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Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell
generation and functions in melanoma and ovarian cancer
Harshita B Gupta1, Curtis A Clark2, Bin Yuan3, Gangadhara Sareddy4, Srilakshmi Pandeswara1, Alvaro S Padron1, Vincent Hurez1,
José Conejo-Garcia5, Ratna Vadlamudi1,2,4,6, Rong Li2,3,6 and Tyler J Curiel1,2,6,7

As tumor PD-L1 provides signals to anti-tumor PD-1+ T cells that blunt their functions, αPD-1 and αPD-L1 antibodies have been
developed as anti-cancer immunotherapies based on interrupting this signaling axis. However, tumor cell-intrinsic PD-L1 signals
also regulate immune-independent tumor cell proliferation and mTOR signals, among other important effects. Tumor-initiating cells
(TICs) generate carcinomas, resist treatments and promote relapse. We show here that in murine B16 melanoma and ID8agg
ovarian carcinoma cells, TICs express more PD-L1 versus non-TICs. Silencing PD-L1 in B16 and ID8agg cells by shRNA (‘PD-L1lo’)
reduced TIC numbers, the canonical TIC genes nanog and pou5f1 (oct4), and functions as assessed by tumorosphere development,
immune-dependent and immune-independent tumorigenesis, and serial transplantability in vivo. Strikingly, tumor PD-L1 sensitized
TIC to interferon-γ and rapamycin in vitro. Cell-intrinsic PD-L1 similarly drove functional TIC generation, canonical TIC gene
expression and sensitivity to interferon-γ and rapamycin in human ES2 ovarian cancer cells. Thus, tumor-intrinsic PD-L1 signals
promote TIC generation and virulence, possibly by promoting canonical TIC gene expression, suggesting that PD-L1 has novel
signaling effects on cancer pathogenesis and treatment responses.

Signal Transduction and Targeted Therapy (2016) 1, 16030; doi:10.1038/sigtrans.2016.30; published online 23 December 2016

SIGNIFICANCE
Studies of PD-L1 signals in tumor immunopathogenesis and
treatment responses have focused on cell-extrinsic effects. We
introduce a major shift from the current paradigm by showing
novel cell-intrinsic PD-L1 signaling that promotes TIC generation,
virulence and treatment responses, greatly augmenting under-
standing of PD-L1 signals in cancer pathogenesis and treatment
responses.

INTRODUCTION
PD-L1 (CD274, B7-H1) is an immune co-signaling molecule in the
B7-H (B7 homology) family. It has a key role in maintaining an
immunosuppressive tumor environment by negatively regulating
anti-tumor responses through fostering apoptosis, anergy or
exhaustion of PD-1-expressing T cells, and is thus immunopatho-
genic in many cancers.1,2 Immune checkpoint blockade with anti-
PD-L1 monoclonal antibodies (αPD-L1) is clinically effective in
many cancer models. The αPD-L1 antibody atezolizumab was
recently Food and Drug Administration approved to treat certain
bladder and lung cancers. Its principal mode of action is thought
to be protecting anti-tumor T cells from inhibition by tumor
surface-expressed PD-L1.1,2 We recently reported that PD-L1 also
mediates important cell-intrinsic signals that regulate immune-
independent tumor growth, mTOR signaling and autophagy in
melanoma and ovarian cancer cells.3 Tumor-intrinsic PD-L1 also
regulates tumor glucose metabolism regulation, affecting anti-tumor
T cells.4 Thus, cell-intrinsic PD-L1 signals merit further studies.

Tumors are comprised of genetically and functionally hetero-
geneous cell populations. Among these are tumor-initiating cells
(TICs), initially reported in hematologic cancers, but that also
give rise to epithelial carcinomas.5,6 Despite their importance,
mechanisms for TIC generation and virulence are incompletely
understood.
Because TICs are resistant to many therapies, and can give rise

to tumor relapse, much attention has been given to targeting
them for treatment.5,6 PD-L1 and PD-1 are expressed on TICs,7–10

but definitive evidence for their roles in TIC generation has not
been reported to our knowledge. We demonstrate here that
tumor cell-intrinsic PD-L1 directly drives the generation and
functions of TICs in murine melanoma and ovarian cancer cells,
and a human ovarian cancer cell line. Tumor PD-L1 is well known
to give negative cell-extrinsic signals to PD-1+ T cells, but we now
show that tumor PD-L1 also appears to generate intra-tumor cell
signals that augment canonical TIC gene expression, regulate TIC
numbers and functions, and sensitize them to rapamycin and
interferon-γ. These previously unknown intracellular signaling
effects define important new mechanisms for PD-L1 participation
in cancer immunopathogenesis and suggests novel treatment
strategies.

