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Abstract
Many seminal advances have been made in human immunodeficiency virus (HIV)/AIDS research over the past four decades.
Treatment strategies, such as gene therapy and immunotherapy, are yielding promising results to effectively control HIV infection.
Despite this, a cure for HIV/AIDS is not envisioned in the near future. A recently published academic study has raised awareness
regarding a promising alternative therapeutic option for HIV/AIDS, referred to as “selective elimination of host cells capable of
producing HIV” (SECH). Similar to the “shock and kill strategy,” the SECH approach requires the simultaneous administration of
drugs targeting key mechanisms in specific cells to efficiently eliminate HIV replication-competent cellular reservoirs. Herein, we
comprehensively review the specific mechanisms targeted by the SECH strategy. Briefly, the suggested cocktail of drugs should
contain (i) latency reversal agents to promote the latency reversal process in replication-competent reservoir cells, (ii) pro-apoptotic
and anti-autophagy drugs to induce death of infected cells through various pathways, and finally (iii) drugs that eliminate new cycles
of infection by prevention of HIV attachment to host cells, and by HIV integrase inhibitor drugs. Finally, we discuss three major
challenges that are likely to restrict the application of the SECH strategy in HIV/AIDS patients.
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Introduction

Forty years after its official emergence, the human
immunodeficiency virus (HIV) pandemic remains a major
public health burden globally. Initially, HIV infection was
considered to be inevitably lethal as there was no effective
treatment for HIV disease available at the time, and thus
most HIV infections unavoidably resulted in death. After
the discovery and widespread implementation of antire-
troviral therapy (ART), HIV infection has subsequently
evolved into the status of a chronic infectious disease, with
affected patients on appropriate therapeutic drugs
expected to live a relatively conventional lifespan.[1]

Nevertheless, HIV management through ART requires
lifelong drug treatment,[2] which may potentially be cost-
effective,[3] but can often be toxic to vital organs such as
the kidneys,[4] the liver,[5] the central and peripheral
nervous system,[6] and the heart.[7] In addition, even if the
use of ART results in the successful suppression of HIV
viral load, an interruption or cessation of ART treatment
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without elimination of dormant HIV provirus from the
genomes of infected cells inevitably leads to HIV viral
rebound.[8] Indeed, HIV gene integration into the host
genome is the major challenge to curing HIV infection, as
this results in the establishment of HIV reservoirs within
infected patients.[9]

The persistence of non-functional provirus, referred to as
“fossils” in the cells of the Berlin patient and the London
patient, has also been reported.[10,11] “Fossils” confirm
that only reservoirs harboring functional provirus are
likely to be of concern. Both patients mentioned above
received allogeneic bone marrow transplants from a
naturally mutated CCR5 gene (CCR5 delta 32) donor.
The strategy consisted of replacing their immune cells
(using whole-body irradiation and chemotherapy) with
those of the donor that are capable of blocking HIV
replication. This is a painful, expensive, and complicated
exercise and is restricted by the limited size of the donors’
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immune cell population. Besides bone marrow transplant
(which is not a viable option on any kind of scale), other
strategies have been tested and two options are particularly
interesting. The first is the “shock and kill” concept,[12]

where the “shock” consists of using drugs to reactivate
functional latent provirus concealed in reservoir cells.
These latent reservoirs thereafter display viral antigens,
which in turn trigger appropriate immune responses
against latently infected cells.[13] These reactivated cells
can thus potentially be targeted and killed by the body
immune system or by anti-HIV drugs. However, one of the
major disadvantages of the “shock and kill” strategy is the
fact that no trial has as yet demonstrated changes in the size
of the latent reservoir[14,15] as it may not be realistic to rely
solely on the immune system and anti-HIV drugs to
eliminate all HIV-infected cells in an HIV-infected person.
The second is the “block and lock” approach, which aims
to permanently silence all provirus, even after treatment
interruption. Using this strategy, several mechanisms
acting on different factors of HIV transcription could be
targeted such as trans-activator of transcription (TAT)
inhibition by didehydro-cortistatin A and Janus Kinase/
Signal transducer and activator of transcription inhibitors,
facilitates chromatin transcription inhibition by Curaxin
CBL0100, and mechanistic target of rapamycin (mTOR)
inhibition, to list a few. However, the “block and lock”
strategy does not seem to be an ultimately viable means to
cure HIV infection, as it is challenging to permanently and
irretrievably silence all provirus.[16]

