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In this research, we introduce a comprehensive epidemiological model that accounts for
multiple strains of an infectious disease and two distinct vaccination options. Vaccination
stands out as the most effective means to prevent and manage infectious diseases. How-
ever, when there are various vaccines available, each with its costs and effectiveness, the
decision-making process for individuals becomes paramount. Furthermore, the factor of
waning immunity following vaccination also plays a significant role in influencing these
choices. To understand how individuals make decisions in the context of multiple strains
and waning immunity, we employ a behavioral model, allowing an epidemiological model
to be coupled with the dynamics of a decision-making process. Individuals base their
choice of vaccination on factors such as the total number of infected individuals and the
cost-effectiveness of the vaccine. Our findings indicate that as waning immunity increases,
people tend to prioritize vaccines with higher costs and greater efficacy. Moreover, when
more contagious strains are present, the equilibrium in vaccine adoption is reached more
rapidly. Finally, we delve into the social dilemma inherent in our model by quantifying the
social efficiency deficit (SED) under various parameter combinations.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Vaccination stands as the foremost strategy for preventing infectious diseases. However, the proliferation of diverse
vaccines has introduced a conundrum among individuals, creating confusion in the selection process (Buonomo, 2020; Khan
et al., 2022a, 2023; Zuo, Zhu, & Ling, 2022). This dilemma is exacerbated in the context of diseases with multiple strains,
accentuating the critical nature of informed vaccine selection (Khan et al., 2022a, 2023). The pivotal determinants in this
decision-making process revolve around the economic considerations associated with vaccination cost and the efficacy of the
chosen vaccine (Ariful Kabir, Jusup,& Tanimoto, 2019; Fenichela et al., 2011; Kabir, Risa,& Tanimoto, 2021; Kabir& Tanimoto,
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2020; Rajib Arefin, Masaki, Ariful Kabir, & Tanimoto, 2019; Tori & Tanimoto, 2022). Despite the established efficacy of
vaccination, not all individuals opt for this preventive measure. Some individuals acquire immunity through natural exposure
to infectious agents or contribute to the development of natural herd immunity. In specific cases, individuals may favor
periodic vaccinations, as exemplified by the seasonal administration of influenza vaccines (Chun-Miin Chen, 2021; Kabir,
2021; Rajib Arefin et al., 2019). Notably, the ongoing COVID-19 pandemic shares resemblances with seasonal influenza,
warranting recurrent vaccinations due to the diminishing protective effects over time (Markovi�c, �Sterk, Marhl, Perc,& Gosak,
2021; Nana-kyere et al., 2022;Webb, 2021;Wu, 2021; Zuo, Zhu,& Ling, 2022; Zuo, Zhu, Meng, et al., 2022). Individual choices
regarding vaccination are further molded by prevailing infection rates and the financial implications of vaccine acquisition.

In the examination of infectious disease models, compartmental models emerge as the preeminent tool for scientific and
healthcare management authorities. The foremost among these models is the SIR model, pioneered by Kermack and
McKendrick, delineating the progression of disease in humans through sequential transitions from the susceptible
compartment (S) to the infected compartment (I) and ultimately to the recovered compartment (R), where immunity to
reinfection develops (Kermack & McKendrick, 1927). The phenomenon of waning immunity, manifesting as relapses in
recovered individuals, introduces a nuanced consideration.

Certain epidemics necessitate the incorporation of additional compartments, such as Exposed (E), Quarantine (Q), Hos-
pitalized (H), and Asymptomatic (A), to comprehensively investigate disease dynamics (Buonomo, 2020; Cabrera, C�ordova-
Lepe, Guti�errez-Jara, & Vogt-Geisse, 2021; Dong, Xu, Ding, & Bo, 2023; Kabir et al., 2019a, 2019b; Khalaf & Flayyih, 2023;
Kumar & Abbas, 2022; Turkyilmazoglu, 2021, 2022a, 2022b; Tyson, Hamilton, Lo, Baumgaertner, & Krone, 2020; Utsumi,
Arefin, Tatsukawa, & Tanimoto, 2022; Wang, Liu, Zhang, & Xie, 2023). Furthermore, compartmental models find applica-
bility in exploring disease transmission interventions, including the scrutiny of supervision and moderation methods like
immunization, as well as the impact of demographic factors.

