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Met proto-oncogene (MET) amplification and tyrosine-protein kinase Met (c-Met) overexpression confer gefitinib resistance in
non-small cell lung cancer (NSCLC). The natural product Licochalcone A (Lico A) exhibits a broad range of inhibitory effects
against various tumors. However, the effects of Lico A on c-Met signaling and gefitinib resistance in NSCLC remain unclear.
In the present study, Lico A efficiently overcame gefitinib-acquired resistance in NSCLC cells by suppressing c-Met signaling.
Lico A decreased cell viability and colony formation dose-dependently and impaired in vivo tumorigenesis of gefitinib-resistant
HCC827 and PC-9 cells. Furthermore, Lico A induced intrinsic apoptosis and upregulated the protein expression levels of
cleaved poly (ADP-ribose) polymerase and cleaved caspase 3. Lico A promoted the interaction between c-Met and E3 ligase c-
Casitas B-lineage lymphoma (Cbl), which enhanced c-Cbl-mediated c-Met ubiquitination and degradation. Depletion of c-Cbl
compromised Lico A-induced c-Met ubiquitination and its inhibitory efficacy in gefitinib-resistant NSCLC cells. Taken
together, the results suggest that Lico A is a promising antitumor agent that might be used to overcome c-Met overexpression-
mediated gefitinib resistance in NSCLC cells.

1. Introduction

Non-small cell lung cancer (NSCLC) is a profoundly devastat-
ing disease that is the leading cause of cancer-associated deaths
worldwide [1]. NSCLC accounts for ~85% of lung cancer cases
[2]. Targetable genomic alterations in NSCLC have been exam-
ined as attractive therapeutic targets, including those occurring
at epidermal growth factor receptor (EGFR), Kirsten rat
sarcoma virus (KRAS), anaplastic lymphoma kinase (ALK),
and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha (PIK3CA), and those that lead to altered produc-
tion of reactive oxygen species [3–5]. Specifically, the EGFR-
targeted therapies have become optimal treatment options
among patients with EGFR-mutant NSCLC [6, 7]. EGFR
tyrosine kinase inhibitors (TKIs) have prominently extended
the overall survival and progression-free survival rates
compared with conventional chemoradiotherapy for patients
with advanced EGFR-mutant NSCLC [4, 7–9]. However, the

acquired resistance to EGFR TKIs, gefitinib, and erlotinib
remains a significant challenge [10, 11]. Resistance to EGFR
TKIs can be acquired due to secondary mutations. The most
common secondary mutation is the EGFR T790M muta-
tion.The aberrant activation of tyrosine-protein kinase Met
(c-Met) signaling is an EGFR-independent mechanism that
confers EGFR TKIs resistance to the NSCLC cells. It enables
the cell to activate downstream ERK1/2 and AKT signaling
pathways [12–14]. Therefore, identifying novel antitumor
agents targeting c-Met signaling may provide alternative thera-
peutic approaches to overcome resistance to EGFR-TKIs [15].

Licochalcone A (Lico A) is a flavonoid extracted from
licorice root, demonstrating a wide range of pharmacological
effects, including the anti-inflammatory and antitumor activi-
ties [16, 17]. The antitumor effects of Lico A have been docu-
mented in various types of tumors, including gastric, [18]
prostate, [19] ovarian, [20] liver [21], and lung cancers [16,
22]. The Lico A promotes cell cycle arrest, induces apoptosis,
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and suppresses angiogenesis and metastasis [23–25]. However,
the effects of Lico A on c-Met signaling and gefitinib resistance
have not been fully elucidated.

In the present study, the ability of Lico A to attenuate c-Met
signaling and suppress c-Met expression in a ubiquitination-
dependent manner was examined. Moreover, the potential of
this compound to overcome gefitinib resistance was assessed
in the NSCLC cells.