MATERIALS AND METHODS
Mice
Male and female wild-type (WT) C57BL/6J (BL6) and NOD.Cg-Prkdcscid

Il2rgtm1Wj1/SzJ (non-obese diabetic/severe combined immunodeficiency
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(NOD/SCID)/interleukin-2Rγ KO, NSG) mice were purchased from Jackson
Laboratory (Bar Harbor, ME, USA), maintained under specific pathogen-free
conditions and given food and water ad libitum. Eight- to ten-week-old
age- and sex-matched mice were used for experiments. All animal studies
were approved by our Institutional Animal Care and Use Committee.

Cell lines and transfections
The murine ovarian cancer cell line ID8, a gift from George Coukos,
University of Pennsylvania, is a well-accepted transplantable mouse model
that produces tumors replicating important aspects of human ovarian
cancer, including local spread and ascites after intraperitoneal injection
into syngeneic BL6 mice.11 We generated an aggressive ID8 line (ID8agg)
by serial passage through WT mice.3 The murine melanoma B16-F10 cell
line (herein ‘B16’) and the human ovarian cancer cell line ES2 were
purchased from the American Type Culture Collection (Manassas, VA, USA).
Cells were not re-authenticated for this work. Mouse cells are on the BL6
background. Cells were used in passages o5 and maintained in 5% fetal
bovine serum-containing medium RPMI-1640 plus 1% penicillin/strepto-
mycin, 1% L-glutamate and 1% HEPES buffer (complete medium). B16,
ID8agg and human ES2 cells with stable PD-L1 knockdown were generated
and described in our recent report.3 In brief, cells were transfected with
murine or human control shRNA (‘control’) or shRNA against PD-L1 (‘PD-
L1lo’). Monoclonal cells were selected in puromycin and PD-L1 expression
status confirmed by flow cytometry and western blotting.

In vitro conditions and treatments
All cells were cultured under identical conditions, including cell density
and passage number, and studied at ~ 80% confluency on 100 mm plastic
culture plates in complete medium. Indicated cultures included rapamycin
(Sigma, St Louis, MO, USA) or mouse recombinant interferon-γ (R&D
Systems, Minneapolis, MN, USA) for 48 h (B16 and ID8agg) or 60 h (ES2) at
concentrations shown. Cell viability and numbers were determined on a Vi-
Cell XR (Beckman Coulter, Brea, CA, USA) or hemocytometer and stained as
described below. Dimethylsulfoxide (Sigma) or phosphate-buffered saline
was used as negative controls (vehicle) for rapamycin or interferon-γ,
respectively.

Flow cytometry
Cells were stained and sorted as previously described,12 using BD LSRII and
FACSAriaII hardware, and analyzed by FACSDiva (BD Bioscience, San Jose,
CA, USA) or FlowJo (FlowJo LLC, Ashland, OR, USA) software. Zombie
Yellow Fixable Viability kit, anti-mouse PD-L1 (Bv421, clone 10F.9G2), CD44
(Per-CP-Cy5), CD133 (PE-Cy7), CD24 (PE), anti-human CD44 (Per-CP-Cy5),
CD24 (PE), PD-L1 (PE-Cy7, clone 29E.2AE) and matched isotype controls
were purchased from BioLegend (San Diego, CA, USA). ALDEFLUOR kits
were purchased from STEMCELL Technologies (Vancouver, BC, Canada).
The ALDEFLUOR assay was done with 1 × 106 ES2 cells per ml. A volume of
5 μl of the specific aldehyde dehydrogenase (ALDH) inhibitor diethylami-
nobenzaldehyde was added to control tubes. Tubes were incubated with
5 μl BODIPY aminoacetaldehyde, a fluorescent substrate for ALDH and
incubated for 45 min at 37 °C. Following washes, samples were kept at
4 °C for remaining staining. TICs were defined as CD44+CD133+CD24+

(B16)13, CD44+CD24+ (ID8)14 and ALDHhi or CD44+CD24− (as indicated,
ES2)15,16 by flow cytometry.