While SIR dynamics afford analysis of various elements such as resource exploitation, corruption, and the dissemination of
misinformation, it is noteworthy that most models tend to emphasize the pathogenesis of the illness rather than individual
behavior within specific circumstances. However, it is pivotal to acknowledge that numerous infectious disease control
strategies hinge on organizational and human decision-making processes (Buonomo, 2020; Kabir, Kuga, & Tanimoto, 2020;
Khan et al., 2023; Khan & Tanimoto, 2023; Markovi�c et al., 2021; Turkyilmazoglu, 2022b).

The nascent field of behavioral epidemiology, an amalgamation of game theory and psychology with epidemiology, has
gained significant attention in addressing this gap. Behavioral epidemiology diverges from fixed role paradigms, focusing on
individual behavior as a key determinant. In this context, sociophysics emerges as a cutting-edge discipline utilizing
Evolutionary Game Theory (EGT) and statistical physics to enhance the understanding of human behavior (Kabir, 2021; Kabir
et al., 2021; Kabir & Tanimoto, 2020; Khan et al., 2022a, 2022b, 2023; Khan & Tanimoto, 2023; Tanimoto, 2015, 2021).

An innovative approach, as exemplified by Bauch (Bauch, 2005), involves the integration of the SIR model with EGT to
scrutinize the dynamics of vaccine decision-making. By considering disease dynamics, total infected individuals, infection
cost, vaccination cost, and vaccine efficacy, this approach facilitates personalized vaccination decisions, culminating in the
concept of the “vaccination game”. The application of this method has yielded numerous insights and predictions pertinent to
vaccination campaigns (Kabir, 2021; Kabir et al., 2019b, 2020; Nishimura, Arefin, Tatsukawa, & Utsumi, 2023; Rajib Arefin
et al., 2019).

Aside from the standpoint of epidemiological modeling, the question of how people adopt a vaccine; whether willing to
commit or to avoid it, and which vaccine is favored amid several alternatives, is important. It should be said still a difficult
problem to reproduce in a mathematical model, although some field survey studies were explored (e.g. (Kabir, Ovi, Murtyas,
Hagishima, & Tanimoto, 2023)).

In this investigation, we present a comprehensive behavioral epidemic model featuring multiple strains, built upon the
SIRS/V dynamics and incorporating two distinct vaccination options. Our model allows individuals to make vaccination
choices based on key factors such as the total number of infected individuals, vaccination costs, and the efficacy of available
vaccines with the presence of wanning immunity (Chun-Miin Chen, 2021; Fahdilla, Putri, & Haripamyu, 2021; Hamami,
Cameron, Pollock, & Shankland, 2017; Nakata & Omori, 2015; Nishimura et al., 2023; Van Boven, De Melker, Schellekens,
& Kretzschmar, 2000). The multistrain context enables an exploration of how these behavioral dynamics influence the
dominance or coexistence of the two vaccination options over time (Khan et al., 2022a, 2023; Rajib Arefin et al., 2019).

Through the selection of critical parameters within our proposed model, we have computed the fractions of vaccinated
individuals at equilibrium, providing insights into the emergence of vaccine dominance. The behavioral model serves as a
framework for guiding individual vaccination strategies.

To delve into the societal implications of our model, particularly addressing the social dilemma, we utilize essential
metrics such as the basic reproduction number, waning rate of immunity, vaccination cost, inertial effect of vaccination rate,
and the sensitivity of vaccination choice to cost. Specifically, we quantify the Social Efficiency Deficit (SED), representing the
disparity between payoffs at the Nash Equilibrium (NE) and the Social Optimum (SO). This analysis sheds light on the societal
consequences of individual vaccination decisions, offering a nuanced understanding of the interplay between individual
choices and collective outcomes (Arefin, Kabir, Jusup, Ito, & Tanimoto, 2020; Ariful Kabir et al., 2019; Cabrera et al., 2021;
Kabir, 2021; Kabir et al., 2020, 2021; Kabir & Tanimoto, 2019; Khan et al., 2023; Khan & Tanimoto, 2023; Tori & Tanimoto,
2022; Turkyilmazoglu, 2022b; Wei, Lin, & Wu, 2019; Wu, 2021).
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2. Model depiction

