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Abstract

The Symbiodinaceae are paradoxical in that they play a fundamental role in the success of

scleractinian corals, but also in their dismissal when under stress. In the past decades, the

discovery of the endosymbiont’s genetic and functional diversity has led people to hope that

some coral species can survive bleaching events by associating with a stress-resistant sym-

biont that can become dominant when seawater temperatures increase. The variety of indi-

vidual responses encouraged us to scrutinize each species individually to gauge its resilience

to future changes. Here, we analyse the temporal variation in the Symbiodinaceae commu-

nity associated with Leptoria phrygia, a common scleractinian coral from the Indo-Pacific.

Coral colonies were sampled from two distant reef sites located in southern Taiwan that differ

in temperature regimes, exemplifying a ‘variable site’ (VS) and a ‘steady site’ (SS). We inves-

tigated changes in the relative abundance of the dominant symbiont and its physiology every

3–4 months from 2016–2017. At VS, 11 of the 12 colonies were dominated by the stress-

resistant Durusdinium spp. (>90% dominance) and only one colony exhibited co-dominance

between Durusdinium spp. and Cladocopium spp. Every colony displayed high photochemi-

cal efficiency across all sampling periods, while showing temporal differences in symbiont

density and chlorophyll a concentration. At SS, seven colonies out of 13 were dominated by

Cladocopium spp., five presented co-dominance between Durusdinium spp./Cladocopium

spp. and only one was dominated by Durusdinium spp. Colonies showed temporal differ-

ences in photochemical efficiency and chlorophyll a concentration during the study period.

Our results suggest that VS colonies responded physiologically better to high temperature

variability by associating with Durusdinium spp., while in SS there is still inter-colonial variabil-

ity, a feature that might be advantageous for coping with different environmental changes.
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Introduction

The success of coral reefs in tropical oligotrophic waters is often attributed to the symbiotic

relationship between scleractinian corals and dinoflagellates algae. The Symbiodiniaceae are

intracellular photosynthetic organisms that supply up to 95% of the coral host’s energy

requirements in optimum conditions [1]. However, this subtle relationship is commonly dis-

rupted under stressful environmental conditions, such as abnormally high seawater tempera-

tures, in what is known as coral bleaching. Due to climate change and anthropogenic increases

in seawater surface temperatures, bleaching events are becoming more frequent and severe

[2]. Many coral reefs worldwide are now recurrently affected by mass bleaching events and

mortality and, consequently, may become scarce within the next 20–30 years [3]. One well-

known asset that some coral species have to survive bleaching events is their ability to associate

with a functionally diverse community of symbionts, and to adjust their relative abundances to

favour those better fitted to endure temperature variations [4–6].

The family Symbiodiniaceae is highly diverse and corals typically associate with members

from the genera Symbiodinium (formerly Clade A), Breviolum (formerly Clade B), Cladoco-
pium (formerly Clade C), and Durusdinium (formerly Clade D) [7]. Durusdinium spp. are

extremophile endosymbionts that have been found in stressed habitats, such as those with high

temperature [8–11], high turbidity [8] or located in high latitudinal marginal reefs [12–14]. In

order to survive, some corals are able to increase the relative abundance of Durusdinium tren-
chii during and after bleaching events [15]. Some examples of this mechanism are found in

species such as Acropora millepora in Australia [16]; Orbicella annularis, Siderastrea siderea,

Agaricia spp., and Montrastraea cavernosa in Barbados [17]; and Isopora palifera in Taiwan

[10]. It is a species- and location-specific mechanism that changes with environmental condi-

tions [15, 18, 19]. Some examples include Pocillopora damicornis, Seriatopora hystrix, Stylo-
phora pistillata, Favites abdita, Goniastrea favulus, A. millepora, I. palifera in Australia [18]

and O. faveolata and O. annularis in the Florida Keys and the Bahamas [19], which did not

change their symbiotic composition during and after thermal stress. Because the systematics of

the Symbiodinaceae family is still a work in progress, there are many dinoflagellates that have

not yet been identified to the species level. Therefore, the former sub-clade or type is used after

the genera. Within the Cladocopium genus there are some species that have been recognized to

be thermally resistant, such as Cladocopium C15. In Australia, Porites lutea colonies revealed

that, when experimentally heated, corals hosting Cladocopium C15 maintained higher maxi-

mum photochemical efficiency (Fv/Fm) than those hosting Cladocopium C3 [20]. Similar

results were found in Porites lobata from Hawaii; colonies that were experimentally bleached

could maintain gross photosynthetic rates similar to control colonies when hosting Cladoco-
pium C15. Moreover, this thermally tolerant symbiont helped the coral recover faster from

bleaching by contributing 96% of the host’s daily metabolic demand, even when chlorophyll a
levels were significantly lower than in the control [21].

The capacity to associate with multiple Symbiodinaceae genera is considered a widespread

phenomenon [22, 23]. Some coral species can maintain a stable association with their domi-

nant symbiont across their lifetime [24], including during and after stress events [18, 19].

