative to estimate the contami-
nation fraction (see Supplementary Fig. S1). The automated ap-
proach first identifies markers of each cluster of cells in the data.
For each strong marker, it is assumed that mg,c = 0 for all cells
in clusters where the gene is not a marker and the contamina-
tion fraction is estimated (Supplementary Fig. S1). Performing
this estimation across all strong marker genes provides a set of
estimates of the contamination fraction. To obtain a final value,
it is assumed that inaccurate estimates will have no preferred
value while true estimates will cluster around the true value.
The most common value is taken as the final estimate of the
contamination fraction (see Fig. 1, Step 2.2).

Having determined the contamination fraction ρc and the
background expression profile bg, the cell endogenous counts
are intuitively given by

mg,c = ng,c − Ncρcbg, (5)

where ng,c are the observed counts, Nc = ∑
gng,c, and bg and ρc are

calculated as described above.
Although the intuition of Equation 5 is correct, in practice

mg,c is estimated by maximizing a multinomial likelihood as de-
scribed in the Supplementary Methods. This procedure is fur-
ther enhanced when cluster assignments are given, by perform-
ing the correction on counts aggregated at the cluster level, then
distributing the corrected counts between cells in the cluster in
proportion to their size (see Fig. 1). This additional step helps
overcome the sparsity of scRNA-seq data, which would other-
wise make it impossible to distinguish a single count due to con-
tamination from a single count due to endogenous expression in
many circumstances.
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Figure 1: A visual summary of the SoupX method, using data from the PBMC dataset.

The estimated value of mg,c can then be used in place of ng,c

in any downstream analysis.

Properties of Ambient RNA

We next investigate the properties of ambient RNA contami-
nation in data where ground truth is available, the “species-
mixing” experiments combining mouse and human cell lines
using 10X [2] and Drop-Seq technologies [14]. Figure 2A shows
the relative abundance of human and mouse mRNAs in each
droplet in the 10X data. Droplets containing human (top right)
and mouse (bottom right) cells show that ∼1% of observed
transcripts are cross-species contamination. This rate of cross-
species contamination provides a lower bound on the total rate

of ambient mRNA contamination because there will also be
an additional contribution due to contaminating mRNAs from
the same species (we later show that the true contamination
rate is ∼ 2%). A similar effect is seen in the Drop-Seq–based
species-mixing data (Supplementary Fig. S3). These observa-
tions demonstrate that cell-free mRNA contamination is present
even in highly controlled experiments.

To investigate the composition of cell-free mRNAs, we com-
pared the aggregate expression profile of all droplets containing
cells to all droplets with ≤10 UMIs, which we assumed to contain
only ambient mRNAs. These 2 profiles were highly correlated
in the 10X species experiment (Fig. 2B) with a high correlation
found in all other datasets considered (Pearson correlation 0.71–
0.96, median 0.86; Supplementary Table S2). The strength of the
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Figure 2: The properties of the cell-free mRNA soup as determined using species-mixing datasets. A, The log10 ratio of the number of UMIs mapping to human
and mouse mRNAs for each droplet in the species-mixing dataset (10X). Droplets determined to contain cells by cellranger are marked in black. B, The correlation
of the counts in the background compared to counts averaged across cells for each gene. Counts have been subsampled so that the total number of counts in the
background and averaged cell population are the same. C, The estimated contamination fraction as a function of number of UMIs in each droplet in individual cells

in the species-mixing dataset. Red and blue dots represent cells from the 10X/DropSeq experiments, respectively. The distribution on the left shows the marginal
distribution across all cells. D, The fractional change in contaminating and genuine expression levels after applying SoupX for the 2 technologies. The distribution
across cells is summarized by box plots, where the central line is the median, box boundaries are the first and third quartiles, and the whiskers extend to 1.5 times
the interquartile range.

correlation implies that cell-free contamination represents an
approximately uniform sampling of the cells in the sequencing
batch (i.e., channel).

Next we estimated the contamination fraction, the fraction
of expression derived from the cell-free mRNA background in
each cell. In each cell we identify a set of genes that must
have originated from the ambient mRNA: human transcripts in
mouse cells and vice versa. For these genes/cells it is assumed
that mg,c = 0 and the contamination fraction is calculated using
Equation 4. Figure 2C reveals that there is little variation in the

contamination fraction within a channel, in both the 10X and
DropSeq data.