2.1. Epidemic model

We considered an epidemiological model that consists of two vaccination compartments and n infected compartments
with the presence of n strain. All the people are considered Susceptible and initially belong to compartment S. Vaccination
compartment V1 contains those individuals who choose vaccine 1 which has a high cost and high efficacy while V2 contains
those individuals who choose vaccine 2 which is less costly and less efficacy. All the individuals will recover from strain and
move to the recovered or removed compartment R. Recovered individuals can be susceptible againwith the loss of immunity.
The transmission rate from the susceptible compartment is biðbi <biþ1Þ, where i starts from 1 to n. We consider both vac-
cinations imperfect so both individuals from the compartment V1 and V2 can be infected with any strain. e1i and e2i are
vaccine efficacy of vaccines 1 and 2. Here, the efficacy obeys the concept of effectiveness (Kuga & Tanimoto, 2018). So the
discounted transmission rates from vaccine 1 and vaccine 2 compartments will be ð1� e1iÞbi and ð1� e2iÞbi respectively. We
define the efficacy ratio er ¼ e1i

e2i
for the two vaccines for n strains to analyze the dynamics of vaccination. The recovery rates for

n strains are gi. In addition, we considered gi <giþ1 to keep the basic reproduction number at a fixed value which makes the
model simpler. With the rate u, individuals become susceptible again which we call the waning immunity. The schematic
diagram of the proposed model is shown in Fig. 1 and the set of Ordinary differential equations is as follows:

_S¼ � xS� yS�
Xn
i¼1

biSIi þ uR; (1)

Xn

_V1 ¼ xS�

i¼1

ð1� e1iÞbiV1Ii; (2)

Xn

_V2 ¼ yS�

i¼1

ð1� e2iÞbiV2Ii; (3)

_I ¼ ð1-e Þb V I þ b SI þ ð1-e Þb V I � g I
9>
1 11 1 1 1 1 1 21 1 2 1 1 1;

_I2 ¼ ð1-e12Þb2V1I2 þ b2SI2 þ ð1-e22Þb2V2I2 � g2I2;
………

_In ¼ð1-e1nÞbnV1In þ bnSIn þ ð1-e2nÞbnV2In � gnIn;

>=
>>; (4)
Fig. 1. The compartments and their transition of the proposed model.
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_R¼
Xn
i¼1

giIi � uR; (5)

Xn

SðtÞþV1ðtÞ þ V2ðtÞ þ

i¼1

IiðtÞ þ RðtÞ ¼ 1; (6)
2.2. Behavior model

For the vaccination flux from the susceptible to vaccination compartments, we considered the famous behavior model
originated by Bauch (Bauch, 2005). At rates x and y susceptible individuals can choose their vaccine 1 and vaccine 2
respectively. We define the dynamical equations:

_x¼m x ð1� xÞ
(
c
Xn
i¼1

Ii � kcv1

)
; (7)

_y¼m y ð1� yÞ
(
c
Xn
i¼1

Ii � kcv2

)
; (8)

where m is the inertial effect constant and k is the relative sensitivity to the vaccination cost. We considered the values of m
and kwill be equal to keep the general tendency for two vaccinations equal. cv1 and cv2 are the vaccination cost of vaccines 1
and 2 respectively where we consider that the cost of vaccine 1 is up to 1 and always greater or equal to the cost of vaccine 2
ði:e:;0 � cv1 � 1 and 0� cv2 � cv1Þ. c is the cost of disease that should be paid by every infected individual andwe consider that
the value of c is 1 throughout our work ði:e:;c ¼ 1Þ. With the increase in the value of the summation i.e., the total number of
infected individuals at any time twith all strains the above equations always increase the values of x and y i.e., the vaccination
uptake while increasing the cost of the vaccinations always reduces the vaccination uptake.
2.3. Basic reproduction number, vaccine equilibrium, fraction of vaccinated individuals, total vaccination, total infection, average
social payoff (ASP), social efficiency deficit (SED)

In this model, we considered the standard value of the basic reproduction number, R0 ¼ bi
gi
¼ 2:5 (Bauch, 2005). However,

in the latter segment of the discussion of the results, we also examined the interplay between vaccination behavior and
disease dynamics across various values of the basic reproduction number.