Alternatively, some species are capable of shifting the relative abundance of their dominant

partner to background symbionts when exposed to stress [5, 6, 25]. Those background symbi-

onts are usually considered to initially represent <10% of the overall Symbiodinaceae commu-

nity within one colony [26, 27]. A third scenario, documented for a very few number of

species is to have a different symbiont dominating distinct areas within the coral colony

(Table 1). In this study, we refer to multi-symbiont dominance on the colony scale, but each

microhabitat within the colony can have its own dominant symbiont. For example, the
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dominant symbiont may be different between the top part of the colony and the lowest part. In

the Caribbean, this has been documented in the Orbicella spp. complex (including O. annu-
laris, O. faveolata and O. franski) since the 90’s (Table 1) [28–31]. These massive corals associ-

ate with multiple dominant symbionts in response to different light gradients, creating

different microhabitats within the same coral colony. In O. faveolata—the top part of the col-

ony, with high-irradiance—was dominated by Symbiodinium sp. and Breviolum sp., while the

side or shaded parts of the colony were dominated by Cladocopium sp. [29, 31]. The same pat-

tern was observed between colonies living at different depths: those living in shallow waters

with high light intensity were dominated by Symbiodinium sp. and Breviolum sp., whereas

Cladocopium sp. dominated those colonies living in deep waters [29]. In the Pacific, Isopora
palifera colonies from southern Taiwan presented multi-symbiont dominance between Clado-
copium C3 and D. trenchii (Table 1) [10, 32]. The relative abundance of both symbionts varied

across the study period and D. trenchii became highly abundant in some colonies after the

Table 1. Studies reporting co-dominance of different symbiont genera within a single colony.

Host species Symbiont genera/species Study site Genetic method for

ID

Ref.

Orbicella annularis Symbiodinium, Breviolum, Cladocopium San Blas Archipelago,

Panama

srRNA -RFLP [28,

29]O. faveolata Symbiodinium, Breviolum, Cladocopium
O. annularis Symbiodinium, Breviolum, Cladocopium, Durusdinium San Blas Archipelago,

Panama

srRNA -RFLP [30]

O. faveolata Symbiodinium, Breviolum, Cladocopium, Durusdinium
O. franski Symbiodinium, Breviolum, Cladocopium, Durusdinium
Acropora tenuis Cladocopium, Durusdinium Great Barrier Reef,

Australia

rDNA-ITS1, SSCP [33]

A. valida Cladocopium, Durusdinium
A. valida Cladocopium, Durusdinium Great Barrier Reef,

Australia

rDNA-ITS1, SSCP [34]

Isopora palifera Cladocopium, Durusdinium Kenting National Park,

Taiwan

lsrRNA -RFLP [32]

O. faveolata B. minutum, Cladocopium C12 Lee Stoking Islands,

Bahamas

ITS2-DGGE [35]

O. annularis B. minutum, Brevolium B10, Cladocopium C3, D. trenchii Upper Florida Keys, USA

O. franski B. minutum, Cladocopium C12 Lee Stoking Islands,

Bahamas

O. franski B. minutum, Brevolium B10, Cladocopium C3, D. trenchii Upper Florida Keys, USA

Siderastrea siderea Brevolium B5a, Cladocopium C3 Upper Florida Keys, USA

O. annularis B. minutum, C7, Cladocopium C3 Carrie Bow Cay, Belize ITS2-DGGE [36]

O. faveolata Symbiodinium A3, B. minutum, Brevolium B17, Cladocopium C7 and D.

trenchii
Stephanocoenia
intersepta

Symbiodinium A3b, Symbiodinium A3, Cladocopium C3, Cladocopium C16,

Cladocopium C54

A. valida C. goreaui, Cladocopium C2 and Symbiodinium Great Barrier Reef,

Australia

rDNA-ITS1, SSCP [37]

I. palifera Cladocopium C3, D. trenchii Kenting National Park,

Taiwan

ITS2-DGGE [10]

O. faveolata Symbiodinium A3, Brevolium B17, Cladocopium C7, D. trenchii Puerto Morelos, Mexico ITS2-DGGE [38]

O. faveolata B. minutum, Cladocopium C7a, D. trenchii Exuma Cay, Bahamas ITS2-DGGE [31]

O. faveolata Symbiodinium A3, B. minutum, Brevolium B17, Cladocopium C7 Carrie Bow Cay, Belize

O. faveolata Symbiodinium A3, B. minutum, Brevolium B17, Cladocopium C7, D. trenchii Puerto Morelos, Mexico

O. faveolata B. minutum, Cladocopium C3 Upper Florida Keys, USA

Studies in light grey are from the Indo-West Pacific Ocean.

https://doi.org/10.1371/journal.pone.0218801.t001
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1998 bleaching event [32]. The relative abundance of D. trenchii decreased afterwards and Cla-
docopium C3 became dominant almost 10 years after the bleaching event [10]. These differ-

ences in the dominant symbiont between Symbiodiniaceae genera explain why certain

colonies, or parts of the colony, bleach and some do not during natural bleaching events [29];

they also explain how Symbiodiniaceae can cope with and recover from a bleaching event by

shuffling their relative abundance [10]. These species are able to cope with environmental fluc-

tuations, presenting a long-term ecological and evolutionary coral-Symbiodinaceae specializa-

tion strategy [29, 31].