2. Materials and Methods

2.1. Cell Culture and Antibodies.Human NSCLC cell HCC827
and the immortalized lung epithelial cells HBE andNL20 were
obtained from American Type Culture Collection (ATCC,
Manassas, VA). PC-9 cell line was a product of Sigma-
Aldrich (St. Louis, MO). Both PC9 and HCC827 cells carry a
Glu746-Ala750 deletion mutation in exon 19 of the EGFR
[26, 27]. The gefitinib resistant cell lines, HCC827-GR, and
PC-9-GR were newly established in our laboratory by expos-
ing HCC827 or PC-9 cells to gradually increasing concentra-
tions of gefitinib (starting at 10nM and ending with 400nM)
for approximately 5 months. All cells were maintained at the
incubator according to the standard protocols and subjected
to routinely checking for mycoplasma contamination. Anti-
bodies against p-c-Met (#3077), c-Met (#8198), cleaved-
PARP (#5625), p-Akt (#4060), Bax (#14796), Akt (#4691),
VDAC1 (#4661), p-ERK1/2 (#4370), β-actin (#3700), ERK1/
2 (#9102), α-tubulin (#2144), cleaved-caspase 3 (#9664), cyto-
chrome c (#4280), and ubiquitin (#3936) were obtained from
Cell Signaling Technology, Inc. (Beverly, MA). The natural
compound Licochalcone A (>97%) was from Selleck Chemi-
cals (Houston, TX). Lipofectamine 2000 transfection reagent
for transient transfection was purchased from Thermo Fisher
Scientific (Waltham, MA).

2.2. MTS Assay. The cultured cells were seeded into 96-well
plates (3 × 103 cells/well) and treated with various concen-
trations of Lico A. Following 24 h of incubation, cell viability
was analyzed with MTS using the CellTiter 96® Aqueous
One Solution kit (Promega Corporation) as determined by
the manufacturer’s protocol.

2.3. Soft Agar Assay. The soft agar assay was performed as
described previously [28]. Briefly, the NSCLC cells were pre-
treated with Lico A and counted at a 8 × 103 cells/ml density.
The cells were suspended in 1ml Eagle’s basal medium con-
taining 10% FBS and 0.3% agar and transferred into 6-well
plates with a 0.6% agar base. The colony was counted follow-
ing 2 weeks of culture with a light microscope.

2.4. Western Blot Analysis. The cells were treated with Lico A
or gefitinib, and the whole-cell extract (WCE) was prepared
with RIPA buffer and concentrated using the BCA protein
assay (Thermo Fisher Scientific, Inc.). The Western blot
analysis was performed as described previously [28]. A total
of 20μg WCE was analyzed via SDS-PAGE. Subsequently,
the proteins were transferred to a PVDF membrane and
incubated with the primary antibody and secondary anti-
body sequentially. Protein expression levels were visualized
using the ECL reagent (Thermo Fisher Scientific, Inc.).

2.5. Subcellular Fraction Isolation. The Mitochondria Isola-
tion kit (Thermo Fisher Scientific, Inc.) was used for cyto-
solic and mitochondrial fraction extraction following the
manufacturers’ instructions.

2.6. Cell Transfection. Generation of stable c-Met knock out
cell lines. CRISPR-Cas9-mediated gene knockout was per-
formed as described previously (PMID: 32945473). In brief,
single-guide (sg) RNAs (#1, CACATGGCAGATCGATCCA
T; #2, GACCTCACCATAGCTAATCT) targeting c-Met were
used for the construction of stable cell lines. In brief, the
NSCLC cells were transfected with c-Met sgRNA and selected
by 1μg/ml puromycin for three weeks. Single colonies were
chosen for further study. For transient transfection, the siR-
NAs, including si-c-Cbl (sc-29242) and siCtrl (sc-37001), were
purchased from Santa Cruz Biotechnology (Dallas, TX). The
c-Met cDNA (RC217003) was purchased from Origene
(Rockville, MD). The transient transfection was performed
using the Lipofectamine 2000 (11668019, Thermo Fisher
Scientific) following the manufacturer’s protocol. The whole-
cell extract was prepared at 2 days later after transfection.