In this article, we review the concept of selective
elimination of host cells capable of producing HIV
(SECH), which has been recently demonstrated in vitro
Figure 1: Principle of inducing total HIV remission with a therapeutic cocktail. Via oral or injectab
elimination of HIV-infected cells harboring replication competent provirus, and (iii) new infectio
(green) or remain cells harboring non-functional provirus (purple). Progressively, infected cells
immune system and other drugs (pro-apoptotic and anti-autophagy), and eventually, only the
therapy; HIV: Human immunodeficiency virus; SECH: Selective elimination of host cells capab
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and in vivo.[17] Compared with the “shock and kill” and
the “block and lock” strategies, the SECH technique
includes pro-apoptotic agents and autophagy inhibitors to
provide greater benefits in terms of eliminating HIV-
infected cells, and thus could provide permanent remission
from HIV infection. We believe that the SECH approach
could help to develop effective future interventions to cure
HIV infection via the use of a therapeutic cocktail of drugs.
This cocktail, based on our review of contemporary
literature, should contain drugs promoting (i) the latency
reversal process, (ii) autophagy inhibition, (iii) apoptosis
activation in infected cells, and (iv) inhibition of new
infections. Herein, each of these mechanisms is compre-
hensively reviewed.We also discussmajor challenges to the
practical utilization of the SECH strategy.
Concept of SECH

It has been postulated that the most successful therapeu-
tic approach to efficiently inhibit HIV-1 replication
would be a cocktail of inhibiting agents, which block
infection at several points, including potential escape
pathways.[18] Using the SECH strategy, we also reinforce
the premise that the most promising therapeutic
approach to cure HIV will likely be a cocktail of drugs
(administered via the oral or the parenteral route)
[Figure 1] exerting their combined widespread influence
on key viral mechanisms.

In a recent academic publication, the concept of SECHwas
proffered and discussed, providing constructive informa-
tion regarding how HIV infection could be cured in the
future.[17] The SECH concept involves the elimination of
le administration, the patient receives specific drugs causing (i) latent reservoir reversal, (ii)
n inhibition. Latent reservoirs (red) are converted into active cells producing HIV particles
with functional provirus are eliminated over time through the conventional action of the
non-functional provirus-infected cells remain at the end of treatment. ART: Antiretroviral
le of producing HIV.
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Figure 2: Overview of the key steps through which a therapeutic drug cocktail would engage. Using LRAs, cells with latent reservoirs are converted to latency-reversed cells actively
producing HIV particles. On the other hand, cells harboring non-functional provirus remain inactive (fossils) and are not of concern (A). Thus, latency-reversed cells together with other
infected cells exhibiting HIV replication are eliminated using pro-apoptotic drugs and autophagy inhibitors (B). To avoid a new cycle of infection, the therapeutic cocktail should contain an HIV-
cell attachment inhibitor and an HIV integration inhibitor (C). The aftermath of this process is the elimination of HIV reservoirs, interruption of new infections, and progressive clearance of HIV
particles from the body, resulting in total remission in the patient. HIV: Human immunodeficiency virus; LRAs: Latency reversal agent.
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host cells harboring HIV-1 provirus through viral
reactivation, induction of apoptosis, inhibition of autoph-
agy, and blocking of new infections. Indeed, Li et al[17]

advised that SECH treatments could contain (i) a latency
reversal agent (LRA) acting as non-tumorigenic protein
kinase c (PKC)-e activator,[19]viz., ingenol-3,20-diben-
zoate (IDB, at 2.5 mg/kg b.w.), (ii) an apoptosis inducer
which inhibits B-cell lymphoma 2 (BCL-2) and B-cell
lymphoma-extra-large (BCL-XL),[20]viz., ABT-263 (50
mg/kg b.w.), and (iii) an autophagy inhibitor that prevents
autophagy initiation by suppressing Class III PI 3-kinase
(VPS34),[21]viz., SAR405 (50 mg/kg b.w.). This therapeu-
tic cocktail was formulated in a solvent mixture of 10%
ethanol, 30% polyethylene glycol 400, and 60% Phosal 50
PG for administration to HIV-infected mice via oral
gavage. An integrase strand transfer inhibitor (raltegra-
vir)[22] and an attachment inhibitor (BMS-663068, 20 mg/
kg b.w.)[23] were also included as a daily ART regimen.
After 40 cycles of treatment (once every 2 days equating to
one cycle) followed by 2 months of ART treatment
withdrawal, >50% (8 out of 15) of treated mice were
functionally cured. Furthermore, the above study group
included Thienotriazolodiazepine (JQ1) (an inhibitor of
the Bromodomain and extra-terminal motif family of
bromodomains that can promote the reactivation of HIV-
1[24]) in the SECH cocktail. The results revealed that 10 of
13 (77%) mice showed no virus rebound when JQ1 was
included in the SECH treatment regimen. Most impor-
tantly, no HIV-1 production was detected in the spleen or
bone marrow cells from these newly HIV-1-negative mice.
In vitro experiments with HIV-positive patients’ infected
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cells revealed that SECH treatments killed infected T cells
but not uninfected T cells. These findings indicate that HIV
infection may be curable using a combination of specific
drugs [Figure 2] targeting specific cellular mechanisms.