In the present study, we describe the temporal dynamics of Cladocopium spp. and Durusdi-
nium spp. associated with the sub-massive brain coral Leptoria phrygia (Ellis and Solander,

1786) in Kenting National Park, southern Taiwan. We monitored symbiont community

changes and performance in coral colonies from two shallow reef flats exposed to contrasting

seawater temperature regimes. The average shallow water temperatures at the ‘Outlet’ reef flat

can be up to 2–3 ˚C higher than other coral reef sites during the summer [39, 40]. Further-

more, a tidal upwelling [41, 42] causes daily temperature fluctuation that can reach 6–8 ˚C; we

considered this our “variable site” (VS). Temperatures at the ‘Wanlitong’ reef flat are steadier

(daily seawater temperature fluctuations <3 ˚C); we considered this our “stable site” (SS). Our

specific objectives were to: (1) investigate whether the relative abundance of endosymbionts

changes are in line with temporal changes in local environments from both sites, and (2) char-

acterise the dynamics of the endosymbionts’ physiology (photochemical efficiency, symbiont

density, and chlorophyll a concentration) caused by these temporal changes.

Materials and methods

Study sites and temperature data

This study was conducted with proper permissions and permits (Field permit number:

1040008112) issued by the Kenting National Park authority.

Both Variable Site (VS) and Stable Site (SS) are located within Kenting National Park

(KNP) in southern Taiwan (Fig 1). They are less than 20 km apart but have very different sea-

water temperature regimes. VS is located next to a nuclear power plant outlet in Nanwan Bay

(21˚ 55’ 53.7" N—120˚ 44’ 42.7" E), where it is influenced not only by the hot-water effluent

from the power plant throughout the year, but also by a spring tide upwelling which reduces

the daily seawater temperature [40, 42]. SS is located outside Nanwan Bay (21˚ 59’ 43.9" N—

120˚ 42’ 23.2" E) and is protected from the effects of the upwelling and the thermal pollution

from the nuclear plant [11]. Leptoria phrygia is a common species at both sites, found in shal-

low waters and associated with Durusdinium trenchii in VS and Cladocopium C1 in SS [11].

Similarly, other species such as Isopora palifera and Platygyra verweyi living in VS were domi-

nated by D. trenchii and associated with a mixture of D. trenchii and Cladocopium spp. or only

with Cladocopium spp. at other sites in KNP [10, 11, 43, 44].

Temperature loggers (Onset HOBO 64K Pendant data loggers, accuracy ±0.5 ˚C, resolution

0.14 ˚C, USA) were deployed at a depth of 3 m at each site and temperatures were recorded at

1 hr intervals from June 2016 to June 2017. The mean monthly temperature, mean monthly

maximum and minimum temperatures and mean monthly temperature variability (defined as

the mean monthly maximum temperature minus the mean monthly minimum temperature)

were calculated at each site for comparison.

Sample collection, photochemical efficiency and preservation

Twelve and 13 large colonies were randomly selected at VS and SS, respectively, and tagged

with a minimum distance of 7–10 m among them to avoid picking up clones. Coral colonies

Symbiodinaceae community of Leptoria phrygia
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were sampled at an interval of 3–4 months (in August, December 2016 and March 2017) to

characterize seasonal differences typifying the tropical monsoon climate of Kenting. Five nub-

bins were collected from each colony using a pneumatic drill connected to a regulator on a

scuba diving tank and equipped with a core bit (; 2.8 cm). Nubbins were sampled at distances

of 10–20 cm apart longitudinally from the top to the bottom of the colony (top part of the col-

ony, top middle part, middle part, bottom middle part and bottom part). All collected nubbins

were transported in coolers filled with seawater to the wet laboratory of the nearby National

Museum of Marine Biology and Aquarium (NMMBA) and placed in tanks under flowing sea-

water to emulate field conditions. Dark-adapted maximum photochemical efficiency (Fv/Fm)

of PSII was quantified using a diving-PAM (Heinz Walz GmbH, Germany; settings: Saturating

intensity = 8, Saturating width = 0.8, Gain = 4, Damping = 2), keeping a fixed distance between

the fibre and the sample by attaching a 1 cm probe extension. Dark-adapted (Fv/Fm) measure-

ments were done approximately two hours after sunset, due to logistical constraints. A test was

performed to see if (Fv/Fm) values after two hours were different from those after only 30 min-

utes for L. phrygia; results showed similar values. Nubbins were then immediately snap-frozen

in liquid nitrogen and stored at -80 ˚C for transportation and further processing.

Fig 1. Study sites in Nanway Bay, southern Taiwan. Both sites are located within Kenting National Park: Variable Site (VS) in the power plant outlet

(21˚55’53.7"N 120˚44’42.7"E) and Stable Site (SS) in Wanlitong (21˚59’43.9"N 120˚42’23.2"E).

https://doi.org/10.1371/journal.pone.0218801.g001
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Laboratory analyses

Each coral sample was defrosted, inspected for contaminants, and a small subsample of coral

tissue (~6 mm) was cut and stored in an Eppendorf tube with 95% Ethanol for molecular anal-

ysis. Remaining coral tissue was then air-brushed [45] from the skeleton using approximately

15 ml of filtered seawater (0.2 μm). Resulting slurry (Vi) was homogenized using a Homoge-

nizer Stirrer (WiseStir HS-30E, Germany).