To get the vaccine equilibrium we need to set equations (7) and (8) equal to zero. i.e.,

_x¼m x ð1� xÞ
(
c
Xn
i¼1

Ii � kcv1

)
¼0

_y¼m y ð1� yÞ
(
c
Xn
i¼1

Ii � kcv2

)
¼0

Since, m; x; c
Pn

i¼1Ii � kcv1 cannot be zero because m ¼ 0 or x ¼ 0 implies constant or no vaccination flow and c
Pn

i¼1Ii is also
nonzero, the only possibility is ð1� xÞ ¼ 0 which implies x ¼ 1.

Similarly, we can get y ¼ 1.
So the equilibrium point for the vaccination is ðx;yÞ ¼ ð1;1Þ. This is assuming Ii are nonzero, k is positive and the conditions

between cv1 and cv2 ð0 � cv1 � 1 and 0� cv2 � cv1Þ are satisfied.
The fractions of vaccinated individuals for both vaccinations are defined as follows:

V1R¼
V1ð∞Þ

V1ð∞Þ þ V2ð∞Þ ; (9)

V2R¼
V2ð∞Þ

V1ð∞Þ þ V2ð∞Þ ; (10)

where t ¼ ∞ denotes a state of equilibrium or steady state (we say it, Nash equilibrium NE).
The total number of vaccinated individuals from vaccination 1, and vaccination 2 are defined as follows:
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V1T ¼
Z ∞

0
ðxSÞ dt; (11)

Z ∞

V2T ¼

0
ðySÞ dt; (12)

VT ¼V1T þ V2T; (13)
The total number of infected individuals from vaccination 1, vaccination 2, and susceptible are defined as:

IV1T ¼
Z ∞

0

 Xn
i¼1

bið1� e1iÞIiV1

!
dt; (14)

IV2T ¼
Z ∞

0

 Xn
i¼1

bið1� e2iÞIiV2

!
dt; (15)

IST ¼
Z ∞

0

 Xn
i¼1

biIiS

!
dt; (16)

IT ¼ IV1T þ IV2T þ IST ; (17)

where t ¼ ∞ denotes a state of equilibrium or steady state (we say it, Nash equilibrium NE).
The ASP at NE is defined as follows:

ASPNE ¼ � IT*c� V1T*cv1 � V2T*cv2; (18)

where the first term on the right-hand side indicates the total payoff due to infection and the second and third terms indicate
the payoffs of the individuals who commit vaccination 1 and vaccination 2 respectively.

By referencing the original definition of the Social Efficiency Deficit (SED), we assess the disparity between the Average
System Payoff (ASP) at the Nash Equilibrium (NE) and the ASP at the Social Optimum (SO), thereby discerning the potential
existence of a social dilemma within the present social-dynamical system (ASPSO). This analysis elucidates the means to
enhance the system's ASP, transitioning from an evolutionarily stable state (NE) to a theoretically optimal societal state,
maximizing the attainable ASPSO when all evolutionary processes represented by variables x and y are effectively managed
(Arefin et al., 2020).

It is defined as follows:

SED¼ASPSO � ASPNE; (19)
The SO state is a time-constant vector ðx ðfor SOÞ;y ðfor SOÞÞ, with x; y ranging in ½0;1�: Thus,

SO¼ arg max ½ASPðx ðfor SOÞ; y ðfor SOÞÞ�: (20)
When NE equals SO, SED implies zero. However, when the SED is positive but not zero, there is a social dilemma.