2.7. RT-qPCR. The NSCLC cells were treated with Xanth for
24h, and total RNA was extracted using the Absolutely RNA
Purification Kits (Agilent). SYBR-Green Quantitative RT-
qPCR Kit was used in RT-qPCR. Amplification cycles were
performed as follows: Stage 1: activation, 50°C for 2min. Stage
2: presoak, 95°C for 10min. Stage 3: denaturation, 95°C for
15 sec; annealing: 60°C for 1min. Stage 4: melting curve,
95°C for 15 sec, 60°C for 15 sec, and 95°C for 15 sec. The RT-
qPCR results were normalized to β-actin. c-Met primer
sequences used were forward, TGCACAGTTGGTCCTG
CCATGA; reverse, CAGCCATAGGACCGTATTTCGG.

2.8. Xenograft Mouse Model. All in vivo animal experiments
were performed in 2021, which the Institutional Animal
Ethics Committee approved at The Third Xiangya Hospital,
Central South University. Mice were kept in the colony cages
with free access to food and tap water and standardized
housing conditions (natural 12 h light-dark cycle, tempera-
ture of 23 ± 1°C, relative humidity of 55 ± 5%). The proper
care and use of experimental animals, including efforts to
minimize suffering and distress using analgesics or anes-
thetics, was based on the Guide for the Care and Use of
Laboratory Animals (National Academies Press, Washing-
ton, DC). For tumor transplantation, HCC827-GR (2 × 106
cells in 100μl RPMI-1640) cells were injected into the right
flank of 6-week-old female athymic nude mice. Tumor
volume and mouse body weight were recorded every 2 days.
The tumor-bearing mice had initiated Lico A treatment
when the tumor reached a maximum of 100mm3. The mice
were divided into two groups randomly. Lico A treatment
(20mg/kg, n = 5) was initiated every 2 days via intraperito-
neal injection. The control group (n = 5) was treated with
vehicle control. Animal health and behavior were monitored
every 2 days. The following formula calculated tumor vol-
ume: A × B2 × 0:5, where A was the longest diameter of the
tumor and B was the shortest diameter. B2 was B squared.
The tumor-bearing mice were euthanized by CO2 when the
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tumor volume reached 700mm3 (24 days). The fill rate of
CO2 is 30% of the chamber volume per minute (3 liter/
min), and the duration time is 5min. Death was further
confirmed by cervical dislocation.

2.9. Immunoprecipitation and Ubiquitination Analysis. The
ubiquitination assay was performed as described previously
[29]. Briefly, WCE was prepared with modified RIPA buffer
(1% SDS) supplemented with protease inhibitors and N-
ethylmaleimide. The lysate was boiled at 95°C for 15min and
diluted with 0.1% SDS containing RIPA buffer. Following
centrifugation, the supernatant was incubated with c-Met
antibody-containing protein A/G-Sepharose beads overnight
at 37°C. The beads were boiled with loading buffer and sub-
jected to immunoblotting (IB) analysis.

2.10. Immunohistochemical (IHC) Staining. The IHC staining
was performed as described previously [29]. Briefly, the slides
were dewaxed with xylene and rehydrated using gradient
ethanol into double distilled water. Antigen retrieval was
performed by immersing the slides into boiling sodium citrate
buffer (10mM, pH6.0) for 10min, followed by treatment with
3% H2O2 in methanol for an additional 10min. The tissue
slides were blocked with 50% goat serum albumin in PBS for
1h at room temperature and incubated overnight with pri-
mary antibodies at 4°C. Following hybridization with second-
ary antibodies, the target proteins were visualized with the
DAB Substrate kit (cat. no. 34002; Thermo Fisher Scientific,
Inc.).