Surface area

The surface area of the remaining coral skeleton was measured using a 3D scanner (HP David

SLS-2 3D structured light scanner Pro S3, resolution/precision up to 0.1% of scan size down to

0.06 mm, max mesh density: 1,200,000 vertices per scan; USA) equipped with a 360 ˚ turntable

and area calculations were done using the open source software Meshlab [46]; data were pre-

sented in cm2.

Symbiont density

Symbiont density was determined from a 10% aliquot of Vi by counting cells with 6–8 repli-

cates per sample using a Neubauer hemocytometer (Assistant, Germany) under a light micro-

scope (BX40 Olympus, Japan). This cell count was then normalized to the surface area of the

nubbin, and presented as number of symbiont cells per cm2.

Chlorophyll a concentration

Another 10% aliquot of Vi was centrifuged at high speed (5 min, 14000 xg). The supernatant

was removed; 1 ml of 90% acetone was added to the pellet and incubated in total darkness at

-20 ˚C overnight for photosynthetic pigment extraction [47]. After centrifugation for 1 min at

10000 xg, supernatant absorbance was read at 630, 647 and 664 nm wavelengths from triplicate

aliquots of 200 μl each, using a spectrometer (SpectroStar nano absorbance reader BMG-Lab-

Tech, Germany) with three wells containing 200 μl of 90% acetone as a blank. The chlorophyll

a concentration was then calculated using the equations from Jeffrey and Humphrey [48]:

Chla = 11.85 A664−1.54 A647−0.08 A630. Chlorophyll a concentration was then normalized per

cm2 of the nubbin’s surface area and the symbiont density and presented as pg of chlorophyll a
concentration per symbiont cell per cm2.

Molecular analysis

DNA extraction. Genomic DNA was extracted using a modified high salt method [49].

Briefly, for tissue incubation, 30 mg of coral tissue (~ 3–4 polyps) was cut and incubated over-

night at 55–60 ˚C using 200 μl lysis buffer (1M Tris-Boric 25 ml, 0.5M EDTA pH8 10 ml, 20%

SDS 10 ml, 5M NaCl 2 ml, ddH2O 53 ml) and 10 μl proteinase E (10 mg/ml). For DNA precip-

itation, 210 μl 7M-NaCl was added, vortexed for 30 seconds at maximum speed and centri-

fuged for 30 minutes at 10000 xg. The supernatant was transferred to a new tube and 420 μl of

100% isopropanol were added and gently mixed for five minutes. Samples were incubated at

-20 ˚C for at least two hours. For DNA purification, samples were centrifuged (30 minutes at

16000 xg) and rinsed with 150 μl of 70% ethanol stored at -20 ˚C and centrifuged again (5 min-

utes at 16000 xg); this rinsing step was repeated three times. Ethanol was removed from the

tubes, which were dried under the hood for 1–2 hours. The DNA was eluted with 150 μl of pre-

heated (65 ˚C) 1X TE buffer. The total concentration of genomic DNA was determined using

a NanoDrop 2000 (Thermal Scientific, USA).

Symbiodinaceae community of Leptoria phrygia
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Quantitative PCR (qPCR). Relative abundances of Cladocopium sp. and Durusdinium sp.

were measured by amplifying the ITS1 region using the LightCycler 480 Instrument II (Roche,

Switzerland) with a modified protocol from Mieog et al. [26]. The following primers were

used: nuclear ITS1 universal forward primer (UF, 5’-AAGGAGAAGTCGTAACAAGGTTTCC-
3’), nuclear ITS1 C-specific reverse primer (CR, 5’-AAGCATCCCTCACAGCCAAA-3’), and

ITS1 D-specific reverse primer (DR, 5’-CACCGTAGTGGTTCACGTGTAATAG-3’) [34].

Each 10 μl qPCR reaction consisted of 5 μl of 1x SYBR Fast Master Mix, 0.5 μl of UF primer (2

nM/μl), 0.5 μl of CR or DR primer (2 nM/μl), 1.5 μl of ddH2O and 2.5 μl of DNA templates

(equal to 1 ng of genomic DNA). The two-step qPCR reactions were set at 95 ˚C for 15 seconds

and 60 ˚C for one minute. 40 cycles were performed in total. Melting curves were generated to

start at 60 ˚C with an increase of 0.11 ˚C/s until it reached 95 ˚C, then followed by a cooling

step to 40 ˚C for 30 seconds. The ratio of Durusdinium (D) to Cladocopium (C) was calculated

using the formula: ratio = D/(C+D) from triplicate measures per sample. A correction was

done to account for the differences in copy numbers between Cladocopium and Durusdinium
genera following Mieog et al. [26].