In most experiments there is less power to determine cell-
specific contamination fractions and so SoupX assumes a con-
stant contamination fraction within a channel. When clustering
information is provided, the redistribution of counts from clus-
ter level to individual cells automatically removes more counts
from contaminated cells, even when only a global estimate
of the contamination is given (Supplementary Fig. S4; Supple-
mentary Methods). Where a cell-specific expression estimate is
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needed, SoupX uses a hierarchical Bayes method to share infor-
mation between cells (Supplementary Methods).

It may be hypothesized that the absolute number of contam-
inating mRNA molecules is the quantity that is approximately
constant and that the contamination should vary with the num-
ber of mRNA molecules contributed by the captured cell. That is,
that contamination fraction should vary as a function of cellu-
lar mRNA contribution, with the number of detected UMIs be-
ing a proxy for this. Consistent with this, Fig. 2C shows that the
greatest contamination occurs in droplets with the fewest UMIs.
However, the contamination fraction is still approximately con-
stant across most of the UMI range. This is likely a consequence
of the fact that the capture efficiency of molecules in droplet-
based experiments varies by as much as an order of magnitude
[17]. Thus variation due to capture efficiency is likely to swamp
variation due to “cell size” in most experiments, making con-
stant contamination fraction a reasonable approximation.

To test the accuracy of SoupX in removing contaminating
counts while retaining those due to endogenous expression we
compared the fraction of expression from cross-species and
within-species genes before and after SoupX contamination cor-
rection. This analysis revealed (Fig. 2D) that mouse expression
in human cells (and vice versa) was decreased by a factor of ≥2
and usually an order of magnitude by the SoupX contamination
removal in both 10X and DropSeq experiments. By contrast the
fraction of expression derived from genes corresponding to the
correct species was effectively unchanged for all cells.

Application of SoupX to PBMC Data

Next we tested our method on a dataset consisting of PBMCs,
measured in a single channel [2]. We used the Seurat pack-
age [18, 19] to produce a t-distributed stochastic neighbour em-
bedding (tSNE) representation of the data and annotated clus-
ters of cells based on the expression of canonical marker genes
(Fig. 3A).

Applying the automated procedure (see Supplementary
Methods) to estimate the contamination fraction produced a
background contamination rate of 6%. To confirm the accuracy
of this estimate, we also calculated the background contamina-
tion rate using a set of genes that could be assumed to be unex-
pressed in some cells (i.e., where mg,c = 0).

To aid appropriate selection of such a gene set, we reasoned
that the ideal genes for estimating the contamination rate would
be ubiquitously present at a low level in all droplets due to high
expression in the ambient RNA. They would also be present at a
high level when a cell endogenously expresses the gene, allow-
ing us to unambiguously separate droplets with endogenously
expressing cells (i.e., where mg,c > 0) from those where the ex-
pression is solely due to contamination (mg,c = 0).

Based on this reasoning, we developed a heuristic that ranks
the 500 genes with the highest expression in the background by
their bimodality of expression across all droplets in a channel.
A plot based on applying this heuristic to the PBMC data shows
the expression distribution across all cell-containing droplets in
the dataset (Supplementary Fig. S5). This heuristic suggests that
immunoglobulin (IG) genes, such as IGKC and IGLC2, are both
highly expressed in the soup and highly specific in their expres-
sion, making them good candidates for estimating the contam-
ination fraction in this dataset.

To select a precise set of cells for which we could use IG genes
to estimate the contamination, we identified all cells whose IG
expression was significantly greater than in the background con-

tamination (Poisson test, false discovery rate 0.05; Supplemen-
tary Materials). These represent cells endogenously expressing
IG. We only used cells from clusters with no cells identified
as endogenously expressing IG to estimate the contamination
rate (Fig. 3B). For the PBMC data, this identified IG expression in
T cells as purely due to contamination and calculated a back-
ground contamination rate of ∼ 5%.

Having calculated the global contamination rate for the
PBMC data, we then corrected the PBMC data for background
mRNA contamination and re-analysed the data with Seurat us-
ing the same settings. Comparing cluster membership before
and after correction revealed that the same number of clusters
was identified, but some cells changed which cluster they be-
longed to (Fig. 3C).