In vivo cell challenges, treatments and assessments
WT or NSG mice were injected with indicated numbers of B16 cells or
corresponding TICs subcutaneously (s.c.),17 or ID8agg cells or correspond-
ing TIC intraperitoneally B16 growth was measured with Vernier calipers
and tumor volume calculated as (length×width2)/2. Survival was
determined by tumor size ⩾ 1800 mm3 or animal distress. ID8agg survival
was determined by ascites formation or distress.18 For serial re-
transplantation, tumors were removed under sterile conditions when they
reached 1800 mm3, digested, stained for viability and 104 sorted TICs were
injected into naive NSG mice subcutaneously. For ES2 TICs, female NSG
mice were challenged with 20 000 sorted ALDHhi TICs intraperitoneally.
The survival of these mice was determined by ascites accumulation
causing weight ⩾ 130% of baseline, or distress.

Tumorosphere formation
104 TICs were sorted from cultures and grown in DMEM-F12 medium
(Gibco, Carlsbad, CA, USA) with B27 (Invitrogen, Carlsbad, CA, USA),
20 ng ml− 1 epidermal growth factor (PeproTech, Rocky Hill, NJ, USA) and
20 ng ml− 1 fibroblast growth factor (PeproTech)14 for 1–2 weeks in 25 cm2

flasks. At least six fields per clone were counted. Spheroid images were
taken and analyzed using QCapture Pro 6.0 software (Surrey, BC, Canada).
Diameter was calculated using the 100 μM measurement bar.

Quantitative reverse transcription-PCR
Total RNA was isolated from cells using a Direct-zol RNA miniprep kit
(Zymo Research, Irvine, CA, USA). Complementary DNA was synthesized
with 1 μg total RNA using the ImPromII Reverse Transcription System
(Promega, Madison, WI, USA) and random primers. Quantitative PCR was
conducted using the 7900HT Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA), amplified with Taqman gene expression
assays (Applied Biosystems) for mouse nanog (Mm02019550_s1),
sox2 (Mm03053810_s1), pou5f1 (oct4, Mm03053917_g1) and rptor
(Mm01242613_m1) according to the manufacturer’s instructions with
β-actin (Mm02619580_g1) as the internal control. ES2 NANOG
(Hs04399610_g1), OCT4 (Hs00999632_g1), SOX2 (Hs01053049_s1), RPTOR
(Hs00375332_m1) and GAPDH were amplified in a similar manner. Fold
changes were calculated by ΔΔCT between TICs and respective total
cultures and P-value calculated by unpaired t-test. These fold changes
were compared between control and PD-L1lo cells by unpaired t-test.

Statistical analysis
Statistical analyses were conducted using Prizm software (GraphPad,
La Jolla, CA, USA). Data were plotted as means± s.e.m. For tumor growth,
two-way analysis of variance plus Bonferroni post tests were used to
compare replicate means. Unpaired t-test was used for comparison
between individual means. Kaplan–Meier estimates and the log-rank test
were used to analyze survival. Po0.05 was considered significant.

RESULTS
TICs express higher PD-L1 and PD-1 versus non-TICs
We investigated TIC PD-L1 expression on B16 and ID8agg cells by
flow cytometry using well-accepted markers for each cell line13,14