3. Results and discussion

3.1. Impact of waning immunity u on vaccination choice

In this section, we present time series data for compartments V1 and V2, with a focus on analyzing the impact of waning
immunity in the context of vaccination choices. The figures herein are generated using the established set of parameter values
outlined in Table 2. Furthermore, Table 3 provides the initial values for each compartment and the associated flow rates.
Within this framework, we examine various scenarios denoted by the parameter 00n00

which can take on values of 2, 3, and 4,
corresponding tomodels featuring two, three, and four viral strains, respectively. As previously noted, these newer strains are
characterized by higher transmission rates in comparison to their predecessors. In Fig. 2 (a)� (c), we illustrate the vaccination
compartments under the assumption of waning immunity (u ¼ 0:05) for two, three, and four strains, respectively. The time
series spans 3000 days. Across all cases in Fig. 2(a)� (c), it is evident that individuals consistently favor the second vaccine
option, characterized by lower cost and reduced efficacy. Fig. 2(d)� (f) provide insights into the flow rates from susceptible
individuals to vaccinated compartments, serving as a complementary visual representation to Fig. 2(a)� (c). These figures
661



Table 1
Description of the model parameters.

Parameter symbol Parameter Description

bi Disease Transference rate due to strain i
gi The recovery rate from strain i
e1i The efficacy of the vaccine 1 to strain i
e2i The efficacy of the vaccine 2 to strain i
er Efficacy ratio
m Inertial effect on migration from S to V1 and S to V2
k Sensitivity to vaccination due to cost
c Disease cost
cv1 Cost of the vaccine 1
cv2 Cost of the vaccine 2
u Waning rate against immunity

Table 2
Standard values of the parameters (Khan et al., 2022a, 2023; Tatsukawa et al., 2021, 2022; Utsumi et al., 2022).

Parameter Value Parameter Value Parameter Value Parameter Value

b1 0:4 g1 0:16 e11 0:9 e21 0:6
b2 0:6 g2 0:24 e12 0:6 e22 0:4
b3 0:8 g3 0:32 e13 0:3 e23 0:2
b4 1:0 g4 0:4 e14 0:2 e24 0:13
m 1:0 k 0:1 er 2=3 c 1:0
cv1 0:5 cv2 0:25 u 0:1

Table 3
Initial values for the compartments andmigration rates (Khan et al., 2022a, 2023; Tatsukawa et al., 2021, 2022; Utsumi et al., 2022).

State At t ¼ 0 State/Rate At t ¼ 0

S 0:994 R 0:00
V1 0:001 x 0:01
V2 0:001 y 0:01
Ii ði ¼ 1;4Þ 0:001
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reveal that the transition to compartment V2 occurs more rapidly, approaching equilibrium and reaching values close to 1
before the transition to V1. This suggests that susceptible individuals are more inclined to choose a vaccine V2 over vaccine V1.

Fig. 3(g) � (h) present time series data for compartments V1 and V2, considering two, three, and four strains, all under the
assumption of waning immunity with a parameter value of u ¼ 0:1. Within each panel, we observe a noteworthy phe-
nomenon where Vaccine 1 eventually supersedes Vaccine 2 over time. Furthermore, the increasing number of strains
characterized by higher transmission rates leads to an earlier preference for Vaccine 1 among individuals. Fig. 3(j)� (l) display
a comparative analysis of flow rates. In each case, the rates eventually converge to an equilibrium state ðx ¼ 1;y ¼ 1Þ, with the
number of strains showing a positive correlation with the speed at which equilibrium is reached.

Fig. 4(m) � (n) provide a detailed analysis of time series data for compartments V1 and V2, taking into account two, three,
and four viral strains while incorporating awaning immunity parameter of u ¼ 0:2. In each of these panels, a consistent trend
emerges where Vaccine 1 eventually surpasses Vaccine 2, underscoring the temporal dynamics. Furthermore, as the number
of strains increases, each characterized by higher transmission rates, Vaccine 1 establishes its preference among individuals at
an earlier stage. Fig. 4(p) � (r) present a comparative examination of flow rates. In each scenario, these rates gradually
approach equilibrium ðx ¼ 1;y ¼ 1Þ, and once again, we observe that the introduction of a greater number of strains leads to
an accelerated attainment of equilibrium, mirroring the pattern observed in the previous case.

