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Deregulated interplay between inflammation and coagulation plays a pivotal role in the pathogenesis of sepsis. Therapeutic
approaches that simultaneously target both inflammation and coagulation hold great promise for the treatment of sepsis.
Thrombomodulin is an endogenous anticoagulant protein that, in cooperation with protein C and thrombin-activatable
fibrinolysis inhibitor, serves to maintain the endothelial microenvironment in an anti-inflammatory and anticoagulant state. A
recombinant soluble form of thrombomodulin has been approved to treat patients suffering from disseminated intravascular
coagulation (DIC) and has thus far shown greater therapeutic potential than heparin. A phase II clinical trial is currently underway
in the USA to study the efficacy of thrombomodulin for the treatment of sepsis with DIC complications. This paper focuses on the
critical roles that thrombomodulin plays at the intersection of inflammation and coagulation and proposes the possible existence
of interactions with integrins via protein C. Finally, we provide a rationale for the clinical application of thrombomodulin for
alleviating sepsis.

1. Introduction

Septic shock is a leading cause of death in intensive care units
and thus represents a substantial financial burden on the
healthcare system in Japan, in the United States, and in many
other developed nations [1, 2]. Although the mortality rate
of septic shock has tended to gradually decrease during the
past decade thanks to significant technological advances in
supportive therapies, it remains high and effective specific
treatments are still very limited [3]. Uncontrolled and sys-
temically spreading inflammatory responses that are initiated
by infection play critical roles in the pathogenesis of septic
shock. At sites of uncontrolled inflammation, endothe-
lial cells are damaged, thereby upregulating intercellular-
adhesion-molecule-1 (ICAM-1) and vascular-cell-adhesion-
molecule-1 (VCAM-1) expression, which not only enables

the accumulation of leukocytes but also heightens perme-
ability, thus leading to tissue edema formation. Damaged
endothelial cells exhibit morphological abnormalities such
as nuclear vacuolation, protrusion, and cytoplasmic frag-
mentation, thereby being subjected to the detachment from
the basement membrane [4]. Furthermore, inflammation
deregulates coagulation cascades, thereby inducing intravas-
cular blood coagulation at inflamed endothelial cells, which
reflects the tendency of septic shock to manifest various
coagulopathies that lead to disseminated intravascular coag-
ulation (DIC) [5].

Current consensus on septic shock pathogenesis holds
that dysregulation occurs simultaneously in both the infl-
ammation and coagulation systems, thereby complicating
pathogenesis in patients and reducing the therapeutic
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effectiveness of targeting either inflammation or coagula-
tion. A better understanding of the crosstalk that occurs
between inflammation and coagulation is therefore critical
to developing novel, effective treatments for sepsis. Recent
investigations have shown that activated protein C (APC),
an endogenous anticoagulant protein, possesses both anti-
inflammatory and anticoagulant properties. A recombinant
form of APC (Drotrecogin alfa-activated (DrotAA)) has been
used in the treatment of severe septic shock [6]. In this paper,
we focus on another important endogenous anticoagulant
protein, thrombomodulin (TM). Recombinant soluble TM
(Recomodulin) has been approved in Japan in 2008 for the
treatment of DIC resulting from infection and cancer [7–11].
Currently in the USA a phase II clinical trial involving sepsis
DIC patients has been completed and subsequent phase III
trials are planned. Here, we examine the basic biology of TM
with a particular emphasis on its role at the intersection of
inflammation and coagulation and then discuss its potential
application for septic shock.

2. Crosstalk between Inflammation and
Coagulation

Systemic inflammation causes the activation of the coagula-
tion cascades, and, vice versa, the players in the coagulation
cascades also possess the abilities to modulate inflammation
[12]. The interplays between inflammation and coagulation
are at the center of the pathogenesis underlying septic
shock (Figure 1) [5, 13]. One of the major pathways in
which inflammation augments blood coagulation is the
generation of thrombin mediated by tissue factor (TF) that
is upregulated on monocytes, macrophages, and endothelial
cells [14]. Endotoxin and proinflammatory cytokines (e.g.,
interleukin-6 (IL-6)) induce the expression of TF, which
binds to factor VII (FVII), thus forming the TF/FVIIa
complex that activates FX. FXa assembles with FVa, thereby
generating a prothrombinase complex on the surface of
endothelial cells and monocytes. This prothrombinase com-
plex converts prothrombin to thrombin, which in turn
converts fibrinogen to fibrin, and thereby leads to fibrin for-
mation and platelet activation and aggregation. In addition,
inflammation impairs functions of important anticoagulant
pathways that are governed by antithrombin, protein C,
and tissue factor pathway inhibitor (TFPI). Conversely,
inflammation is modified by important players in coag-
ulation and anti-coagulation pathways such as thrombin,
antithrombin, thrombomodulin, and protein C as well as
fibrinogen and fibrin modulate inflammation [12]. For
example, thrombin and other activated coagulation factors
exhibit an array of proinflammatory activities via cleavage
activation of protease-activated receptors (PARs) [15, 16].
Thrombin induces the following: P-selectin expression in
endothelial cells, monocyte and neutrophil chemotaxis [17,
18], leukocyte adhesion molecule expression [15], IL-6 and
IL-8 production by endothelial cells [19], and lymphocyte
and monocyte activation and proliferation [20, 21].