Mechanisms of the SECH strategy

HIV reservoir latency reversal and LRAs

HIV infection can currently be effectively controlled with
modern ART, and ART use is also capable of blocking the
transmission of HIV from one person to another. ART
drugs target different specific steps of the HIV viral
replication cycle, such as reverse transcription, viral entry,
integration, and viral budding in all infected host cells,
except for those cells that are latently infected.[9] Although
other cell types contribute to the HIV reservoir, Cluster of
differentiation 4 (CD4)+ T cells are believed to be one
of the main latent reservoirs.[25,26] To eliminate these
reservoirs, several strategies resulting from core concepts
were developed. Among them, there is the well-recognized
“shock and kill” strategy.[12] The “shock” in this strategy
consists of using drugs called LRAs to reactivate latent HIV
concealed within immune cells. These LRAs can efficiently
promote viral protein expression through several distinct
mechanisms, such as relieving repressive epigenetic
modifications or supplying host transcription factors
and other cellular factors necessary for viral gene
expression. The latent reservoir then may express viral
antigens, which in turn trigger immune responses against
latently infected cells.[13] These reactivated cells can thus be
identified and neutralized by the body immune system.
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Table 1: Classes of HIV-1 provirus latency reversing agents.

Class Type Examples of LRAs Target
∗

References

Cytokines/receptor agonists IL IL-2, IL-7, IL-15 [31]

TCR/Co-receptor activators Maraviroc [32]

TLR agonists TLR2, 3, 7, 8, 9
agonists

[33]

Epigenetic modifiers HDAC inhibitors Vorinistat,
panobinostat, AR-42,
MS-275, chidamide

HDAC1, 2, 3 [34-38]

Histone methyltransferase
inhibitors

Chaetocin, AZ505 Suv39H1, SMYD2 [39,40]

Intracellular signaling
modulators

PKC agonists Ingenol EK-16A,
gnidimacrin,
bryostatin, SUW133,
PEP005/Inge-nol-3-
angelate, Prostratin,
Bryostatin-1, IDB

NF-kappaB [41-43]

AMPK activators Dibutyryl-cAMP [44]

JAK/STAT agonists Benzotriazole, benzazole STAT3 [45,46]

IAP agonists Debio1143 NF-kappaB (non-canonical) [47]

Transcriptional elongation
regulators

BET inhibitors JQ1, MMQO, UMB-
136, RVX-208, PFI-1,
OTX015

TAT/pTEFB [48,49]

CDK9 activators Chalcone, Amt-87 pTEFB [50,51]

Unclassified Anti-oxidant Auranofin NF-kappaB [52,53]

AKT modulators Disulfiram, 57704 [54,55]

S1P1 agonist SEW2871 NF-kappaB [56]

Protein phosphatase 1 SMAPP1 pTEFb [57]

SMAC mimetics SBI-0637142 NF-kappaB [58]

∗
HIV LTR-associated transcription factor stimulated by the LRA. AKT: Protein kinase B; AMBK: AMP-activated protein kinase; BET: Bromodomain

and extra-terminal motif; CDK9: Cyclin-dependent kinase 9; HDAC: Histone deacetylase; HIV: Human immunodeficiency virus; IAP: Inhibitor
of apoptosis; IDB: Ingenol-3,20-dibenzoate; IL: Interleukins; JAK/STAT: Janus Kinase/Signal transducer and activator of transcription; JQ1:
Thienotriazolodiazepine; LRA: Latency reversal agent; LTR: Long terminal repeat;MMQO: 8-methoxy-6-32methylquinolin-4-ol; NF-kappaB: Nuclear
factor kappa light chain enhancer of activated B cells; PPKC: Protein kinase C; pTEFb: The positive transcription elongation factor; S1P1: Sphingosine-1-
phosphate receptor 1; SMAC: Secondmitochondria-derived activator of caspases; SMAPP1: Small molecule activator of protein phosphatase 1; SMYD2:
SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) andMYND (myeloid-nervy-DEAF 1) domain containing 2; STAT3: Signal transducer and
activator of transcription 3; Suv39H1: Suppressor of variegation 3–9 homolog 1; TCR: T-cell receptor; TLR: Toll-like receptor.
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Both (SECH and “shock and kill”) strategies involve the
reactivation of latently infected cells by using LRAs.