3.2. Comparison between the fraction of vaccinated individuals at equilibrium

In the preceding section, we presented outcomes based on the consideration of 2, 3, and 4 strains. Remarkably, our
findings indicated a consistent trend when utilizing more than two strains. Consequently, for the subsequent sections of the
results, we exclusively employed a 4 � strain configuration to conduct a comprehensive analysis of the remaining outcomes.

In this section, we delve into an examination of the equilibrium fractions of vaccinated individuals, as described by
equations (9) and (10), while varying key parameters. Fig. 5 visually represents the proportion of individuals at equilibrium
who have chosen vaccine 1. In panels (a) � (d), we construct heatmaps by varying the values of R0 (ranging from 0.1 to 5.1)
along the y� axis and u (ranging from 0.0 to 0.5) along the x� axis. Additionally, we introduce four distinct values of the
efficacy ratio er (specifically, 15;

1
3;

2
3 ; and 1) to analyze the dominance dynamics between vaccine 1 and vaccine 2. All other

parameters are maintained at their standard values as outlined in Table 1.
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Fig. 2. In the temporal evolution of the vaccination dynamics concerning two, three, and four strains with a specified value of u ¼ 0:05, the standard parameters
remain unchanged. Panels (a) � (c) illustrate timeseries data for the number of vaccinated individuals at time t, with the red curves denoting those who opted for
vaccine 2 and the green curves representing individuals who selected vaccine 1. Across all scenarios, it is evident that Vaccine 2 consistently dominates
throughout the entire temporal span. Moving on to panels (d) � (f), the focus shifts to the vaccination rates. Here, the observation reveals a consistent dominance
of y (Vaccine 2) until the mentioned period (T ¼ 3000 days). Throughout this period, y maintains superiority in the vaccination rates over other options. In
summary, the visual representation of the timeseries data underscores the persistent dominance of Vaccine 2 in terms of both the number of vaccinated in-
dividuals and the vaccination rates, irrespective of the varying number of strains considered, with u held constant at 0.05.
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Across every panel (a) � (d), we discern three distinct regions. The upper right region gradually transitions from red to
white as er increases. According to the definition in EGT, these regions indicate predominance by vaccine 1, except for panel
(d), where light red hues suggest that the value of V1R is slightly more than 0.5. In panel (d), we can infer that when er is close
to 1, both vaccines hold an equal priority (coexistence) among individuals due to their identical efficacy. In cases where R0 and
u are substantial, the choice of vaccination is not significantly affected, provided the efficacies of the vaccines remain equal.

Conversely, the bottom light blue regions and the dark blue regions in themiddle signify predominance and dominance by
vaccine 2 respectively. When R0 falls below 1, it indicates that the disease is unlikely to spread extensively, leading individuals
to opt for themore cost-effective vaccine. Efficacy holds little sway over vaccination behavior when the disease's transmission
is limited. However, as R0 surpasses 1 and u increases, individuals tend to select the less expensive vaccine until a certain
threshold is reached. Beyond this point, individuals opt for the vaccine with higher efficacy, despite the higher cost.

Fig. 6 presents a depiction of the equilibrium fractions of individuals who have opted for vaccine 1. In panels (a) � (d), we
construct heatmaps by varying the cost of vaccine 1 (cv1) within the range of 0.0e1.0 along the y� axis and the cost of vaccine
2 (cv2) within the range of 0.0 to cv1 along the x� axis. Moreover, we consider four distinct values of the efficacy ratio (er) -
specifically, 1

5;
1
3;

2
3, and 1 to analyze the dominance dynamics between vaccine 1 and vaccine 2. All other parameters are

maintained at their standard values as specified in Table 1.
Across each panel (a)� (d), we observe two primary regions. The upper region gradually transitions from light to dark blue

as er increases, predominance of vaccine 2 becomes dominant. When er is close to 1, individuals tend to opt for vaccine 2,
which is the more cost-effective choice.