While thrombin formation is the driving force behind
procoagulation and proinflammatory states, thrombin itself

remains tightly regulated and under the control of negative
feedback loops in which TM plays a critical role in tandem
with protein C (Figure 1) [5, 22]. The interaction of TM
with thrombin switches thrombin substrate specificity from
fibrinogen to protein C [23]. Thrombin, TM, and protein
C bind simultaneously, thereby forming a complex on the
surface of the endothelium that expresses endothelial cell
protein C receptor (EPCR). During the course of complex
formation, protein C is converted to its active form: activated
PC (APC) [24]. APC subsequently dissociates from the
APC-EPCR complex and binds to protein S, in this way
forming an APC-protein S complex. The APC-protein S
complex dampens not only coagulation, by inactivating
FVa and FVIIIa, but also inflammation, by inhibiting the
production of inflammatory cytokines and the transduction
of nuclear-factor- (NF-)κB signaling in monocytes [25].
Furthermore, APC suppresses LPS-induced increases in the
pulmonary accumulation of leukocytes and in vascular
permeability [26]. Therefore, the protein C pathway plays
a pivotal role in the negative regulation of coagulation and
inflammation. The thrombin-TM complex also activates the
thrombin-activatable fibrinolysis inhibitor (TAFI), which in
turn inhibits fibrinolysis and inactivates anaphylatoxin C3a
and C5a [27, 28]. In addition to acting as a cofactor for
APC and TAFI activation, TM has exhibited a wide range
of biological activities in maintaining vascular homeostasis
(Figure 2) [29].

3. Structure and Domains of Thrombomodulin

Human TM is a single-chain type 1 transmembrane gly-
coprotein measuring 557-amino acid residues long and
containing five extracellular domains (Figure 3) [30, 31].
The N-terminal region of TM comprises about half of the
extracellular portion of the molecule and contains a module
with a homology to other C-type lectins. Although this
domain lacks anticoagulant activity, it plays an important
role in mediating anti-inflammatory activities [32, 33].

The next domain of TM contains six epidermal-growth-
factor-(EGF-) like repeats that form an extended stalk in the
extracellular part of molecule. This domain showed mito-
genic activities on cultured fibroblasts and vascular smooth
muscle cells. The activities were mediated via activation
of protein kinase C and mitogen-activated protein kinase
(MAPK) [34, 35]. The interaction of the EGF5-6 repeats
with thrombin has been shown to prevent the binding of
procoagulant substrates (e.g., such as FV, fibrinogen) to
thrombin [36–39]. These EGF4-6 repeats are required for the
activation of protein C, while the EGF3-6 repeats are needed
for the activation of TAFI [39–41].

The third domain is a serine/threonine-rich domain
bearing potential sites for O-linked glycosylation. This
domain supports the attachment of chondroitin sulfate.
Biochemical studies have shown that chondroitin sulfate,
when attached to TM, enhanced the potency of the latter
to activate protein C [42, 43]. In addition, it accelerates
the neutralization of thrombin and facilitates the binding of
platelet factor 4 (PF4) to protein C [44]. The chondroitin
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Figure 1: Crosstalk between inflammation and coagulation. Proinflammatory stimulation induces TF expression in monocytes,
macrophages, and endothelial cells. TF initiates a coagulation cascade and the FXa-FVa complex converts thrombin. Thrombin induces fibrin
formation and activates platelets, monocytes, and endothelial cells through PARs. Thus, thrombin acts to form a positive feedback loop that
augments coagulation and inflammation. In a negative feedback loop, the thrombin-TM complex activates protein C and downregulates
coagulation and inflammation. APC, in tandem with its cofactor protein S, inactivates FVa and FVIIIa. In addition, the APC-EPCR complex
induces anti-inflammatory effects through PARs. Therefore, thrombin, TM, and protein C-EPCR play pivotal roles in the crosstalk that
occurs between inflammation and coagulation.
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Figure 2: Multiple roles of TM in the maintenance of vascular homeostasis. TM inhibits inflammation, apoptosis, tumor metastasis,
thrombin function, adhesion molecule expression, and leukocyte adhesion. Proinflammatory high-mobility group box 1 (HMGB1) is
neutralized and degraded by TM.