LRAs are small molecules that induce the expression of
HIV-1 in latently infected cells.[27] Thus, latent reservoirs
display viral antigens, which in turn trigger their
elimination by virus-mediated cytopathogenesis or im-
mune-mediated removal by natural killer (NK) or Cluster
of differentiation 8 (CD8)+ T cells. The latent HIV genome
responds to multiple signaling pathways downstream of
the T-cell receptor in addition to a variety of cytokines and
innate immune stimuli.[28] For example, it has been
reported that the enhancer of the HIV-1 long terminal
repeat (LTR) binds many transcriptional activator pro-
teins.[29] In addition, it has been revealed that the viral
trans-activator TAT, which promotes transcriptional
elongation from the core promoter, recruits the Positive
transcription elongation factor complex, phosphorylates
the RNA polymerase II C-terminal repeat domain, and
inhibits the pausing factors Negative elongation factor and
DRB Sensitivity Inducing Factor.[30] Regarding the multi-
tude of potential targets for positive regulation, it is
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obvious that a large variety of chemical interventions
would be capable of producing elevated expression from
the LTR. According to the “shock” concept, five classes of
LRAs have been reported [Table 1].
Autophagy, HIV, and autophagy inhibitors

Autophagy is defined as the catabolic mechanism by which
intracellular components are delivered to the lysosome for
degradation.[59] Of note, macroautophagy is characterized
by the formation of autophagosomes which enfold
intracellular components and fuse with lysosomes to
allow their degradation.[59] On the other hand, micro-
autophagy is described as the process which captures target
materials through the invagination of membranes of the
endo-lysosomal compartment.[60] Several publications
have extensively highlighted the implications of autophagy
in (i) maintaining homeostasis,[61,62] (ii) contributing to the
innate immune response through multiple mecha-
nisms,[63,64] and (iii) participating in the survival and
function of B- and T cells, and lymphoid progenitors.[63]
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Macroautophagy-related genes (ATGs) were first identi-
fied in yeasts by Yoshinori Ohsumi, who was awarded the
2016 Nobel Prize in Physiology or Medicine. Thus far,
macroautophagy is the best characterized form of
autophagy and is hereafter referred to as autophagy.
Depending on the ATG proteins, different steps of
autophagy may be noted. By triggering Class III PI3K
VPS34 to generate phosphatidylinositol 3-phosphate
(PI3P), Beclin-1 (the ortholog of the yeast ATG6) can
launch autophagosome formation.[65] Then, the phago-
phore (autophagy machinery required for assembling the
autophagosomal membrane precursor) is recruited via
PI3P signaling.[66] Most importantly, Beclin-1 operates in
tandem with ATG14 and VPS15 proteins while its activity
is balanced by several positive and negative regulators,
such as Ambra-1 and BCL-2, respectively.[62] It has been
demonstrated that several ATGs, including ATG9 and
LC3 (the ortholog of the yeast ATG8), control the
expansion and closure of the nascent autophagosome.[67]

Finally, formed autophagosome fusion to the lysosome is
monitored by a different Beclin-1 complex with UV
radiation resistance-associated gene protein (UVRAG)
replacing ATG14 which acts in tandem with RAB proteins
(ex RAB7), SNARE proteins (ex Syntaxin 17), and the
HOPS-tethering complex.[68] LC3 implication in the
selection of the cargo to be degraded has been pointed
out in the literature. Essentially, it interacts with a series of
autophagy receptor proteins (p62, NBR1, NDP52, and
OPTINEURIN), which bind ubiquitinated or glycosylated
proteins.[69]

The process is induced by different upstream signals,
mostly from Beclin-1 complex or indirectly through the
upstream kinase Unc-51 like autophagy activating kinase 1
(the ortholog of yeast ATG1), depending on the stress
stimulus.[62] During infections, autophagy is triggered by
several immune-related signaling pathways activated by
inflammatory cytokines and pattern recognition receptors
(PRRs).[70] In the same context, kinase TAK1[71] and the
E3 ubiquitin ligase TRAF6[72] have been shown to be the
signal transduction proteins that mediate autophagy
induction by inflammatory cytokines and PRRs, including
toll-like proteins, nucleotide oligomerization domain-like
proteins, C-type lectin receptors, RIG-I (retinoic acid-
inducible gene I)-like proteins, and cGAS/STING.