(see Methods and Supplementary Figures 1 and 2). Both tumor
lines expressed PD-L1, but interestingly, PD-L1 expression on B16
(Figure 1a) and ID8agg (Figure 1b) TICs were higher than
respective non-TICs. Differential PD-L1 on TICs versus non-TICs
was more pronounced in B16 (PD-L1 mean fluorescence intensity
of control B16 TICs versus non-TICs, 4860 versus 1590; for PD-L1lo,
clone 4, 1223 versus 589 and clone 10, 2075 versus 941; for control
ID8agg, TICs versus non-TICs, 261 versus 215, PD-L1lo clone 3, 132
versus 93 and clone 6, 209 versus 161 for TICs versus non-TICs,
respectively). B16 and ID8agg PD-L1lo TICs expressed lower PD-L1
versus their respective control TICs (Figures 1a and b) further
validating the PD-L1 knockdown. B16 TICs express significant PD-1
consistent with a recent report,19 whereas B16 non-TICs express
negligible PD-1. Similarly, ID8agg TICs expressed PD-1, whereas
ID8agg non-TIC PD-1 expression was negligible. In both cell lines,
PD-1 expression was similar in control versus PD-L1lo TICs
independent of PD-L1 expression (Figures 1c and d).

Tumor PD-L1 regulates TIC numbers
We recently reported RNA-sequencing data from ID8agg cells,
suggesting that cell-intrinsic PD-L1 controls canonical signaling
pathways governing cell differentiation including mTOR. We also
showed that PD-L1lo B16 and ID8agg tumors grow slower versus
respective control cells in immune-deficient mice.3 Thus, we
hypothesized that PD-L1 signals could contribute to TIC genera-
tion as a mechanism for reduced growth kinetics and tumor-
igenicity. In vitro cultures of PD-L1lo B16 cells had significantly
fewer CD44+CD133+CD24+ TICs versus control B16 cultures
(Figure 1e), and PD-L1lo ID8agg cell cultures had significantly
fewer CD44+CD24+ TICs versus PD-L1lo ID8agg cell cultures
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(Figure 1f). Thus, tumor PD-L1 is a candidate regulator of TIC
generation in melanoma and ovarian cancer cells.

PD-L1 promotes TIC tumorosphere formation in vitro
A key functional aspect of TIC is self-renewal, studied in vitro as
tumorosphere formation.20 PD-L1lo TICs from B16 and ID8agg
exhibited significantly reduced numbers and size of tumoro-
spheres versus respective control TICs (Figures 2a and b),
consistent with defective PD-L1lo TIC self-renewal function in vitro.

PD-L1 promotes immune-independent TIC growth and virulence
in vivo
For in vivo functional assessment, control B16 TICs were
challenged into WT mice, producing tumors with significantly
shorter latency versus PD-L1lo TICs (median 70 days versus
4180 days (never reached, experiment terminated), respectively,
Figure 2c). In fact, no mouse challenged with PD-L1lo TICs formed
tumors. Confirming tumorigenicity of control TIC, challenge with
equal numbers of total cultured B16 cells did not produce
detectable tumors in WT mice during this period (not shown). As
PD-L1 can inhibit tumor rejection through immune mechanisms,21

we next challenged severely immune-deficient NSG mice with
TICs from control or PD-L1lo B16 TICs. Similar to the observations
in WT mice, tumor growth was significantly slower (Figure 2d) and
survival significantly longer (Figure 2e) in NSG mice following
PD-L1lo versus control B16 TIC challenge. Therefore, PD-L1 control
of TIC growth and virulence includes cell autonomous and
immune-independent mechanisms.

TIC PD-L1 promotes TIC self-renewal in vivo
To confirm poor self-renewal potential of PD-L1lo TICs, we
assessed in vivo serial TIC passage.20 When tumors generated in
NSG mice using TICs as above reached 1800 mm3, TICs were

sorted from them and transplanted into naive NSG, producing
control tumors with kinetics similar to the original transplant
(compare Figure 2f with Figure 2e). By contrast, serial transplant of
PD-L1lo B16 TICs from similarly produced original PD-L1lo tumors
failed to produce tumors in NSG mice even after 150 days, when
the experiment was terminated (Figure 2f). These data corroborate
poor in vitro self-renewal of PD-L1lo B16 TICs, confirm their
defective in vivo function and demonstrate additional cell
autonomous effects.
Total ID8agg control cells formed tumors significantly faster

than PD-L1lo ID8agg cells in WT mice (median survival 40 versus
76 days (Po0.0001), respectively, Figure 2g). Control ID8agg TICs
were also significantly more tumorigenic than PD-L1lo ID8agg TIC
in WT mice (P= 0.02, Figure 2h). These data confirm defective
in vivo function in B16 and ID8agg PD-L1lo TICs.