sulfate moiety may strengthen the thrombin-TM binding by
interacting with the anion binding exosite of thrombin, to
which heparin binds. Of note, heparin was shown to inhibit
the thrombin-TM binding possibly by competing with the
TM chondroitin sulfate moiety for the thrombin exosite [45].

A well-conserved transmembrane domain is typically
followed by a short cytoplasmic tail. A cysteine in the
cytoplasmic tail is thought to mediate the multimerization
of TM [46]. In human-cultured vein endothelial cells,
thrombin binding to TM induced signaling events that lead
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Figure 3: Structure and domains of TM. TM contains an N-terminal C-type lectin-like domain, an extended stalk of six EGF modules, a
serine/threonine-rich region with target sites for posttranslational glycosylation, a transmembrane domain, and a short cytoplasmic domain.
EGF domains 5-6 bind thrombin. EGF4-6 is required for protein C activation and EGF3-6 for TAFI activation.

to the activation of endothelial nitric oxide (NO) synthase 3
(NOS-3) through modulation of G protein-coupled receptor
(GPCR) signals [47]. Although knockout mice completely
lacking TM died in utero due to a defect in placental
development [48], knock-in mice expressing mutant TM
that lacks the cytoplasmic domain showed no abnormalities
in fetal development, survival, and coagulation [49, 50].

Recomodulin, a recombinant form of human solu-
ble TM, comprises only the extracellular domain of TM
that includes N-terminal C-type lectin domain, EGF-like
domain, and O-glycosylation domain [51]. Similar to a
native membrane-bound TM, rhsTM binds to thrombin
to inactivate coagulation, and thrombin-rhsTM complex
activates protein C to produce APC.

4. Anticoagulant Properties
of Thrombomodulin

TM exerts its anticoagulant activity not only by inhibiting
thrombin but also by accelerating APC generation [36, 37,
52, 53]. Upon TM binding, thrombin undergoes a reduction
in its affinity to procoagulant substrates [36, 37, 52, 53].
TM directly inhibits most of the procoagulant functions
of thrombin including fibrinogen clotting, platelet and EC
activation, and FV activation [36, 37]. In addition, TM accel-
erates the inactivation of thrombin via both antithrombin
and protein C inhibitor [54, 55]. TM switches thrombin

substrates specificity to protein C [23]. APC suppresses
further thrombin formation by proteolytically degrading
FVa and FVIIIa. This activity is enhanced by protein S,
the cofactor for APC (Figure 1). The anti-inflammatory
properties of TM may be partly explained by the concept that
the affinity of thrombin for TM is likely much higher than
that for other factors in pro- and anticoagulant pathways
[23], potentially making TM a scavenging inhibitor of
circulating thrombin.

Inflammation has been reported to downregulate TM
expression [56]. Tumor necrosis factor-α (TNF-α) induces
internalization of TM via endocytosis, thereby reducing its
surface expression [57]. Such reduced TM expression at sites
of inflammatory injury may exacerbate blood coagulation.
Indeed, endothelium-specific deletion of TM in mice caused
spontaneous and fatal thrombosis in the arterial and venous
vessels [58], indicating that TM may play a role in preventing
intravascular thrombus formation.

5. Anti-Inflammatory Effects
of Thrombomodulin

5.1. APC-Dependent Mechanisms. TM has been shown to
mediate anti-inflammatory activities using APC-dependent
and APC-independent mechanisms, depending on the set-
ting [22]. In the APC-dependent mechanism, TM executes its
anti-inflammatory activities by enhancing the activation of
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Figure 4: Potential molecular mechanisms by which APC executes anti-inflammatory effects. (a) Caveolin-1 is associated with EPCR in lipid
rafts in the absence of protein C or APC. Thrombin cleavage of PAR-1 induces inflammatory responses by coupling receptors to G12/13 and
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transactivation. Activation of S1P receptor 1 improves endothelial barrier function, thus facilitating the ability of the APC-EPCR complex
to exert anti-inflammatory effects.

protein C. The resulting APC downregulates inflammatory
cytokine production by decreasing the expression of NF-κB
components and inhibiting their nuclear translocation [59–
62]. These anti-inflammatory effects are dependent upon
APC, EPCR, and PAR-1 [63, 64]. It is thought that protein
C and/or APC binding to EPCR results in the coupling of
PAR-1 to Gi in endothelial cells (Figure 4(a)) [65–67]. Both
PAR-1 and EPCR are known to associate with caveolin-1 in
lipid rafts or protein C- or APC-EPCR complexes, leading to
caveolin-1 dissociation from EPCR. This process appears to
favor anti-inflammatory phenotypes of endothelial cells [68].