From recently published investigations into SECH, it
appears that inhibition of autophagy plays a major role in
eliminating HIV-1 infected cells. Therefore, it is of
fundamental importance to further explain the complex
relationship between HIV and autophagy.

The complexity of the relationship between HIV and
autophagy is well documented.[73-75] For instance, it is well
known that HIV, to execute early replication steps,
depends on autophagy. However, HIV also develops
multiple strategies to avoid the recognition and degrada-
tion of newly synthesized viral particles.[76] Furthermore, it
appears that ATG7, gamma-aminobutyric acid receptor-
associated protein-like 2, ATG12, and autophagy-related
16-like 2 are required for productive HIV infection.[76]

Another study demonstrated that the autophagosome may
provide membrane support for viral replication, as HIV
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group-specific antigen precursor was found to interact
with the autophagosome protein LC3.[77] Moreover,
researchers have shown that negative factor (Nef) interacts
with Beclin-1 to inhibit autophagosome maturation[77,78];
this step is under the monitoring of the UVRAG-containing
Beclin-1 complex. Curiously, the interaction between Nef
and Beclin-1 mimics the function of glioma pathogenesis-
related protein 2, a host autophagy inhibitor that
sequesters Beclin-1 on the Golgi apparatus. In 2015, the
Nef/Beclin-1 interaction was shown to be responsible for
inhibition of autophagy at the transcriptional level, by
preventing the nuclear translocation of the pro-autophagic
transcription factor EB in an mTOR-dependent man-
ner.[73] This said we believe that HIV not only alternates
autophagy activation[79] and inhibition[73,74,80] to avoid its
antiviral and immune properties,[73,76-78] but also to avoid
cell stress,[62,76] which could eventually lead to the cell
death. As long as the cell remains viable, HIV replication
continues. The inhibition of such a process has been
proven to be damaging for cells in general,[61] and cells
infected with active provirus become highly sensitive, with
a nearly zero survival rate, as demonstrated recently.[17]

This is the reasoning behind why autophagy inhibitors
should be included in HIV treatment protocols upon
diligent investigation of reasonable dosage formulations
and assessment of appropriate information regarding their
safety.

With regards to the potential role of autophagy in many
diseases, several studies have been conducted to develop
therapeutic agents that inhibit autophagy. However, to
date, the autophagy process remains difficult to measure
and quantify. For instance, an accumulation of autopha-
gosomes does not necessarily demonstrate an increase in
autophagy itself but may simply imply that autophagy is
blocked at a late stage.[81] Contemporary literature has
reported several potential inhibitors of autophagy. In
[Table 2], we present a list of the best-characterized
autophagy inhibitors based on their target.
Apoptosis in the latency-reversed HIV reservoir

Apoptosis is a process that inevitably leads to the death of
the cell,[103] and relies on two well-understood activation
mechanisms, the intrinsic and the extrinsic pathways.
While the intrinsic pathway is activated by intracellular
signals generated when cells are stressed and depend on the
release of proteins from the intermembrane space of
mitochondria, the extrinsic pathway, on the other hand, is
activated by extracellular ligands binding to cell-surface
death receptors, which leads to the formation of the death-
inducing signaling complex.[103]

The intrinsic pathway is also referred to as the mitochon-
drial pathway. Indeed, during apoptosis, cytochrome c is
released from mitochondria through the actions of the
proteins BCL-2-associated X protein (BAX) and BCL-2
homologous antagonist/killer (BAK).[104] It then binds
with apoptotic protease activating factor-1 and adenosine
triphosphate, which subsequently binds to pro-caspase-9
to create the apoptosome. The latter cleaves pro-caspase to
its active form of caspase 9, which in turn cleaves and
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Table 2: List of autophagy inhibitors.