PD-L1 promotes TIC genes
To understand mechanisms for PD-L1-mediated TIC effects, we
hypothesized that PD-L1 promoted stemness gene expression. We
thus assessed the stem cell master transcription factors nanog,
sox2 and pou5f1 (oct4).22 In RNA-sequencing studies of total
cultured ID8agg, these canonical TIC genes produced too few
reads for statistics. Quantitative PCR analyses of highly purified,
sorted B16 and ID8agg TICs demonstrated that nanog and oct4,
but not sox2 message were significantly higher in control or PD-
L1lo TICs versus their respective total cultures, and significantly
lower in PD-L1lo TICs versus respective control TICs (Figures 3a and
b). In further support of PD-L1 control of stemness genes, the
ovarian cancer TIC genes cd24, cd117 (c-Kit) and lin28a23 and
additional TIC genes nes and ck18 were significantly reduced in
total ID8agg PD-L1lo versus control cells by RNA sequencing
(Supplementary Table 1). Thus, PD-L1 regulates stemness gene
expression, which is a candidate PD-L1-mediated TIC regulation
mechanism.
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Cell-intrinsic PD-L1 promotes TIC interferon-γ sensitivity
Interferon-γ is a potent PD-L1 inducer in tumor cell populations.21

B16 and ID8agg TICs expressed interferon-γ-inducible PD-L1,
which expression was blunted in PD-L1lo TIC as expected
(Figures 4a and b), and also confirming the stringent PD-L1

knockdown effect in clones. We next tested interferon-γ-mediated
growth suppression. Strikingly, control B16 TIC were more
interferon-γ-susceptible versus corresponding PD-L1lo TIC
(Figure 4c). Further, the absolute numbers of control TICs and
non-TICs were similarly reduced by interferon-γ treatment

Figure 2. PD-L1lo B16 and ID8agg TICs are functionally defective. Representative photomicrographs of tumorospheres after 14 days in culture
of B16 (a) or ID8agg (b) control (ctrl) and PD-L1lo clones. Bars equal 100 μM. Summary data below. At least six fields assessed per clone.
P-values, unpaired t-test. (c) Survival of WT mice injected with 5000 indicated, sorted TICs (n= 5–6 per group). P-value, log-rank test. (d) Tumor
growth in NSG mice injected with indicated, sorted 104 B16 TICs (n= 5 per group). P-value, two-way analysis of variance. (e) Survival of mice in
d. (f) % Survival in NSG mice injected with TICs sorted from tumors in d. P-value, log-rank test for trend. (g) Survival of WT mice injected
intraperitoneal with 4 × 106 total indicated ID8agg cells. (h) Survival of WT mice injected with 0.15 × 106 ID8agg ctrl or PD-L1lo clone 3 TIC.
P-value, log-rank test. In e–h, boxed numbers indicate median survival (days).
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(Figures 4d and e), unlike PD-L1lo TICs and non-TICs. Similarly,
control ID8agg TICs were more susceptible to interferon-γ-
mediated growth suppression versus control non-TICs, although
it required an ~ 2.5-fold higher interferon-γ concentration to
reduce ID8agg versus B16 TICs numbers (Figures 4f–h). PD-L1lo

ID8agg non-TICs were more sensitive versus control ID8agg
non-TICs to interferon-γ-mediated growth suppression, whereas in
B16, control and PD-L1lo non-TICs were approximately equally
sensitive (compare Figures 4c and f). These data suggest that
interferon-γ signals in TICs can differ from non-TICs, that cell-
intrinsic PD-L1 signals can affect interferon-γ effects in TICs and
non-TICs, but there are also quantitative as well as qualitative
tumor-specific differences that will require much additional work
to clarify.