2.11. Statistical Analysis. SPSS software (version 13.0; SPSS,
Inc.) was used for statistical analysis. The quantitative data
are presented as the mean ± SD, and the difference was
analyzed using the two-tailed Student’s t-test or one-way
ANOVA. A probability value of P < 0:05 was considered to
indicate a statistically significant difference.

3. Results

3.1. c-Met is Required for Gefitinib Resistance. To further
discover novel antitumor agents that can overcome gefitinib
resistance, two gefitinib-resistant cell lines were generated,
namely HCC827-GR and PC-9-GR. The MTS data indicated
that gefitinib significantly decreased the viability of HCC827
and PC-9 cells but not that of HCC827-GR and PC-9-GR
cells (Figure 1(a)). The trypan blue exclusion assay suggested
that the viable cell population of HCC827-GR and PC-9-GR
cells was not significantly decreased (Figure 1(b)). Further-
more, the colony formation ability of gefitinib-resistant
NSCLC cells was examined. The results indicated that the
colony formation numbers of HCC827 and PC-9 cells were
markedly suppressed with gefitinib treatment. In contrast
to these observations, gefitinib did not reduce the colony
formation numbers of HCC827-GR and PC-9-GR cells
(Figure 1(c)). The protein expression levels of cleaved poly
(ADP-ribose) polymerase (PARP) and cleaved-caspase 3 were
notably decreased in gefitinib-treated HCC827-GR and PC-9-
GR cells, as determined via IB analysis (Figure 1(d)). To
investigate whether c-Met is associated with gefitinib resistance,
its protein expression levels were examined in HCC827/

HCC827-GR and PC-9/PC-9-GR cells. IB indicated that the
expression levels of the c-Met protein in HCC827-GR and
PC-9-GR cells were upregulated compared with those of
HCC827 and PC-9 cells (Figure 1(e)). Moreover, the knock-
down of c-Met (Figure 1(f)) promoted the antitumor effect of
gefitinib in resistant cells, as determined by the significant
decrease noted in the viability and colony formation activity
of HCC827-GR and PC-9-GR cells (Figures 1(g) and 1(h)).
These results suggested that c-Met was required for gefitinib
resistance in HCC827-GR and PC-9-GR cells.

3.2. Lico A Inhibits the Viability of Gefitinib-Resistant NSCLC
Cells. Earlier studies demonstrated that Lico A exerted a wide
range of pharmacological effects ranging from anti-
inflammatory to antitumor modes of action (Figure 2(a)).
However, the inhibitory effects of Lico A on gefitinib-resistant
NSCLC and the underlying mechanism remain elusive. The
present study investigated whether Lico A exerted cytotoxic
effects on immortalized non-tumor lung epithelial cells. Lico
A exhibited no apparent inhibitory effects on HBE and NL20
cells (Figure 2(b)). In contrast to these findings, the MTS results
indicated that Lico A suppressed the viability of gefitinib-
resistant HCC827-GR and PC-9-GR cells dose-dependently.
Gefitinib attenuated the viability of HCC827-GR and PC-9-
GR cells at ~75% following treatment with 5μM Lico A for
48h. Exposure to higher concentrations (10 or 20μM) of Lico
A exhibited a more potent inhibitory effect (Figure 2(c)). The
soft agar data indicated that Lico A markedly reduced the
colony formation number of HCC827-GR and PC-9-GR cells
in a dose-dependent manner (Figure 2(d)). Furthermore, the
trypan blue exclusion assay indicated that Lico A reduced the
viable cell population following exposure to different concentra-
tions of this compound for 48h (Figure 2(e)). Lico A increased
the protein expression levels of cleaved PARP and cleaved
caspase 3 (Figure 2(f)). The relative enzyme activity of caspase
3 was augmented following an increase in Lico A concentration
(Figure 2(g)). In addition, IB analysis indicated that Lico A pro-
moted the release of cytochrome c from themitochondria to the
cytoplasm. In addition, this compound dose-dependently
augmented the expression of Bax in the mitochondrial fraction
(Figure 2(h)), suggesting that it could activate the intrinsic apo-
ptotic pathway. These results suggested that Lico A substantially
suppressed the proliferation of gefitinib-resistant NSCLC cells
and induced their apoptosis.