Next we identified marker genes for each cluster in both the
corrected and uncorrected PBMC data using a Wilcoxon rank
sum test and calculated the expression fold change between the
cluster and all other cells. We compared the fold changes for
the same genes in the same clusters before and after correc-
tion and found that correction for background contamination
systematically increased the fold change contrast for marker
genes (Fig. 3D). That is, correction for background contamination
made marker genes more specific to the cluster they were mark-
ers of. Furthermore, additional genes were found as markers in
the corrected data that were not identified in the uncorrected
data.

As a specific example, we found that correction of ambient
RNA contamination changes the pattern of expression of LYZ in
the PBMC data (Fig. 3E and F). This improved the specificity of LYZ
as a marker gene for mononuclear phagocytes (MNPs) (Fig. 3E) by
removing its expression from all other cell types, while leaving
its expression in MNPs unchanged (Fig. 3F).

Ambient RNA Confounds Interpretation in
Complex Experiments

As a further test of the biological utility of our method we
considered an experiment combining 7 kidney tumours pro-
cessed across 10 channels (Supplementary Table S1). As with
the PBMCs, we analysed corrected and uncorrected data using
the Seurat package; Fig. 4A shows a tSNE plot of the uncorrected
data. Haemoglobin genes were used to estimate the contami-
nation fraction in most channels (Supplementary Fig. S10). This
choice of gene set for estimating contamination was motivated
by the ubiquitous presence of red blood cells (with red cell lysis
forming part of the tissue treatment protocol) in these samples,
together with the knowledge that haemoglobin genes are highly
specific to red blood cells. We compared the resulting estimates
of the contamination fraction with those obtained by applying
the automated method and found good agreement (Supplemen-
tary Fig. S6).

Applying SoupX and re-analysing the kidney tumour data re-
vealed that, in contrast to the PBMC data, many cells changed
cluster and with the same clustering parameters 2 fewer clus-
ters were identified in the corrected data (Fig. 4B). Furthermore,
we found that the expression ratio of marker genes between the
cluster they mark and all other cells increased systematically
after correction for background contamination (Supplementary
Fig. S7).

We found that the correction of background contamina-
tion changed the distribution of expression of many genes
across cells in a way that would alter the biological inter-
pretation. For example, while it is unlikely to be biologically
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Figure 3: The PBMC dataset and how it changes when background correction is applied. A, A tSNE representation of the data, with cluster boundaries shown by

density contours and shaded according to the cell type they represent. MNP: mononuclear phagocytes; NK: natural killer cells. B, The same tSNE representation, but
cells are now coloured by their rate of expression of immunoglobulin (IG) genes compared to the rate at which IG is expressed in the background on a log10 scale.
Positive values correspond to higher IG expression in a cell than in the background, with values significantly >0 only possible if the cell endogenously expresses IG. The
density contours of the clusters with no cell that endogenously expresses IG (as determined by a Poisson test) are marked in boldface and used to estimate the global

contamination ratio. C, The fraction of cells shared between clusters determined with the same parameters before and after application of SoupX. D, The improvement
in marker specificity following application of SoupX. All genes that are markers of a cluster either before or after correction are identified and their expression log
fold change (FC) relative to the clusters they do not mark is calculated before and after correction. The y-axis of this plot shows the fractional change in log FC after
applying SoupX for all genes. Genes are grouped into bins for ease of representation, with the number of genes in each bin given by the colour scale. The marginal

distribution across all genes is shown on the right and the dotted line corresponds to no change in marker specificity after correction. E, The improvement in marker
sensitivity for the gene LYZ, which is a marker for mononuclear phagocytes (MNPs). The corrected and uncorrected expression levels are shown split by cells labelled
as MNPs and all others. F, This same change in expression shown on the tSNE map, where the colour scale represents the fraction of LYZ expression that has been
removed by SoupX.
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Figure 4: The application of SoupX to complex, multi-channel data. A, A tSNE representation of the data, with cluster boundaries shown by density contours and

shaded according to the cell type they represent. ccRCC: clear-cell renal cell carcinoma cells; pRCC: papillary cell renal cell carcinoma cells; RBC: red blood cells;
MNP: mononuclear phagocytes. B, The fraction of cells shared between clusters determined with the same parameters before and after application of SoupX. C, The
improvement in marker sensitivity for the gene HBB, which is a marker for red blood cells. The colour scale represents the fraction of HBB expression that has been
removed by SoupX. D, Same as C but for COL1A1. E, The cross-batch entropy before and after SoupX has been applied. The entropy measures the level of local mixing