Conversely, the lower light red regions in every panel, except for panel (d), indicate the predominance of vaccine 1. In panel
(d), these regions become white, signifying a coexistence of the two vaccines. Hence, when the cost of vaccine 1 becomes
663



Fig. 3. In the context of a specified value of u ¼ 0:1, and with the standard parameters remaining unchanged, we examine the timeseries of vaccination
compartments and rates for two, three, and four strains. Panels (g) � (i) display the number of vaccinated individuals at time t, with the red curves indicating
those who opted for vaccine 2 and the green curves representing individuals who chose vaccine 1. Notably, in each scenario, a discernible shift occurs, and after a
certain duration, Vaccine 1 emerges as the dominant choice. This shift in dominance is particularly pronounced in the presence of highly transmissible multiple
strains, resulting in an earlier attainment of vaccine equilibrium. Turning attention to panels (j) � (l), which illustrate the vaccination rates, it is observed that
both x and y reach equilibrium point 1 after a certain duration. This indicates that, despite initial variations, both vaccines eventually stabilize at the same
equilibrium point over time. In summary, the timeseries analysis underscores the dynamic nature of vaccine dominance, with Vaccine 1 emerging as the
dominant choice after a certain period. Additionally, the impact of highly transmissible multiple strains is evident in the accelerated arrival of the vaccine
equilibrium. In terms of vaccination rates, both x and y eventually converge to equilibrium point 1, demonstrating a stabilization of the system over time.
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significantly higher, approaching the cost of managing the disease (c), individuals tend to prefer vaccine 2, regardless of
whether the efficacies of the vaccines are equal or unequal.

Fig. 7 presents an analysis of the equilibrium fractions of individuals who have chosen vaccine 1. In panels (a) � (d), we
construct heatmaps by varying the parametermwithin the range of 0.0e1.0 along the y� axis and the parameter kwithin the
range of 0.0e1.0 along the x� axis. Additionally, we consider four distinct values of the efficacy ratio (er), specifically, 15;

1
3;
2
3, and

1 to examine the dynamics of dominance between vaccine 1 and vaccine 2. All other parameters remain set at their standard
values as specified in Table 1.

Across every panel (a) � (d), we observe three distinct regions. In panels (a)� (c), the left region is predominated by
vaccine 1, while in panel (d), the left region becomes coexistent. As the efficacy ratio increases, there is a transition from
vaccine 1 dominance to coexistence. This shift occurs because, in scenarios characterized by low sensitivity and a high level of
inertial effect, individuals tend to prefer the vaccine with a higher cost. Conversely, higher relative sensitivity leads to the
emergence of dark blue regions in every panel, where vaccine 2 becomes the dominant choice. In essence, high sensitivity
implies a preference for the less expensive vaccination option.

Of particular interest are the regions in panels (a) � (c) and the third region, which disappears in panel (d), located in the
upper right corner with dark red hues. In this region, vaccine 1 dominates, primarily due to the substantial increase in the
inertial effect, leading to a heightened flow of vaccination, particularly with a high cost. However, this region diminishes as
the efficacy ratio increases. In other words, when efficacy becomes equal, cost takes precedence in the choice of vaccination,
favoring vaccine 2.
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Fig. 4. Temporal profiles of vaccination compartments and rates are examined for two, three, and four strains with u held constant at 0.2, while the remaining
parameters adhere to the standard configuration. In panels (m) � (o), the red curves delineate the count of individuals vaccinated at time t who selected vaccine
2, while the green curves represent those who chose vaccine 1. Notably, in each scenario, there is a discernible temporal pattern where Vaccine 1 attains
dominance after a specific duration. The concurrent presence of highly transmissible multiple strains expedites the establishment of vaccine equilibrium. Turning
attention to panels (p)� (r), which depict vaccination rates, it is observed that both x and y converge to equilibrium point 1 after a certain duration. In contrast to
the findings in Fig. 3, a notable observation is the earlier dominance of vaccine 1 in every scenario. In summary, the analysis of the timeseries data underscores
the temporal dynamics of vaccine dominance and equilibrium, particularly accentuated by the presence of highly transmissible multiple strains. The acceleration
of the dominance of vaccine 1 is a notable departure from the observations in Fig. 3.