Cell-intrinsic PD-L1 promotes TIC rapamycin sensitivity
We reported that PD-L1 promotes mTORC1 signals in B16 and
ID8agg cells.3 To test functional consequences in TICs, we cultured
cells with rapamycin, which preferentially inhibits mTORC1.24

Growth of control B16 TIC was more rapamycin-sensitive
versus corresponding control non-TICs, and in corresponding
TICs, control TICs were more sensitive than PD-L1lo TICs
(Figures 5a–c). Thus, TICs can also differ in rapamycin-
mediated growth suppression versus non-TICs and cell-intrinsic
PD-L1 can control this effect in TICs as well as non-TICs. Regulatory
associated protein of mTOR (rptor) is a positive mTOR regulator
that acts as a scaffold for mTORC1 assembly and predicts
mTORC1 activity. We used quantitative PCR of highly sort-
purified TICs to show that rptor expression was significantly
reduced in B16 PD-L1lo TICs versus respective control TICs
(Figure 5d), consistent with PD-L1-driven mTORC1 signaling in
TICs as we reported for total cultures,3 and suggesting reduced
mTORC1 dependence as an explanation for reduced rapamycin
sensitivity in PD-L1lo TICs. Similar to B16, control ID8agg TICs
were more sensitive to rapamycin-mediated growth suppression
versus PD-L1lo TICs, but in contrast to B16, non-TICs were equally
sensitive independent of PD-L1 status (compare Figures 5a–c with
Figures 5e–g). Rptor was significantly reduced in ID8agg PD-L1lo

TICs (Figure 5h) consistent with PD-L1-driven augmentation of
mTORC1 signaling, similar to mTORC1 augmentation in B16 TICs
(Figure 5d).

Tumor cell-intrinsic PD-L1 controls TIC numbers in human ovarian
cancer cells
To assess human relevance of our data, we studied ES2 human
ovarian cancer cells. We previously showed that these are PD-L1+,
and that PD-L1lo ES2 cells proliferated more slowly in vitro versus
control ES2.3 ALDH1hiCD133+ is an accepted human ovarian
cancer TIC phenotype.15,16 As we found that ES2 cells expressed
negligible CD133 by flow cytometry (not shown), we used ALDHhi

expression to identify ES2 TICs in vitro. Control ES2 TICs expressed
higher PD-L1 versus control non-TICs (PD-L1 mean fluorescence
intensity 6300 versus 5437. In contrast to murine cells, PD-L1
expression in TICs was not different versus non-TICs PD-L1lo clone
1, 912 versus 921 and clone 2, 1826 versus 1860 for TICs versus
non-TICs, respectively; Figure 6a; Supplementary Figure 3). Further
contrasting with mouse cell lines, PD-1 expression by flow
cytometry was weak on control and PD-L1lo TICs and non-TICs
(Figure 6b). Nonetheless, cell-intrinsic PD-L1 controlled ES2
ovarian cancer TIC numbers in vitro (Figure 6c) as seen in mouse
cells (Figures 1e and f).

Cell-intrinsic PD-L1 controls tumorosphere formation and SOX2 in
human ES2 ovarian cancer cells
To assess TIC self-renewal function effects of PD-L1, we found that
ES2 TIC cell-specific PD-L1 promoted tumorosphere formation
in vitro as evidenced by significantly more numerous and bigger
spheres than those formed by PD-L1lo TIC (Figures 6d–f). As an
alternative for ES2 TIC identification, CD44+CD24− ES2 cells are
also reported to have stem cell properties.16 We sorted CD44+

CD24− ES2 cells and showed that tumorosphere formation was
also defective in PD-L1lo versus control TICs defined this way
(Figures 6g and h) consistent with the concept that cell-intrinsic
PD-L1 in human ES2 cells controls self-renewal. Further, when we
injected ALDHhi TICs sorted from ES2 control or PD-L1lo cultures
into immunodeficient NSG mice, survival was significantly reduced
in control versus PD-L1lo TIC challenge (Figure 6i), consistent with
reduced TIC tumorigenicity function of PD-L1lo ES2 TICs in vivo.
ES2 TICs overexpress the canonical stem cell genes SOX2 and
OCT4.16 We sorted ALDHhi ES2 TICs and used quantitative PCR to
show that expression of SOX2 (Figure 6j), but not OCT4 or NANOG
(Supplementary Figure 4), was significantly reduced in PD-L1lo ES2
TICs versus control TICs, but SOX2 in control or PD-L1lo TICs was
higher than in respective total cultures. Thus, PD-L1 in human ES2
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ovarian cancer cells recapitulates important TIC features and
functions seen in the murine cell lines, although PD-L1 influences
different stemness genes in these distinct cellular contexts.