(100 nearest neighbours) for 100 cells selected from each cluster [20]. F, The distribution of HBB expression (y-axis, log scale) in the fetal liver data by cell type (x-axis),
with the erythroid lineage marked in boldface. For each cell type, the expression distribution is shown before (right) and after (left) application of SoupX. Dots represent
individual cells and box plots show the distribution of expression values where the central line is the median, box boundaries are the first and third quartiles, and the

whiskers extend to 1.5 times the interquartile range.
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misinterpreted, SoupX completely removes the expression of
haemoglobin genes from all cells except red blood cells (Fig. 4C).

In other cases, the misattribution of gene expression to cell
types that do not truly express them could lead to false conclu-
sions. An example of this is the cluster of T and MNPs in Fig. 4A
and D, which express the collagen genes COL1A1, COL1A2, and
COL3A1 before background correction. The expression of colla-
gen genes might be interpreted as evidence that the leukocytes
are resident in the tissue. However, our method identifies that a
high fraction of this expression is due to contamination (Fig. 4D).

Because the ambient mRNA expression profile is experiment
specific, we reasoned that background contamination likely cre-
ates batch effects. That is, 2 identical cells captured in differ-
ent experiments will appear different owing to differences in
their cell-free RNA composition. We therefore calculated the
cross-batch entropy of the kidney tumour data before and after
background correction [20]. This analysis shows that the batch-
mixing entropy is increased after background correction, indi-
cating better mixing between samples (Fig. 4E).

As a further example of the biological utility of SoupX, we
applied SoupX to 40 channels of human fetal liver data (Sup-
plementary Fig. S8). Before correction for background contami-
nation, a large number of cells outside the erythroid (red blood
cell) lineage express erythroid markers such as HBB in combina-
tion with other cell type markers. This widespread expression
of multiple distinct markers could potentially indicate the pres-
ence of doublets. Application of SoupX allows this explanation
to be ruled out, showing that HBB is only truly expressed in ery-
throid cell types (Fig. 4F).

Application of SoupX is also able to identify those cell types
where biologically unexpected combinations of genes represent
genuine biological phenomena. One example of this is the ex-
pression of the erythroid gene GYPA in the EI macrophage pop-
ulations, which could be the consequence of either contamina-
tion or a biological phenomenon. Application of SoupX confirms
that this expression represents genuine gene expression and not
ambient RNA contamination (Supplementary Fig. S9).

Discussion

We have shown that cell-free RNA is omnipresent in droplet-
based scRNA-seq data and have proposed a method to identify,
quantify, and remove its contaminating effect. We find that ac-
counting for contamination improves the specificity of marker
genes, identifies new markers, and is essential for the correct
biological interpretation of complex experiments.

We have shown some potential misinterpretations of kid-
ney tumour and fetal liver data driven by ambient mRNA con-
tamination, but examples are sure to abound in other tissues.
For instance, in endocrine tissues, it is crucial to understand
which cell types secrete a particular hormone. The misassigned
expression of even a single hormone gene can fundamentally
change how investigators think about a cell type. Such problems
will become increasingly common as efforts to compare similar
cell types across tissues progress.

The best case for applying SoupX occurs when the user can
specify a set of genes and cells where there is no cell endoge-
nous expression, i.e., a set of genes and cells where it is safe
to assume that the only source of expression for these genes
is from background contamination. The expectation is that bio-
logical knowledge of the experiment being performed will guide
this choice. Where such a set of genes and cells can be provided,
this will yield the best results.

For example, solid-tissue experiments are frequently highly
contaminated with red blood cells and red cell lysis is used to
prepare the samples [15]. As such, haemoglobin genes are of-
ten ubiquitously present in the background. Furthermore, red
blood cells are the only cells that produce haemoglobin under
normal physiological conditions, so for the set of haemoglobin
genes, it is safe to assume that there is no cell endogenous ex-
pression for cells that are not red blood cells. Finally, red blood
cells express haemoglobin genes in such extreme abundance
that they can be trivially identified by comparing the ratio of
observed haemoglobin genes to that present in the background
contamination (Supplementary Fig. S10). These properties make
haemoglobin genes a sensible choice for most solid-tissue ex-
periments.