3.3. Lico A Suppresses c-Met Signaling. Subsequently, the ability
of Lico A to affect c-Met signaling was examined. IB analysis
indicated that short-term exposure (4h) to Lico A inhibited
hepatocyte growth factor- (HGF-) induced c-Met phosphory-
lation. Moreover, the activation of the c-Met downstream
kinases, ERK1/2 and AKT, was substantially reduced.
However, the total protein levels of c-Met were unaffected
(Figure 3(a)). The data further demonstrated that long-term
exposure to Lico A decreased c-Met phosphorylation and its
total protein levels in a dose-dependent manner (Figure 3(b)).
These results indicated that Lico A attenuated the activation
of c-Met signaling in gefitinib-resistant NSCLC cells. Reverse
transcription-quantitative PCR data revealed that Lico A
decreased the mRNA levels of c-Met when 10 and 20μM of
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Figure 1: Continued.
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this compound were added to HCC827-GR and PC-9-GR
cells, respectively (Figure 3(c)). This suggested that Lico A
slightly suppressed c-Met transcription to some extent
(Figure 3(c)). Moreover, exposure to the proteasome inhibitor,
MG132 restored c-Met expression in Lico A-treated HCC827-
GR and PC-9-GR cells (Figure 3(d)). To further validate that
Lico A promoted c-Met degradation, the ability of this com-
pound to induce c-Met ubiquitination was examined in
gefitinib-resistant NSCLC cells. Exposure of HCC827-GR cells
to Lico A enhanced the endogenous ubiquitination of c-Met
(Figure 3(e)). These results suggested that Lico A suppressed
c-Met signaling and promoted c-Met ubiquitination.

3.4. c-Cbl is Required for Lico A-Induced c-Met Ubiquitination.
Previous studies have shown that the E3 ligase c-Cbl promotes
the degradation of c-Met ubiquitination. Therefore, it was
hypothesized that c-Cbl was involved in Lico A-induced c-
Met ubiquitination. The interaction between c-Cbl and c-Met
was initially determined. The results indicated that Lico A
strengthened the interaction between c-Cbl and c-Met in
HCC827-GR cells (Figure 4(a)). Moreover, IB analysis indi-
cated that c-Cbl knockdown prominently compromised Lico
A-enhanced c-Met ubiquitination (Figure 4(b)). Moreover,
knockdown of c-Cbl rescued Lico A-suppressed viability and
colony formation activity in HCC827-GR cells (Figures 4(c)
and 4(d)). In addition, we investigated what effect c-Cbl knock-
down exerted on PARP cleavage and release of cleaved-caspase
3 in HCC827-GR cells, which are considered markers of
apoptosis (Figure 4(e)). Lico A enhanced the protein levels of
cleaved-PARP and cleaved-caspase 3 dose-dependently in c-
Cbl sufficient cells (Figure 4(e)). Conversely, c-Cbl knockdown
reduced the protein levels of cleaved-PARP and cleaved-
caspase 3. Moreover, knockdown of c-Cbl notably increased
the viable cell population in Lico A-treated HCC827-GR cells,
while the activity of caspase 3 was suppressed by c-Cbl knock-

down (Figures 4(f) and 4(g)). Overall, these results suggested
that c-Cbl was required for Lico A-induced c-Met ubiquitina-
tion in gefitinib-resistant HCC827-GR cells.