Tumor-intrinsic PD-L1 regulates interferon-γ and rapamycin
responsiveness in human ES2 ovarian cancer cells
Finally, we investigated the sensitivity of ES2 TIC to growth
inhibition by interferon-γ and rapamycin. Control ES2 TICs and
non-TICs were more sensitive than respective PD-L1lo TICs and
non-TICs to growth suppression by interferon-γ (Figures 7a–c).
PD-L1 similarly rendered ES2 TICs sensitive to rapamycin-mediated
growth inhibition. By contrast to ES2 TIC effects, PD-L1 inhibited
non-TIC rapamycin-mediated growth inhibition (Figures 7d–f).
mTORC1 signals were reduced comparably to PD-L1lo B16 and
ID8agg as assessed by RPTOR gene expression levels (compare
Figure 7g with Figures 5d and h).

DISCUSSION
Mechanisms regulating TIC generation, proliferation and virulence
remain incompletely understood. As the initial observation that
tumor cell-expressed PD-L1 (B7-H1) can kill T cells,1 the focus
of PD-L1 effects on tumor immunopathology has been on
cell-extrinsic inhibitory signals to PD-1+ T cells.1,2,17,25 We recently
reported that tumor PD-L1 regulates cell autonomous immune-
independent tumor growth, mTOR and autophagy in melanoma
and ovarian cancer cells.3 In this study, we show additional
significant, previously unrecognized effects of tumor-intrinsic
PD-L1 on TIC generation, proliferation, canonical TIC gene
expression and treatment responses differing from known tumor
extrinsic PD-L1 effects, and demonstrate their human relevance.
PD-L1 is expressed by cancer stem cells in human glioma,7

squamous cell carcinoma of the head and neck,9 and colon cancer
where PD-L1 was higher than non-stem cells,8 but a mechanistic
relationship between PD-L1 and stem cell generation or function
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was not defined. We show here that TICs express higher PD-L1
levels than non-TICs in mouse melanoma and mouse but not in
human ovarian cancer. This cell-intrinsic PD-L1 controlled
numbers of TIC generated in vitro in mouse B16 melanoma and

ID8agg ovarian cancer cells, and in human ES2 ovarian cancer
cells. Thus, this novel capacity of cell-intrinsic PD-L1 to promote
TICs is not confined to a single tumor type and is also relevant to
human cancer. The significance of higher PD-L1 expression in
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some TICs versus non-TICs is uncertain, but could relate to
additional TIC-specific signaling in differing tumor cell types. In
human head and neck cancers, cancer stem cells defined solely by
CD44 expression and sorted into PD-L1+ and PD-L1− populations
effected comparable tumorigenicity in NSG mice, whereas PD-L1+

stem cells elicited more evidence for T-cell dysfunction in vitro
versus PD-L1− stem cells.9 By contrast, we show here that PD-L1lo

TICs in melanoma and ovarian cancer had poor tumorigenicity in
immune sufficient and immune-deficient mice, thus confirming
that TIC-intrinsic PD-L1 has unexpected TIC growth promoting
effects in melanoma and ovarian cancer cells, in addition to
anticipated immune evasive effects. PD-L1 mediates an immune
evasive role in all cancers and TIC tested thus far. The lack of clear
PD-L1-mediated immune-independent TIC growth promotion in
head and neck cancers that contrasts with our data in melanoma
and ovarian cancer cells suggests that cell-intrinsic PD-L1 growth
promotion also depends on tumor-specific properties yet to be
defined, an area worthy of additional study. The above mentioned
study tested fewer mice and assessed one dose of TICs, which
could help explain the divergent outcomes.
We recently showed that in total B16 and ID8agg cell cultures,