APC has been shown to enhance the endothelial bar-
rier function through transactivation of sphingosine-1-
phosphate (S1P) receptor signaling (Figure 4(b)) [69, 70].
Improving endothelial barrier function would provide anti-
inflammatory effects by reducing leukocyte extravasation
to sites of inflammation. Apolipoprotein E receptor 2
(ApoER2) and angiopoietin (Ang)/tie2 signaling pathways
have been shown to contribute to the cytoprotective and anti-
inflammatory properties of APC [71, 72].

In addition to acting on endothelial cells, APC has
been shown to target leukocytes. In one study, APC bound
to leukocyte integrins through an RGD motif, thereby
inhibiting neutrophil migration into inflamed tissues [73].
In addition, APC was shown to cleave and consequently
neutralize the cytotoxicity of extracellular histones released
from dying leukocytes [74]. Histone administration resulted
in neutrophil margination, microhemorrhage, intravascular
thrombosis, and capillary leak of fibrin. Coadministration
of APC alleviated lethality of histone. By contrast, histone

toxicity was much more pronounced in mice, where the PC
pathway was blocked [74].

Reduced levels of PC were found in the majority of
patients with sepsis and were associated with higher rates of
morbidity and mortality [75, 76]. A controversial PROWESS
study showed that treatment with recombinant APC not
only lowered the plasma levels of D-dimer and IL-6 but also
reduced mortality in patients with severe sepsis [6].

5.2. APC-Independent Mechanisms. TM modulates fibrinol-
ysis and inflammation through thrombin-activatable fibri-
nolysis inhibitor (TAFI). TAFI is a circulating zymogen that
is activated by the thrombin-TM complex [77, 78]. Activated
TAFI eliminates lysine residues at the C-terminal end of
fibrin, thereby suppressing the incorporation of plasminogen
and tissue plasminogen activator (t-PA) into the fibrin
clot (Figure 5). Thus, activation of TAFI by TM inhibits
fibrinolysis, thereby preventing the resolution of already
formed clots. This activity complements the role of TM-
induced activated protein C to prevent the formation of new
clots, thereby balancing hemostasis [79]. While diminishing
fibrinolysis by acting on fibrin, activated TAFI also affects
inflammation [77, 78]. TAFIa has been reported to act
on, and inactivate, proinflammatory mediators such as the
anaphylatoxins complement factors C3a and C5a [80–82],
bradykinin, and osteopontin [44, 78].

Independently of APC, TM exhibits anti-inflammatory
activities via the EGF domain of TM and the N-terminal
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lectin-like domain (Figure 6) [22, 83]. TM binds to throm-
bin, thereby inhibiting the proinflammatory activities of
thrombin [16], including induction of endothelial-inducible
nitric oxide synthase expression, monocyte and neutrophil
chemotactic activity, upregulation of leukocyte adhesion
molecules, enhancement of IL-6 and IL-8 production from
endothelial cells, and mitogenic activity involving lympho-
cytes, fibroblasts, macrophages, mesangial cells, neuroblas-
toma cells, and osteoblasts. Several of thrombin proin-
flammatory properties are mediated via the cleavage and
activation of PARs [16]. TM binding to thrombin has been
shown to decrease PAR-1-induced activation of ERK1/2 and
to suppress the mitogenic effects of thrombin [33, 84].

The anti-inflammatory activities of the N-terminal
lectin-like domain are thought to act in an APC-independent
manner, since this domain is dispensable to APC generation.
Mutant mice expressing TM that lacks this lectin-like

domain did not show altered in vivo APC generation [33].
However, these mice did exhibit an increased susceptibility
to endotoxin-induced sepsis. Endothelial cells isolated from
mutant mice exhibited elevated ICAM-1 expression as well
as increased ICAM-1-mediated leukocyte adhesion. In good
agreement with these findings, a soluble lectin-like N-
terminal domain of TM proved sufficiently robust to inhibit
TNF-α-induced ERK phosphorylation and restore normal
leukocyte adhesion to mutant endothelial cells. In addition,
this recombinant lectin-like TM domain also protected
cultured endothelial cells from cell death, possibly via
modulation of NF-κB pathways, but more likely by serum
deprivation [33].