Heuristics, such as the bimodal expression ranking in Sup-
plementary Fig. S5, can help aid biologically motivated gene se-
lection. However, we recognize that selecting an appropriate set
of genes to estimate contamination will not always be possible.
To address this issue, we include an automated contamination
estimation procedure. By using all high-quality marker genes
identified in the data to independently estimate the contami-
nation fraction, this method estimates the true contamination
fraction by assuming that inaccurate estimates of the contami-
nation fraction are not strongly correlated (i.e., there is no pre-
ferred, incorrect estimate). We show that this automation gives
comparable results to the manual method. Although this pro-
cedure requires cells to be clustered, clustering information is
used primarily to identify marker genes. As such, consistent es-
timates of the contamination fraction will be obtained for any
sensible clustering of the data.

It is also possible to manually specify the contamination frac-
tion, which can be useful when the aforementioned estimation
procedures are deemed inaccurate or it is desirable to overcor-
rect the data. For most applications, the consequences of manu-
ally setting an unrealistically high contamination rate are likely
to be minimal. Contamination is preferentially removed from
genes closest to the background expression (i.e., genes with low
levels of expression), meaning that setting a higher global con-
tamination rate is unlikely to completely remove the expression
of genes that are truly markers of a cell. Thus in some applica-
tions it may be preferable to overcorrect for background contam-
ination and remove a small amount of genuine signal to ensure
that all the background contamination has been removed. We
also find that our method is robust to small inaccuracies in the
estimation of the global contamination rate (Supplementary Fig.
S4).

Since SoupX was first released, several other tools have
been developed that aim to remove background contamination.
SoupOrCell [21] uses the identification of conflicting genotypes
to identify ambient RNA contamination, limiting its application
to mixed-genotype experiments. Cell Bender [22] uses a deep
generative model to estimate shared expression patterns likely
to represent distinct cell types while simultaneously removing
contamination. This deep generative model comes with a heavy
computational cost compared to other tools, and the output of
the model (which in effect estimates mg,c for each cell type) pro-
vides an imputed cell profile rather than raw counts with the
background “subtracted off,” which SoupX provides. Finally, De-
contX [23] relies on accurate clustering of the data to estimate
and remove the background without the need for gene counts
from empty droplets. This allows DecontX to be applied when
empty droplet counts are not available but also means that the
results are potentially heavily dependent on the accuracy of the
clustering provided. By contrast, SoupX can be applied generally,
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is computationally inexpensive, and does not depend heavily on
accurate pre-annotation of input data.

To make our method easily applicable, we provide an R pack-
age, SoupX, which can be used to estimate and remove ambient
mRNA contamination. This package is available on the Compre-
hensive R Archive Network (CRAN) and is provided with a vi-
gnette to assist the user in understanding how best to apply the
method. The output of the SoupX package is a corrected table of
counts, which can be used as input for standard workflows, and
running SoupX does not add appreciably to the computational
cost of standard single-cell analyses. We envision background
correction forming a standard part of droplet-based scRNA-seq
analysis pipelines.

Data Availability

The 10X species-mixing dataset was the mixture of the hu-
man cell line 293T and the mouse cell line 3T3 described in
[2]. We used the data mapped and quantified using Cell Ranger
1.1.0 from https://support.10xgenomics.com/single-cell-gene-e
xpression/datasets/1.1.0/293t 3t3. The DropSeq species-mixing
data were obtained from [14], specifically SRR1748411. The PBMC
data were taken from [2]. The kidney tumour dataset was taken
from [15]. The fetal liver data [16] are available from ArrayEx-
press with accession code E-MTAB-7407. The mapped datasets
supporting the results of this article are available in the GigaDB
repository [24].

Availability of Supporting Code and
Requirements

Project name: SoupX
Project home page: https://github.com/constantAmateur/SoupX
Operating systems: Platform indepdent
Programming language: R
Other requirements: R 3.5.0 or higher
License: GNU GPL
RRID: https://scicrunch.org/browse/resources/SCR 019193
biotools ID: soupx
The SoupX R package is also available from CRAN at https:
//github.com/constantAmateur/SoupX, the scripts to reproduce
this analysis are at https://github.com/constantAmateur/ambie
ntRNA paper, and a Docker image containing all code and data
needed to generate the results in this article can be obtained
from https://hub.docker.com/r/constantamateur/soupxpaper.