Symbiont identification—(DGGE). Denaturing gradient gel electrophoresis (DGGE)

was used for symbiont identification. The ribosomal internal transcribed spacer 2 (ITS2)

region was amplified with the primers ITSintfor2: 5’-GAATTGCAGAACTCCGTG-3’, and

ITS2clamp: 5’-CGCCCGCCGCGCCCCGCGCCCGTCCCGCGGGATCCAT-ATGCTTAAGTTCA
GCGGGT-3’ and touch-down PCR protocol [50]. Each PCR product was loaded onto an

acrylamide denaturing gradient gel (45–80%) and then electrophoresed at a voltage of 115 for

15 hours (CBS Scientific system, USA). Gels were stained with SYBR gold (Invitrogen, USA)

for 30 minutes and photographed for further analysis. The most significant band of each PCR

product was cut from the gel and eluted in 100 μl of distilled water for a few hours. Re-amplifi-

cation was performed with 1 μl of the sample following a protocol similar to touch-down

PCR-DGGE, but using a reverse ITS2 primer without the clamp [50], and the product was sent

for sequencing. The resulting sequences were trimmed, cleaned and blasted against the data-

base of the National Center for Biotechnology Information (NCBI) to determine Symbiodinia-

ceae genus.

Statistical analysis

Mean monthly temperature, mean maximum/minimum temperature and mean monthly tem-

perature variability (defined as the mean monthly maximum minus the mean monthly mini-

mum temperature) were calculated for each site and the differences between VS and SS during

the study period were tested using the non-parametric Mann-Whitney-Wilcoxon test after

confirming that data from most months were not normally distributed. Data from all mea-

sured physiological parameters were checked for normality and homogeneity of variances

(Q-Q plot and Fligner test) and all were normally distributed and presented homoscedasticity.

A linear mixed model was used to test the effect of sampling times as the fixed effect (with

three levels) at each site, using colony as the random effect. Similarly, to compare between sites

at each sampling time, a linear mixed model was used with site as the fixed effect (with two lev-

els) and using colony as the random effect. P-values were obtained by likelihood ratio test of

the full model against the model without the effect in question. This was performed for each of

the physiological parameters measured. All samples at both sites were combined and the non-

parametric Spearman correlation was used to test for monotonic correlations between each

temperature measurement independently (mean monthly temperature, mean monthly maxi-

mum temperature, mean monthly minimum temperature and mean monthly temperature

variability) and Durusdinium spp. association. All statistical analyses were performed in R

Symbiodinaceae community of Leptoria phrygia
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(version 3.4.1) [51], using the ‘lme4’ package for the linear mixed model analysis [52]. All data

were presented as mean ± standard deviation (S.D.).

Results

Seawater temperature differences between sites

Both sites displayed different seawater temperature regimes (Fig 2) from June 2016 to June

2017. Mean monthly temperature in VS ranged from 25.4 ± 0.9 ˚C to 31.0 ± 1.1 ˚C while in SS

it ranged from 23.7 ± 0.7 ˚C to 29.7 ± 0.6 ˚C, making it significantly higher in VS than in SS

(Mann Whitney test, p<0.05). June 2017 was the only month in which there was no significant

difference in mean monthly temperatures between sites (Mann Whitney test, p = 0.58). During

the summer of 2016, July exhibited the maximum mean temperature of the year in VS

(32.3 ± 0.9 ˚C), which was significantly different to that in SS (30.4 ± 0.6 ˚C). In the winter of

2017, January showed the minimum mean temperature of the year in VS (24.6 ± 0.9 ˚C),

which was significantly different from that in SS (23.1 ± 0.7 ˚C; Table in S1 Table). The mean

monthly temperature variability (mean monthly maximum temperature minus the mean

monthly minimum temperature) was also significantly different between sites. Mean monthly

temperature variability was significantly higher in VS (1.5 ± 0.5 ˚C to 3.2 ± 1.1 ˚C) than in SS

(0.7 ± 0.4 ˚C to 1.6 ± 0.8 ˚C) during the study time (Mann Whitney test, p<0.05) (Fig 2, S1

Table).

Symbiodinaceae association

Among the 12 colonies sampled in VS, Durusdinium spp. dominated in 11 (>90%), and

none showed temporal variation across the entire study period. One colony exhibited

Fig 2. Seawater daily temperatures recorded for June 2016 to July 2017 at both sites. SS = Stable Site, VS = Variable Site.

Each dot represents hourly measurements. The black line indicates the mean daily temperature in SS and the grey line

represents the mean daily temperature in VS. Vertical grey bands represent each sampling time (August, December 2016 and

March 2017).

https://doi.org/10.1371/journal.pone.0218801.g002
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co-dominance between Cladocopium spp. and Durusdinium spp. (COL10, Table 2) and pre-

sented variation: Durusdinium spp. dominated the Symbiodinaceae community in August

2016 (54%), increased in December 2016 (87%) and decreased in March 2017 (77%, Fig 3).

Of the 13 colonies at SS, seven were dominated by Cladocopium spp. (>90%), five presented

co-dominance between genera in Cladocopium and Durusdinium, and only one was Durusdi-
nium spp.-dominant (>90%; Fig 3). Similar to what was observed in VS, there was no varia-

tion in those colonies that were either Cladocopium spp.- or Durusdinium spp.-dominant

during the entire study period. Only those five Cladocopium spp./Durusdinium spp. co-dom-

inated colonies presented temporal variability (Fig 3). (For more detailed information see

S2 Table).