Type of inhibitors Target Examples References

Proximal inhibitors
∗

PI3K 3-Methyladenine [82,83]

Wortmannin [84]

LY294002 [85]

PT210 [81,86]

GSK-2126458 [87]

VPS34 Spautin-1 [88,89]

SAR405 [21]

Compound 31 [90]

VPS34-IN1 [91]

PIK-III [92]

ULK Compound 6 [93]

MRT68921 [94]

SBI-0206965 [95]

Late inhibitors† Proteases Pepstatin A [96]

E64d [96]

V-ATPase Bafilomycin A1 [97]

Lysosomes Clomipramine [98]

Lucanthone [99]

Chloroquine [99]

Hydroxychloroquine [99]

Lys05 [100]

ARN5187 [101]

Compound 30 [102]

∗
Proximal inhibitors target proteins or pathways involved in the initial steps of the core autophagy machinery. †Late inhibitors act on the later stages of

the autophagy process, that is, the degradation of autophagosome content by lysosomes. ATP: Adenosine triphosphate; V-ATPase: Vacuolar-type
ATPase; VPS34: Class III PI 3-kinase.
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activates pro-caspase into the effector caspase 3, which
proteolytically degrades a host of intracellular proteins to
carry out the cell death program. The mitochondrial
pathway can also be initiated when mitochondria release a
second mitochondria-derived activator of caspases
(SMACs) into the cytosol. SMACs bind to the proteins
that inhibit apoptosis (IAPs), thereby deactivating the IAPs
to allow apoptosis to proceed. The degradation of the cell
is, thence, carried out by a group of cysteine proteases
called caspases that are normally suppressed by IAPs.[105]

It has been reported that the extrinsic pathway is induced
by the tumor necrosis factor (TNF) path[106-108] and FAS
path,[109,110] both involving receptors of the TNF receptor
family.[109] After the activation of this pathway, a balance
among proapoptotic BAX,[111] BH3 interacting-domain
death agonist (BID), BAK, or BCL-2-associated agonist of
cell death (BAD), and anti-apoptotic (BCL-XL and BCL-2)
members of the BCL-2 family are established. Proapoptotic
proteins render the mitochondrial membrane permeable
for the release of caspase activators such as cytochrome c
and SMAC, which promote apoptosis[109,110] as described
above.

From the results of Li et al[17], we know that promotion of
apoptosis leads to clearance of the latency-reversed HIV
reservoir. For instance, treatment with IDB did not change
the expression of anti-apoptotic BCL-2 but increased the
expression of anti-apoptotic BCL-XL and Mcl-1 in CD4+

T cells with or without HIV-1 infection. However, BCL-
XL expression in HIV-1-infected cells was greater than
2781
that in uninfected controls. It becomes obvious that HIV in
infected cells, through overexpression of anti-apoptotic
BCL-XL, for example, tends to keep infected cells viable to
promote viral particle production. Consequently, using an
inhibitor of BCL-XL may trigger cell death and terminate
the HIV life cycle. This has been demonstrated as well, as
administration of ABT-263 (an inhibitor of BCL-2 and
BCL-XL) increased IDB-mediated cell death in latently
infected T cells. Matsuda et al[112], demonstrated that
Benzolactam-related compounds exhibit latency-reversing
activity, which was followed by the enhanced release of
HIV particles in ACH-2 and J-Lat cells latently infected
with HIV. One of these compounds, referred to as BL-V8-
310, displayed activity that was superior to the activity of
another highly active PKC activator, pro-stratin. These
observations were confirmed with peripheral blood cells
from HIV-infected patients. Furthermore, it was observed
that Benzolactam-related compounds up-regulate the
expression of caspase 3 and enhance apoptosis, specifically
in latently HIV-infected cells. This implies that instead of
two drugs with distinct mechanisms of action (1 LRA
plus 1 apoptosis inducer), BL-V8-310 alone may be
enough to induce apoptosis. BL-V8-310 tested alone was,
however, more toxic compared with its combination
regimen with JQ1, which further enhanced HIV latency-
reversing activity.

Thus, induction of apoptosis in cells harboring HIV
reservoirs is essential to cure HIV, as apoptosis promotes
reservoir decay, and ultimately there will be no more host
cells available capable of replicating the virus. The
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Table 3: List of approved Integrase inhibitors with reported in vivo and in vitro testing.