3.5. Lico AOvercomesGefitinib Resistance In Vivo.To verify the
in vivo inhibitory effect of Lico A, a xenograft mouse model
was established. HCC827-GR-derived xenograft tumors were
treated with Lico A and vehicle control. The data indicated that
Lico A significantly delayed the tumor growth of HCC827-GR
xenografts compared with that of the vehicle control
(Figure 5(a)). The average tumor weight of the Lico A-treated
tumors was substantially lower than that of vehicle-treated
groups (Figure 5(b)). In addition, the bodyweight of Lico A-
treated mice did not exhibit a significant decrease compared
with that of the vehicle-treated groups (Figure 5(c)). The IHC
staining analysis was performed to examine the in vivo inhibi-
tory effect of Lico A on c-Met expression. The population of
Ki67-positive cells was reduced with Lico A treatment, indicat-
ing that this compound could inhibit cell proliferation in vivo.
In addition, the positive staining of c-Met was suppressed in
Lico A-treated HCC827-GR xenograft tumors (Figures 5(d)
and 5(e)). These results suggested that Lico A inhibited the
in vivo tumor growth of gefitinib-resistant xenografts.

4. Discussion

NSCLC is the leading cause of cancer-associated deaths
worldwide and accounts for ~85% of lung cancer cases. Lung
squamous carcinomas and lung adenocarcinomas are the
main subtypes of NSCLC [1, 2]. EGFR mutations have been
detected in 40–50% of lung adenocarcinomas [6, 30, 31].
Patients with NSCLC harboring EGFR activating mutations
benefit from the clinical application of EGFR TKIs, such as
gefitinib [6, 10, 32]. Unfortunately, acquired resistance to
EGFR-TKIs is inevitable and develops after a median of
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Figure 1: c-Met is overexpressed in gefitinib resistant cells. (a) HCC827/HCC827-GR (left) and PC-9/PC-9-GR (right) cells were treated
with gefitinib for 72 h, cell viability was examined by MTS assay. ∗∗∗p < 0:001. ns: not statistically significant. Gef: gefitinib. (b) Trypan
blue exclusion assay analyzes live cell population of HCC827/HCC827-GR (left) and PC-9/PC-9-GR (right) cells treated with gefitinib
for 72 h. ∗∗∗p < 0:001. (c) HCC827/HCC827-GR (left) and PC-9/PC-9-GR (right) cells were treated with gefitinib for 72 h, colony
formation was tested by soft agar assay. ∗∗∗p < 0:001. (d) HCC827/HCC827-GR (left) and PC-9/PC-9-GR (right) cells were treated with
gefitinib for 72 h, whole cell extract (WCE) was subjected to immunoblotting (IB) analysis. (e) IB analysis of c-Met protein level in
HCC827/HCC827-GR (left) and PC-9/PC-9-GR (right) cells. (f–h) c-Met-null HCC827-GR (left) and PC-9-GR (right) cells were treated
with gefitinib for 72 h, c-Met expression was examined by IB analysis (f), cell viability (g), and colony formation (h) was tested via MTS
assay and soft agar assay, respectively. ∗∗∗p < 0:001.
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9.2–14.7 months of TKI therapy [7, 13, 33]. Previous studies
have demonstrated that the EGFR T790M mutation is the
most common mechanism of acquired resistance to gefitinib
[34–36]. It is interesting to note that the amplification of the
MET gene contributes to the resistance of NSCLC cells to

gefitinib. This gene encodes the c-Met tyrosine kinase recep-
tor, and its amplification is associated with deregulated c-
Met expression levels [37–40]. The occurrence of the
T790M mutation and the MET amplification account for
70% of acquired resistance to gefitinib in NSCLC [34]. At
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Figure 2: Licochalcone A (Lico A) overcomes gefitinib resistance. (a) The chemical structure of Lico A. (b) The cytotoxicity of Lico A on
immortalized HBE and NL20 cells. (c and d) HCC827-GR (left) and PC-9-GR (right) cells were treated with Lico A for 48 h, cell viability (c)
and colony formation (d) was examined by MTS and soft agar assay, respectively. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. (e) HCC827-GR
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HCC827-GR cells were treated with Lico A for 48 h, subcellular fractions were isolated and subjected to IB analysis.
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present, no specific targeted therapy strategies have been
reported for EGFR-mutant NSCLC cases who develop resis-
tance to EGFR TKIs based on Met proto-oncogene amplifica-
tion [6, 41]. The evaluation of the c-Met inhibitor tepotinib in
combination with the EGFR TKI gefitinib is ongoing to assess
their therapeutic efficacy [37, 42]. Therefore, identifying novel
small molecule inhibitors that can overcome gefitinib resis-
tance is still an urgent demand for NSCLC treatment.