DGGE and subsequent sequencing of the major bands confirmed that D. glynnii (GenBank

accession number MK127922) was the most dominant Durusdinium endosymbiont found at

both sites. There was also inter-colonial variation in those Cladocopium spp.-dominated colo-

nies in SS. Cladocopium C3w (GenBank accession number MK127920) and Cladocopium
C21a (GenBank accession number MK127921) were the two most dominant endosymbionts

found in different colonies (Table 2, Fig 4). This difference between Cladocopium spp. was

identified in the DGGE band profiling (Fig 4) and later confirmed by sequencing. Cladoco-
pium C3w showed only one dominant band in the DGGE profile (Fig 4) and was dominant in

five colonies (COL4, COL5, COL7, COL9, and COL12; Table 2). Cladocopium C21a displayed

two bands (heteroduplex) in the DGGE profile (Fig 4) and was dominant in three colonies

(COL6, COL10 and COL11; Table 2).

Correlation between Durusdinium spp. and temperature

We found significant positive monotonic correlation (rs = 0.37, p<0.05) between the mean

maximum temperature and the percentage of Durusdinium spp (Fig 5A), as well as between

the temperature variability and the percentage of Durusdinium spp. (rs = 0.65, p<0.05) during

the study period (Fig 5B).

Table 2. Dominant symbiont identified with DGGE and subsequent sequencing at both sites.

VS SS

COL1 - D. glynnii / Cladocopium sp.

COL2 D. glynnii D. glynnii / Cladocopium sp.

COL3 D. glynnii D. glynnii / Cladocopium C3w

COL4 D. glynnii D. glynnii / Cladocopium C3w

COL5 D. glynnii Cladocopium C3w

COL6 D. glynnii Cladocopium C21a

COL7 D. glynnii Cladocopium C3w

COL8 - D. glynnii
COL9 D. glynnii Cladocopium C3w

COL10 D. glynnii / Cladocopium C21a Cladocopium C21a

COL11 D. glynnii Cladocopium C21a

COL12 D. glynnii Cladocopium C3w

COL13 D. glynnii -

COL15 D. glynnii / Cladocopium C3w -

COL16 - D. glynnii / Cladocopium C3w

VS = Variable Site, SS = Stable Site.

https://doi.org/10.1371/journal.pone.0218801.t002
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Physiological parameters

In VS, there was no temporal variation and no significant difference in photochemical effi-

ciency across all sampling times (χ2(2) = 4.90, p = 0.09) and coral colonies maintained similar

mean Fv/Fm during all sampling months (August: 0.66 ± 0.03, December: 0.66 ± 0.03 and

March: 0.67 ± 0.04; Fig 6A). In contrast, colonies in SS presented significant temporal variation

(χ2(2) = 98.00, p<0.05), with a mean Fv/Fm of 0.58 ± 0.06 in August (2016), 0.63 ± 0.02 in

December (2016) and 0.66 ± 0.02 in March (2017) (Fig 6A). Photochemical efficiency was sta-

tistically different between the two sites in August (χ2(1) = 53.01, p<0.05) and December 2016

(χ2(1) = 30.13, p<0.05) but not in March 2017 (χ2(1) = 2.08, p = 0.15).

There was temporal variation in symbiont density in VS. Mean values were significantly dif-

ferent between months (χ2(2) = 7.99, p<0.05; Fig 6B), increasing from 3.70 ± 1.66 x106 cells

cm-2 (August 2016) to 4.54 ± 1.68 x106 cells cm-2 (December 2016), then decreasing again to

4.06 ± 1.53 x106 cells cm-2 (March 2017). However, in SS there was no significant difference in

density between sampling times (χ2(2) = 3.78, p = 0.15; Fig 6B). Symbiont density was only sta-

tistically different between sites in December 2016 (χ2(1) = 12.70, p<0.05).

Chlorophyll a concentration was significantly different between the two sites in December

2016 (χ2(1) = 31.74, p<0.05) and March 2017 (χ2(1) = 21.53, p<0.05), but showed no signifi-

cant difference in August 2016 (χ2(1) = 0.03, p = 0.87). Within each site, chlorophyll a concen-

tration was also significantly different across sampling times (χ2(2) = 33.90, p<0.05 for VS;

Fig 3. Pie charts showing symbiont associations between Cladocopium spp. and/or Durusdinium spp. Each pie chart represents the mean values per

colony during three sampling times in August 2016 (Aug 2016), December 2016 (Dec 2016) and March 2017 (Mar 2017); variable site n = 12 colonies

(top) and stable site n = 13 colonies (bottom).

https://doi.org/10.1371/journal.pone.0218801.g003
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χ2(2) = 116.2, p<0.05 in SS). Chlorophyll a concentration increased at both sites from August

to December 2016 and decreased again in March 2017 (Fig 6C).