Integrase inhibitor
In vitro efficacy

(nmol/L) In vivo dosage References

Cabotegravir 3 400 mg (or 200 mg split injection once a month) [126,127]

Dolutegravir 0.51–2 50 mg per day [128,129]

Bictegravir 1.5–2.4 Available in clinics as single-tablet fixed-dose
combination of bictegravir 50 mg,
emtricitabine 200 mg, and tenofovir
alafenamide 25 mg (Biktarvy)

[130,131]

Elvitegravir 0.7–1.5 Available in clinics as single-tablet fixed-dose
combination of elvitegravir 150 mg, cobistat
150mg, emtricitabine 200 mg, and tenofovir
alafenamide 25 mg (Genvoya)

[132,133]

MK-2048 1.5–2.6 30 mg once daily [134,135]

Raltegravir 2–7 400 mg twice per day [136,137]

INI: Integrase inhibitor.
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remaining challenge is to preclude infection of naive cells
by HIV particles present in the bloodstream.
Blocking the occurrence of new infections

This last and as-important step should be carried out
rigorously to avoid potential new infections and eventual
establishment of newHIV reservoirs. Since it is known that
HIV needs, first, to attach to target cells before initiating its
penetration, molecules especially adept at blocking
attachment are required at this stage. Several options
exist, such as using soluble CD4 antigen as a competitive
inhibitor of receptor binding,[113] inhibitors of gp120
binding to cellular CD4+ antigen,[114] inhibitors of gp120
binding to the chemokine receptor,[115] prevention of
gp41/gp120 conformational change,[116] blocking expo-
sure of the fusion domain,[117] and the blocking of the
fusion event (gp41 bundle formation).[118] It has previous-
ly been demonstrated that piperazine derivatives are potent
inhibitors of HIV-1 attachment, and interfere with the
interaction of viral gp120 with the host cell receptor, CD4
+.[119] In addition, HIV attachment inhibitor BMS-
626529, the active component of the prodrug BMS-
663068, has shown excellent results in vitro[120] and
in vivo,[17] with proven safety when administered to
individuals.[121] Furthermore, chloroquine and hydroxy-
chloroquine (CQ/HCQ), old therapeutic molecules used to
treat malaria, should be investigated in this regard. Indeed,
chloroquine has potential broad-spectrum antiviral activi-
ty via increasing endosomal pH, which is required for
virus/cell fusion, as well as via interference with the
glycosylation of cellular receptors.[122-124] In addition to
the fact that CQ/HCQ is safe and displays excellent
autophagy inhibition properties, CQ/HCQ may represent
a viable therapeutic option should further compelling
evidence of its anti-HIV-cell attachment activity be
demonstrated.

In addition to HIV attachment inhibitors, a therapeutic
cocktail aiming to treat HIV infection should contain an
HIV integrase inhibitor (INI). INIs have emerged as a high-
value therapeutic option. INIs are divided into two
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categories known as (i) IN strand transfer inhibitors
(INSTIs) that bind to the catalytic core domain of the
enzyme, IN, to block the binding of IN to dsDNA, and (ii)
IN binding inhibitors that bind to the allosteric pocket of
IN, and thus disrupts the conformational changes required
for the strand transfer reaction. Currently, all USFDA-
approved INIs belong to the group of INSTIs. A list of
USFDA-approved INIs, with at least in vivo and in vitro
test results available, as reported by Trivedi et al[22], is
provided in [Table 3]. Of note, raltegravir, dolutegravir,
and cabotegravir, to list a few, display excellent results in
the treatment of HIV-positive individuals. For example,
one injection of cabotegravir combined with rilpivirine has
been observed tomaintain viral loads at undetectable levels
for 2 months.[125]
Challenges of the SECH strategy

Challenges from latency and LRAs

The impact of HIV clades on latency establishment and
latency reversal remains to be clarified. Sarabia and Bosque
have reported that HIV subtypes may play a crucial role in
HIV latency.[138] Indeed, HIV-1 LTR, the site of integra-
tion, IN variants, the Nef, viral infectivity factor, viral
protein r, and viral particle unit of some HIV subtypes
could explain how latency occurs and the potential
mechanisms required for its reversal. Given that several
in vitro tests on subtype B demonstrated that LRAs are
effective, it is believed that the effect should be the same for
other subtypes. This topic, however, requires further study,
considering that factors such as sequence differences in the
LTR[139,140] may influence the response to LRAs and that
only 12% of HIV-1 infections globally are because of
subtype B.[141] In addition, differential responsiveness of
proviruses integrated at various chromosomal locations
represents another major challenge that treatment with
only one LRA does not overcome. Therefore, there has
been a recent trend toward the development of combina-
tions of reagents that affect multiple pathways to produce
broader and synergistic transcriptional responses.[142]
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Further investigations are required to clarify this critical
point. Indeed, the success of the approach SECH is closely
associated with the ability of LRAs to induce latency
reversal in reservoir cells.
Challenges from pro-apoptotic drugs