tumor PD-L1 promoted tumor cell proliferation and mTORC1
activation.3 We show here that PD-L1 increased the mTORC1
component rptor in B16 and ID8agg TIC, and also in human ES2
TIC, consistent with increased mTORC1 signals. The preferential
mTORC1 inhibitor rapamycin reduced control (PD-L1 replete) B16,
ID8agg TIC numbers in vitro with significantly diminished effects
on PD-L1lo TIC, consistent with the concept that PD-L1-driven
mTORC1 promotes TIC generation in these cells. TIC PD-L1 also
sensitized human ES2. TICs are considered to be treatment
resistant, but we show that TIC PD-L1 sensitizes TICs to the small-
molecule mTORC1 inhibitor rapamycin. This observation deserves
additional exploration, including assessing other mTORC1 or dual
mTORC1/2 inhibitors. Our data predict that efficacy of αPD-L1 in
PD-L1+ tumors for which αPD-L1 is most likely to be effective26,27

could be enhanced in some cases when combined with an
appropriate mTOR inhibitor.
Interferon-γ-induced PD-L1 regulation is well known.27 Thus, as

expected, interferon-γ augmented TIC PD-L1 expression. However,
we show here that PD-L1 also appears to alter interferon-γ signals,
as TIC PD-L1 unexpectedly sensitized murine B16 and ID8agg TICs,
and human ES2 TICs, to interferon-γ-mediated growth suppression

in vitro. These data demonstrate the first TIC immune-sensitizing
mechanism to our knowledge. In adaptive immune resistance, the
incoming immune response, including interferon-γ, makes the
tumor resist further immune attack.28 TIC PD-L1 might suppress
anti-tumor T-cell responses as seen in studies of total tumors1,21

and head and neck cancer TIC,9 yet TIC PD-L1 could render them
more vulnerable to immune-mediated clearance. This complexity
requires much additional study to understand in which TIC their
PD-L1 alters immune effects on tumor and to optimize
immunotherapy treatment strategies. For example, our work
suggests that αPD-L1 plus interferon-γ, T cells producing
interferon-γ (such as TIC-targeting CAR T cells) or perhaps
interferon-α are strategies for further testing in TICs in which
PD-L1 sensitizes them to interferon-γ-mediated growth inhibition.
In assessing mechanisms for TIC generation, we found that PD-

L1 signals promoted canonical stemness gene expression. In
mouse B16 melanoma and ID8agg ovarian cancer cells, PD-L1
augmented expression of oct4 and nanog, but not sox2. By
contrast, PD-L1 promoted SOX2 but not OCT4 or NANOG in human
ES2 ovarian cancer cells. These data are consistent with the notion
that PD-L1-driven stemness gene expression is a mechanism for
its capacity to generate TIC. Our data further suggest that the
specific stemness genes driving TIC depend on the tumor, likely
reflecting differing mutational landscapes in ovarian cancers
versus melanomas,29,30 and also helping understand the many
cell-specific outcomes, we define here in regards also to
rapamycin and interferon-γ sensitivity. Mechanisms for how
PD-L1 alters gene expression requires further study. Effects are
transcriptional, as evidenced by reduced canonical stem cell gene
message in PD-L1lo TICs we show here and in our recent work on
non-TICs;3 however, how PD-L1 effects transcriptional control
remains to be defined. Regulation could also be through mTOR-
related translational effects.31 Understanding these specific
mechanisms could define novel means to reduce TIC generation.
PD-1, a major PD-L1 receptor, was recently shown to regulate

cell-intrinsic and immune-independent melanoma growth in
mouse and human melanoma cells.10 B7-H3, such as PD-1 and
PD-L1, is an immunoglobulin superfamily member. These three
molecules all exert tumor cell-intrinsic effects, including regulating
tumor mTOR, its regulators or its targets.3,10,32 As mTOR could
have a critical role in TIC generation,33 the concept that tumor cell-
intrinsic immunoglobulin superfamily members exert related,
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important signaling effects in cancer immunopathogenesis or
treatment responses merits much additional attention.
In summary, we show that tumor PD-L1 effects are considerably

broader than simply blunting PD-1+ anti-tumor T-cell activities and
suggest many additional avenues for investigations of tumor
immunopathogenesis, treatment approaches and potentially
treatment responses. Given the virulence and treatment resistance
of TIC, such studies could also help develop successful new
treatment approaches that specifically target TICs. Finally, immune
checkpoint molecules in the immunoglobulin superfamily could
have common tumor cell-intrinsic properties that will expand our
understanding of their contributions to cancer pathogenesis and
provide insights into effective cancer treatments.
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