Discussion

In this study we characterised Symbiodiniaceae communities of Leptoria phrygia from two

sites with contrasting temperature regimes. This species has been reported to associate with

Cladocopium and Durusdinium in American Samoa [9], and, in KNP, southern Taiwan, L.

phrygia is also known to host both genera within the same colony [11]. Our study demon-

strates that the stress-resistant Durusdinium spp. dominated almost all colonies in VS. In con-

trast, coral colonies in SS presented three different types of associations: 1) dominated by

Cladocopium (54%), 2) co-dominated by Cladocopium and Durusdinium (39%) and 3) domi-

nated by Durusdinium (7%). Nonetheless, in both VS and SS, those colonies dominated by a

single genus—i.e., Durusdinium or Cladocopium only—continued to be dominated by that

genus through time. Even the dominant species within those colonies remained the same, e.g.,

Cladocopium C3w or Cladocopium C21a in the Cladocopium-dominated colonies and D. glyn-
nii in the Durusdinium-dominated colonies.

However, there was distinct temporal variation in colonies with multi-symbiont dominance

(co-dominated by two genera), particularly those from SS.

Fig 4. Denaturing gradient gel electrophoresis (DGGE) from selected colonies at each site. SS = Stable Site, VS = Variable Site. Arrows indicate the

main bands excised for sequencing as examples. Lanes 1 and 2 represent Cladocopium C21a (with double bands) and Cladocopium C3w references,

respectively. Lane 12 represents D. glynnii reference. Lanes 3–7 are colonies from SS dominated either by Cladocopium C3w (COL7 and COL9) or

Cladocopium C21a (COL10 and COL11) or co-dominated by Cladocopium sp. and D. glynnii (COL2). Lanes 8–10 are colonies from VS dominated by

D. glynnii (COL2, COL3 and COL4) and lane 11 is the colony with co-dominance between Cladocopium sp. and D. glynnii.

https://doi.org/10.1371/journal.pone.0218801.g004
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Durusdinium can tolerate 1.0 to 1.5 ˚C higher than Cladocopium in Acropora millepora [5].

Our results showed that there is a significant positive correlation between the mean maximum

temperature and the percentage of Durusdinium spp. a phenomenon also documented under

natural conditions in previous studies [9, 53, 54]. We also found significantly higher correla-

tion between high temperature variability and the percentage of Durusdinium spp. That might

be the main reason why almost all colonies in VS are associated with the stress-resistant Durus-
dinium spp. Other studies also found that coral communities living at this thermally variable

site were dominated by D. trenchii [10, 43, 44]. Another survey done at the same site reported

that species from the genera Acropora, Cyphastrea, Goniastrea, Isopora, Platygyra, Favites,
Pocillopora, Acanthastrea, and Leptoria associated with D. trenchii at 3 m deep in VS, while at

7 m deep the same species associated with Cladocopium spp. (C1, C3, C21a and C15) [11].

This difference in symbiont communities between depths implies that the hot water from the

power plant outlet only affects the shallow waters in VS [11].

Our results indicate that, in addition to high temperature, large temperature variability also

plays an important role in determining symbionts associations; this concurs with a study of

Fig 5. Correlation between mean maximum temperature and the percentage of Durusdinium spp. in A and

between delta temperature (mean monthly maximum–mean monthly minimum) and the percentage of

Durusdinium spp. in B. SS = Stable Site, VS = Variable Site; each dataset represents a sampling time. The shaded area

represents 95% confidence interval.

https://doi.org/10.1371/journal.pone.0218801.g005
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four common taxa sampled from four different sites with a gradient of temperature variability

in Kenya over 10 years [55]. The study showed that Pavona and Pocillopora were the genera

that best survived bleaching events, including the global bleaching event of 1998; similar to our

study, most colonies in these two genera lived in the sites with the highest temperature vari-

ability and were associated with Durusdinium sp. [55].

Those colonies in SS presenting intra-colonial variation, plus a Durusdinium spp.-domi-

nated colony (46% of all colonies sampled), have the stress-resistant symbiont that provides

higher resilience to bleaching events than other taxa. Those Cladocopium/Durusdinium co-

dominated colonies presented temporal variability in the dominant symbionts, which offers a

ground for corals to shuffle the relative abundances of their dominant symbiont [56]. This sug-

gests that L. phrygia’s inter-colonial variation might be an ecological advantage, because coral

Fig 6. Physiological parameters measured photochemical efficiency (Fv/Fm) in A, symbiont density (million cells

cm-2) in B and chlorophyll a concentration (pg per symbiont cells) in C. All measurements present the median

values of all colonies together per sampling time: August 2016 (Aug 2016), December (Dec 2016) and March 2017

(Mar 2017); SS = Stable Site, VS = Variable Site.

https://doi.org/10.1371/journal.pone.0218801.g006
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species that host symbionts resistant to variable conditions will most likely survive climate

warming events [6, 23, 24, 57].