Pro-apoptotic drugs currently do not discriminate between
HIV-infected and non-HIV-infected cells, and this is a
functionally critical component of the SECH strategy.
Therefore, Kim et al[27] proposed to first administer pro-
apoptotic drugs to sensitize latently infected cells to
apoptosis, followed by administration of LRAs to
reactivate latently infected cells to promote the production
of pro-apoptotic viral products. This may result in the
selective elimination of HIV-infected cells only. This
method has already been demonstrated with the pro-
apoptotic drug, Venetoclax,[143] which when combined
with LRAs led to the selective apoptosis and clearance of
HIV-infected cells. Also, potential interactions between
pro-apoptotic drugs and LRAs should be considered and
studied, especially regarding their synergy, antagonism,
and toxicity. The effects of pro-apoptotic drugs on non-T-
cell reservoirs should be contemplated as well. It has
already been established that some cells, like macrophages,
may be particularly resistant to apoptosis, and this
information provides adequate justification for the
aforementioned concern. Additionally, a better under-
standing of such drugs on actively dividing and non-
dividing cells (to understand how effectively various HIV-
infected cell types will be cleared) is warranted. Further-
more, it will be critical to assess the penetration and
cellular consequences of these drugs when introduced into
particular sites such as the central nervous system and gut-
associated lymphoid tissue.[144] Nanoparticles coated with
specific antibodies targeting CD4+ antigen or a latency
marker such as CD32a[145] may be necessary to enhance
pro-apoptotic drug penetration into the aforementioned
issues.
Challenges from immune system effector cells

After the application of LRAs, the immune system, via
CD8+ T cells and NK cells, can eliminate the HIV
reservoir. Actually, through their cytotoxic properties,
CD8+ T cells play a critical role in killing HIV-infected
cells, which in turn facilitates the control of HIV infection.
However, CD8+ T cells are (i) slower to respond to viral
infections, (ii) susceptible to viral escape strategies, and (iii)
generally excluded from B-cell follicles in lymph nodes,[146]

which may become subsequent hotspots for productive
HIV infection. These limitations demonstrate the necessity
to rely on other effector cells, such as NK cells. NK cells
may complete CD8+ T cells activity and greatly enhance
the immune system ability to clear latency-reversed cells.
Indeed, NK cells are (i) rapid in responding to viral
infection, without a need for clonal expansion, (ii) present
in lymph nodes, where they can control viral replica-
tion,[147] and (iii) able to destroy infected cells that evade
CD8+ T-cell-mediated elimination.[148] However, being
cognizant of the fact that no trial has as yet demonstrated
changes in the size of the latent reservoir after treatment
with LRAs (in “shock and kill” strategies),[14,15] we believe
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that strategies aimed at improving the suppressive capacity
of CD8+ T cells and NK cell function should be an integral
part of the SECH strategy. Various cytokines have been
shown to be effective at augmenting NK cell function,
including some interleukins (IL-15, 18, and 21) and type 1
interferons.[148] We envisage that perhaps, upon future
investigation, these cytokines (or perhaps others) may also
be useful in enhancing CD8+ T cell suppressive capacity.
For now, it is known that IFN-a treatment simultaneously
enhances (i) cytokine secretion, polyfunctionality, degran-
ulation, cytotoxic potential, and the suppressive capacity
of NK cells, and (ii) the suppressive capacity of CD8+ T
cells.[148] Moreover, supplementation with IFN-g is likely
to trigger P-selectin glycoprotein ligand-1 expression, and
thus enhance the recruitment of effector cells, inhibit virion
infectivity, and suppress HIV replication, as explored in
detail in a recent review by our group.[149]
Conclusion

In summary, considering the knowledge gleaned from the
recent literature, we believe that the proposed SECH
strategy for HIV cure is dependent upon specific
therapeutics administered simultaneously and acting
specifically on each of the following distinct processes:
(1) the activation of latent reservoirs, (2) the inhibition of
autophagy, (3) the induction of apoptosis, (4) the
inhibition of HIV attachment, and (5) the inhibition of
HIV integration. However, several challenges remain.
Indeed, intention-to-treat protocols, reservoir size-based
treatment duration, category of HIV-positive individuals
(infants, children, adults, elite controllers, and immuno-
logical non-responders), and robust study concerning
drug–drug interactions are critically important areas to
address and overcome going forward. Ultimately, well-
designed and executed clinical investigations are war-
ranted in the future to explore the feasibility, safety, and
the efficacy of such an approach to possible HIV cure in
humans.
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