Natural products are widely studied as potential therapeu-
tic antitumor agents due to their limited toxicity [43]. Lico A is
a novel flavonoid extracted from licorice root [23]. Lico A
efficiently exerts roles of anti-inflammation and antitumor
without significant side effects and drug toxicity. Relevant
studies indicated that the administration of Lico A alone
significantly reduced the size of the solid tumors in Balb/c
mice without any detectable induction of nephrotoxicity and
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Figure 3: Lico A inhibits c-Met signaling. (a) HCC827-GR (left) and PC-9-GR (right) cells were starved overnight with 0.1% FBS, and
pretreated with Lico A for 4 h. Cells were stimulated with 20 ng HGF for 5min, WCE was prepared and subjected to IB analysis. (b)
HCC827-GR (left) and PC-9-GR (right) cells were treated with Lico A for 48 h, WCE was subjected to IB analysis. (c) qRT-PCR analyzes
the mRNA levels of c-Met in Lico A-treated HCC827-GR (left) and PC-9-GR (right) cells. ∗p < 0:05 and ∗∗p < 0:01, (d) HCC827-GR
(left) and PC-9-GR (right) cells were treated with Lico A for 48 h, followed by incubation with MG132 for 6 h, WCE was subjected to IB
analysis. (e) HCC827-GR cells were treated with Lico A for 48 h, followed by incubation with MG132 for 6 h, WCE was subjected to
immunoprecipitation (IP) and IB analysis.
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Figure 4: c-Cbl is required for Lico A-induced c-Met degradation. (a) HCC827-GR cells were treated with Lico A for 48 h, followed by
incubation with MG132 for another 6 h. Cell lysates were subjected to co-immunoprecipitation (co-IP) analysis. (b) HCC827-GR cells
were transfected with si-c-Cbl for 24 h, followed by treated with Lico A for 48 h. Cells were incubated with MG132 for 6 h, WCE was
collected and subjected to IP and IB analysis. (c and d) HCC827-GR cells were transfected with si-c-Cbl for 24 h, followed by treated
with Lico A for 48 h. Cell viability (c) and colony formation (d) was analyzed by MTS and soft agar assay, respectively. ∗p < 0:05, ∗∗p <
0:01, and ∗∗∗p < 0:001. (e–g) HCC827-GR cells were transfected with si-c-Cbl for 24 h, followed by treated with Lico A for 48 h. WCE
was subjected to IB analysis (e), trypan blue exclusion assay (f) and Caspase-3 Assay Kit (g) was used for live cell population
examination and caspase-3 activity measurement, respectively. ∗p < 0:05 and ∗∗∗p < 0:001.
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hepatotoxicity [44]. Lico A had no adverse effect on HFF cell
viability at concentrations below 9μg/ml [45]. Concentrations
of 147.75μM or higher Lico A produced cytotoxicity in Chi-