Another anti-inflammatory target of TM is high-
mobility group box 1 (HMGB1), a ubiquitously expressed
nuclear protein that is released from necrotic cells. Upon
being released, HMGB1 binds to the receptor for advanced
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glycation end products (RAGE) [85]. HMGB1-RAGE sig-
naling has been implicated in the pathogenesis and/or
progression of various clinical disorders, such as infections,
sepsis, arthritis, and cancer. The lectin-like domain of
TM interferes with HMGB1 binding to RAGE, thereby
impairing HMGB1-RAGE signaling [86]. Alternatively, TM
may antagonize HMGB1 by enhancing thrombin-mediated
proteolytic degradation of HMGB1 [87].

6. Therapeutic Application of TM

The dual ability of TM to suppress both coagulation
and inflammation makes this molecule a promising drug
candidate for the treatment of DIC and/or septic shock.
In order to administer it intravenously, a soluble form of
recombinant TM (rhsTM), containing only the extracellular
domains, has been developed [88]. Like the membrane-
bound native TM, rhsTM retains the ability to bind to
thrombin and APC. Administration of rhsTM has been
shown to protect rats from TF and endotoxin-induced
DIC or lung injury [89–91]. In addition, rhsTM not only
reduced compression trauma-induced spinal cord injury
by inhibiting leukocyte accumulation and expression of
TNF-α [92] but also provided protection against ischemia-
reperfusion injury in the canine liver [93] and in the rat
kidney [94, 95].

After obtaining promising results in animal experiments,
rhsTM (ART-123, Recomodulin) proceeded to clinical trials.
The efficacy and safety of rhsTM for the treatment of
DIC has been investigated in a multicenter, randomized,
double-blind phase III clinical trial [9]. This clinical trial
was designed to compare rhsTM (0.06 mg kg−1 for 30 min
once day) with heparin (8 U kg−1 h−1 for 24 h) in 234 DIC
patients. Their underlying diseases consisted of infection
and/or hematologic malignancy. During a 6-day course of
treatment, half of the patients received rhsTM, while the
rest received heparin. The DIC resolution rate at day 7 was
significantly better in patients receiving rhsTM (66.1%) than
in those receiving heparin (49.9%). The disappearance rate
of bleeding symptoms at day 7 was also better in patients
receiving rhsTM (35.2%) than in those receiving heparin
(20.9%). Remarkably, in DIC resulting from infection,
rhsTM treatment improved the mortality rates at day 28 to
a greater degree than did heparin treatment (rhsTM 28.0%;
heparin 34.6). In the case of DIC resulting from hematologic
malignancy, the mortality rates were 17.2% for the rhsTM
group and 18.0% for the heparin group. Greater decreases
in plasma thrombin-antithrombin complex levels and D-
dimer levels were observed in patients treated with rhsTM.
Importantly, rhsTM treatment showed a better safety profile
with a lower incidence of bleeding-related adverse events. In
2008, rhsTM has been approved in Japan for the treatment of
DIC. As of May 2011, 4,260 DIC patients (2,588 infections,
1,121 hematologic malignancies, 93 solid tumors, and 458
miscellaneous underlying diseases) were treated with rhsTM,
according to the Asahi Kasei Pharma that has marketed this
drug in Japan.

Importantly, a retrospective subanalysis that focused only
on the 80 patients having infection as the underlying disease
[7] confirmed the usefulness of rhsTM in the treatment of
DIC associated with infection (DIC resolution rates (rhsTM:
67.5%; heparin: 55.6%) and 28-day mortality rates (rhsTM:
21.4%; heparin: 31.6%)). In the USA, a phase II clinical
trial involving 750 patients has been completed as of May
2011 that compared rhsTM with placebo for the treatment of
sepsis with DIC (NCT00487656), thereby awaiting the results
publicized. The Asahi Kasei Pharma America reports that
they will proceed to phase III clinical trials.

7. Concluding Remarks

We are beginning to understand that the crosstalk and
interplay that occur between inflammation and coagula-
tion together constitute a critical component driving both
the pathogenesis and progression of sepsis. Therapeutic
approaches targeting both inflammation and coagulation
hold great promise for the treatment of patients suffering
septic shock. While APC is the first to be successfully
administered under a clinical setting, TM is expected to
represent the 2nd generation of effective biologic drugs that
target both inflammation and coagulation in septic patients.
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