Additional Files

Supplementary Table S1. Sample information for the different
datasets used in this article.
Supplementary Table S2. Pearson correlation coefficient be-
tween the background contamination profile and all cells in a
channel averaged, after removing the genes above the 99th ex-
pression quantile.
Supplementary Figure S1. Schematic illustrating the procedure
used to estimate the global contamination rate using the gene
IGHD on the PBMC data. On the left, individual cells are marked
red when their expression of IGHD is higher than would be pos-
sible even if the cell were nothing but contamination. That is,
cells where IGHD must be endogenously expressed are marked
red. Any cluster containing such a cell is excluded, and the global
contamination fraction is estimated using cells in the remaining
clusters (right of plot).

Supplementary Figure S2. The correlation between ”true back-
ground,” which is defined by aggregating across mouse tran-
scripts in human cells and vice versa, with the background ex-
pression profile derived using only droplets. Total number of
UMIs is given on the x-axis.
Supplementary Figure S3. The ratio of human to mouse
transcripts on a log10 scale (y-axis) for all droplets in the
DropSeq species-mixing experiment. Droplets containing cells
are marked in black. The x-axis gives the average number of
UMIs between human and mouse for each cell.
Supplementary Figure S4. The x-axis gives the true contamina-
tion rate measured using the cross-species transcripts in each
cell. The y-axis gives the effective contamination rate obtained
by applying SoupX at the cluster level using a constant global
contamination rate, calculated as the fraction of removed counts
by the application of SoupX. The line shows perfect correlation,
and red and blue dots represent the 10X and DropSeq species-
mixing experiments, respectively.
Supplementary Figure S5. Distribution of expression relative to
background for genes in the PBMC data. The red line indicates
the global estimate of the contamination fraction that would be
obtained if just that gene were used to estimate contamination.
Genes that are most useful for contamination estimation have
a bimodal distribution, with cells genuinely expressing the gene
yielding a value on the y-axis >0 and cells that do not express the
gene having a value clustered around the true contamination
rate.
Supplementary Figure S6. Comparison of the contamination
fraction estimated by the automated method (x-axis) and by
manually supplying a gene set (y-axis), for each channel in the
kidney tumour data. The dashed line indicates perfect correla-
tion, and the Pearson correlation is shown in the upper left.
Supplementary Figure S7. The improvement in marker speci-
ficity following application of SoupX to the kidney tumour data.
Note the different scale of the y-axis compared to Fig. 3. All genes
that are markers of a cluster either before or after correction are
identified, and their expression log fold change (FC) relative to
the clusters that they do not mark is calculated before and after
correction. The y-axis of this plot shows the fractional change in
log FC after applying SoupX for all genes. Genes are grouped into
bins for ease of representation, with the number of genes in each
bin given by the colour scale. The marginal distribution across
all genes is shown on the right, and the dotted line corresponds
to no change in marker specificity after correction.
Supplementary Figure S8. Uniform manifold approximation and
projection (UMAP) representation of the single-cell fetal data.
Each point is coloured by its cell type and a cell type label is
placed at the position of the average cell.
Supplementary Figure S9. Normalized gene expression of GYPA
(y-axis) in fetal liver data by cell type before and after ambient
RNA removal by SoupX (x-axis). The cell types on the x-axis rep-
resent the different cell types as annotation in Supplementary
Fig. S8. For each cell type, box plots indicate the median, quar-
tiles, and 1.5 times the interquartile range for cells after SoupX
correction (left) and before (right). For each distribution, each
cell’s expression is also shown with horizontal jitter and trans-
parency inversely proportional to the number of cells of that
type. The 2 EI Macrophage populations are emphasized in bold-
face.
Supplementary Figure S10. The fractional expression of
haemoglobin genes in each cell, relative to the rate of expres-
sion in the background in 1 of the kidney tumour channels.
This fraction is given by the colour of each point on a log scale.
Points that have been determined to not endogenously express
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haemoglobin genes are marked with a green outline. The x- and
y-axis are the tSNE coordinates supplied by cellranger for this
channel.
Supplementary Methods. A more verbose description of the
SoupX method and details of data processing of the different
datasets used in this article.
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