nese hamster ovary (CHO) fibroblasts. Lower concentrations
(1.85 to 7.39μM) exhibited protective activity against chromo-
somal damage induced by doxorubicin (DXR) or methyl
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Figure 5: Lico A overcomes gefitinib resistance in vivo. (a) The tumor volumes of HCC827-GR-derived xenograft tumors with vehicle or
Lico A treatment. ∗∗∗p < 0:001. (b) Tumor weight of vehicle- or Lico A-treated xenograft tumors. ∗∗∗p < 0:001. Scale bar, 1 cm. (c) The body
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schematic illustration representing Licochalcone A inhibits c-Met signaling by promoting c-Cbl-mediated c-Met ubiquitination.
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methanesulfonate (MMS) in CHO cells [46]. While applying
selective Met inhibitors tepotinib or capmatinib, some clinical
trials revealed peripheral edema and nausea were the main
toxic effects [37, 47]. Thus, Lico A or the derivative is a poten-
tial candidate that deserves further cancer treatment study.
The present study demonstrated that Lico A dose-
dependently induced intrinsic apoptosis and exhibited anti-
proliferative efficacy against gefitinib-resistant NSCLC cells.

Licochalcone B and LicochalconeD, which are structurally
similar derivatives to Lico A, induce apoptosis by dual inhibi-
tion of EGFR and MET expression. Licochalcone B and
Licochalcone D inhibited both EGFR andMET kinase activity
by competing with their ATP-binding pockets [48, 49].
Moreover, Lico A was suggested as an Hsp90 inhibitor to
inhibit H1975 cells. Our results revealed that Lico A promoted
c-Cbl-mediated c-Met ubiquitination in gefitinib-resistant
HCC827-GR and PC-9-GR cells (Figure 5(f)). Consequently,
Lico A dose-dependently reduced c-Met protein level, as well
as the phosphorylation of c-Met, ERK1/2, and AKT. The
depletion of c-Cbl compromised the inhibitory effect of Lico
A against gefitinib-resistant NSCLC cells. Our study firstly elu-
cidated that Lico A promoted the ubiquitination of c-Met and
revealed a novel antitumor mechanism of the natural product
Lico A in NSCLC, indicating that activation of ubiquitination-
mediated protein degradation signaling might be a promising
antitumor strategy to overcome gefitinib resistance. Our study
further manifests that Lico A is a potential candidate for
targeted protein degradation and that the E3 ligase c-Cbl
and c-Met can be targeted for PROTAC drug discovery to
more efficiently cure cancer.

In addition to the secondary mutation in EGFR, multiple
EGFR-independent resistance mechanisms have been identi-
fied, including the bypass receptor tyrosine kinases (RTKs) acti-
vation (e.g. Met, HER2 amplification, and AXL pathway
activation), hyperactivation of downstream signaling (e.g.
PI3K and BRAF mutations), and histological transformations
(e.g. small cell transformation and epithelial-mesenchymal
transition) [50]. Moreover, tumor heterogeneity occurs with
different oncogenic driver mutations or resistance mechanisms.
The different resistant mutations may occur at a small clone of
tumor cells, and clonal evolution may develop during the
EGFR-TKIs treatment process [7, 51]. EGFR T790M mutation
can co-occur with ERBB2 and/or MET amplification, and AXL
expression can increase epithelial-mesenchymal transition.
These co-occurring mutations possibly influence the treatment
outcomes [6]. However, our study does not have the sequence
data on the mechanism underlying the gefitinib acquired resis-
tance in these two cell lines. It remains unknown whether other
EGFR-dependent or -independent resistant mechanisms syner-
gistically induce gefitinib resistance with c-Met activation. Also,
the inhibitory effect of Lico A on the crosstalk between different
resistance mechanisms needs further addressed. In addition,
whether other deubiquitinases (DUBs) stabilizing c-Met and
other related RTKs proteins participate in resistance mecha-
nisms and what effects Lico A exerts on DUBs to antagonize
acquired resistance, and TKIs also need further exploration to
fill the gap in the future.

In summary, the present study demonstrated that the
natural product Lico A inhibited c-Met signaling and dis-

rupted c-Met ubiquitination in a c-Cbl-dependent manner.
Targeting c-Met degradation is a promising strategy to abro-
gate gefitinib resistance in NSCLC cells. The current study
provided new insights on the role of Lico A in NSCLC treat-
ment and suggested that this compound may be a promising
therapeutic agent for gefitinib-resistant NSCLC.
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