This theory that inter-colonial variation provides ecological advantage has been experimen-

tally simulated with two species in the Caribbean with multi-symbiont associations, Montas-
traea cavernosa and O. faveolata [6, 57]. Corals were stressed with high temperatures to induce

bleaching. They recovered by increasing their abundance of the resistant symbiont D. trenchii
and maintaining this association after recovery for three months at 29 ˚C [6, 57]. Researchers

exposed M. cavernosa corals to a subsequent bleaching heat stress and determined that those

D. trenchii-dominated corals were more resistant to bleaching and lost fewer symbionts than

before [6].

Durusdinium trenchii has been found to increase bleaching thresholds by 1.0 to 1.5 ˚C

under high temperature stress [5, 6, 58] by maintaining a high photochemical efficiency com-

pared to other symbionts from the Breviolum and Cladocopium genera [25, 59]. Our study sug-

gests that species living in VS are able to resist high summer temperatures and temperature

variability by hosting Durusdinium spp. Colonies in VS did not display any signs of stress

when their maximum photochemical efficiency was measured, even during the summer, when

mean maximum temperatures reached 32.3 ± 0.9 ˚C and were significantly higher than in SS.

All colonies in this highly variable thermal environment showed mean Fv/Fm higher than

0.66 ± 0.03 (see Fig 6A).

In the southern Great Barrier Reef, A. valida, a species dominated by multiple Cladocopium
and Symbiodinium symbionts, did not present seasonal variation in photochemical efficiency

[37]. But the lack of seasonal variation was explained by changes in the relative abundance of

its symbionts, because most colonies increased their percentage of Symbiodinium sp. after a

bleaching event in the summer. Therefore, they maintained high photochemical efficiency

during the winter [37]. In contrast, SS colonies varied their photochemical efficiency through

sampling times by increasing Fv/Fm during the winter. Similar results were found in the

Caribbean in Orbicella spp. [60] and in the South China Sea in three Acropora spp., Pavona
decussata and Porites lutea [61]. Durusdinium spp. not only are advantageous to corals under

high temperature, they can also resist cold temperature stress [62].

M. cavernosa corals dominated by either D. trenchii or Cladocopium C3 were experimen-

tally exposed to temperatures down to 15 ˚C and, when measuring the symbiont photochemi-

cal efficiency, both coral colonies showed photodamage. Those corals dominated by D.

trenchii neither bleached nor died, while Cladocopium C3-dominated corals bleached, losing

94% of their symbionts [62]. Similarly, Pocillopora spp. corals associated with D. glynnii better

survived a cold bleaching event in 2008 in the Gulf of California [63]. All colonies associated

with Cladocopium C1b-c bleached during the cold event and 56% suffered partial or total mor-

tality, whereas those colonies associated with D. glynnii neither bleached nor showed any mor-

tality [63].

During our study period, there was no sign of bleaching from stress at either site, and corals

in VS exhibited an increase in symbiont density during December 2016 following natural tem-

poral fluctuations, which caused a significant difference between sites. In SS, there was high

variability between colonies in 2016, therefore mean values of symbiont density in December

were comparable to those in August.

Similar results as in VS were found for A. muricata in a long-term monitoring study (6

years) in Mauritius: symbiont densities were three times higher during the autumn and winter

than the spring and summer, and the authors found that symbiont density positively correlated

with nitrate concentrations [64]. In the Caribbean, a long-term monitoring study (4 years)

found similar results: A. cervicornis, A. palmata, O. annularis and O. faveolata presented higher
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values during the winter [47]. A study in the Red Sea described this same seasonal variation in

P. verrucosa, with higher densities during the winter [65].

This difference in symbiont density between seasons has been explained by dynamic photo-

inhibition, where carbon fixation decreased due to down-regulation of photosynthesis when

there is high light, such as during the summer [47]. Additionally, chlorophyll a concentration

values showed temporal fluctuations due to this dynamic photoinhibition related to high light

and temperature during the summer [60, 66, 67]. Both sites in our study presented lower val-

ues during the summer and increased values in the winter.

In summary, understanding the physiological plasticity of a species such as Leptoria phrygia
living in different environments allows us to establish different mechanisms that species could

use to withstand future climate change. Here, we examined the multi-symbiont association in

L. phrygia in a stable environment and compared it to the same species living at a site with

high temperature variability. Our results suggest that those corals living in variable environ-

ments provide important information on coral resilience during environmental perturbations.

Coral colonies in VS dominated by Durusdinium spp. had better physiological responses

and were able to cope better with the high variability in seawater temperature. These results

raise the question of whether the symbiont community of coral species such as L. phrygia
may have been selected by the environmental conditions they live in. In addition, only those

Durusdinium/Cladocopium-dominated colonies presented temporal variability. No matter

the environmental conditions they lived in, those Durusidinum spp.- and Cladocopium
spp.-dominated colonies maintained the same dominant symbiont at all times. These results

also question the role of the coral host in deciding which Symbiodinaceae community to asso-

ciate with. In order to answer these questions and to have a better understanding of how highly

variable environments will respond to future climate change, we recommend further experi-

mental work between both sites, such as transplantation experiments; we also recommend

measuring the physiological parameters of all partners in the holobiont. It will also be interest-

ing to investigate if species already dominated by Durusdinium spp. will be able to survive

more recurrent bleaching events [2] or prolonged thermal stresses [44] in the future.
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