Fig. 5. Heatmaps are employed as a visual tool to illustrate the proportion of individuals who have selected vaccine 1 at equilibrium. Panels (a) � (d) showcase
four distinct heatmaps, each corresponding to different efficacy ratio values (er) of 1

5;
1
3;

2
3, and 1. The spatial orientation is delineated by the waning immunity rate

(u) along the x-axis, ranging from 0 to 0.5, and the basic reproduction number (R0) along the y-axis, ranging from 0.1 to 5.1. The color gradient on the heatmap
scale varies from 0 to 1, with blue denoting the prevalence of vaccine 2, red indicating the dominance of vaccine 1, and white representing the co-existence of
both vaccines.
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Fig. 6. Heatmaps are utilized to visualize the proportion of individuals who have opted for vaccine 1 at equilibrium. Panels (a) � (d) present four distinct
heatmaps corresponding to efficacy ratio values (er) of 1

5;
1
3;

2
3, and 1. All the panels are drawn in terms of the cost of vaccine 1 (cv1) along the y-axis ranging from

0 to 1 and the cost of vaccine 2 (cv2) along the x- axis both ranging from 0 to cv1. The color gradient on the heatmap scale ranges from 0 to 1, where blue indicates
the dominance of vaccine 2, red signifies the dominance of vaccine 1, and white denotes the co-existence of both vaccines. Note that there is almost no sensitivity
from cv2. It is conceivable just because vaccines 1 or 2 give predominant results from the ratio of those two vaccine costs, not absolute values.

Fig. 7. Heatmaps serve as a visual aid to depict the proportion of individuals choosing vaccine 1 at equilibrium. Panels (a) � (d) present four distinct heatmaps,
each corresponding to various efficacy ratio values (er) of 1

5;
1
3;

2
3, and 1. The spatial arrangement is determined by the impact of sensitivity to vaccination cost (k)

along the x-axis, ranging from 0 to 1.0, and the influence of the inertial effect of vaccination rate (m) along the y-axis, ranging from 0.0 to 1.0. The color spectrum
on the heatmap scale ranges from 0 to 1, where blue indicates the predominance of vaccine 2, red signals the dominance of vaccine 1, and white signifies the co-
existence of both vaccines.
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3.3. Analysis of average social payoff (ASP) and social efficiency deficit (SED)

3.3.1. ASP and SED in terms of basic reproduction number and waning immunity
The top row of Fig. 8 provides an overview of key metrics for the NE state, including the total number of vaccinated in-

dividuals, the total number of infected individuals, and the Average Social Payoff (ASP). The second row focuses on the SO
state, featuring the total number of vaccinated individuals, the total number of infected individuals, the ASP, and the Social
Efficiency Deficit (SED). All panels are presented in terms of the waning immunity rate (u) along the x� axis (ranging from 0.0
to 0.5) and the Basic Reproduction Number (R0) along the y� axis (ranging from 0.1 to 5.1).

In panel (a), when R0 is less than 1, the number of vaccinated individuals remains very low. Similarly, in panel (b), if R0 is
less than 1, the number of infected individuals is minimal. Combining these factors and considering their associated costs in
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Fig. 8. The total number of vaccinated people, the total number of infected people, ASP, and SED. Panels (a) � (c) are for the NE case and panels (d) � (f) are for
the SO case. Panel (g) represents the SED, which is the difference between panels (f) and (c). All the panels are drawn in terms of the waning immunity rate (u)
along the x� axis ranging from 0 to 0.5 and the basic reproduction number (R0) along the y� axis both ranging from 0.1 to 5.1 The total number of vaccinated
people is depicted with a range from 0 to 310, the total number of infected people is depicted with a range from 0 to 360, the ASPs are depicted with a range from
� 470 to 0 and the SED is depicted with a range from 0 to 110. The other parameters are the same as in the basic case. From the figures, we see that the social
dilemma appears just after R0 crosses 1 and decreases for a while and then again monotonically increasing with the increase in both waning immunity rate and
basic reproduction number. The dilemma will be maximum if both R0 and u is maximum.
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panel (c), the ASP is also low when R0 is less than 1. This aligns with the understanding that an R0 less than 1 implies limited
disease spread, resulting in low vaccination and infection rates, consequently yielding a low ASP.

As R0 surpasses 1, all panels (a) � (c) demonstrate a monotonic increase in the number of vaccinated and infected in-
dividuals as both R0 and u increase. Consequently, the ASP exhibits a corresponding monotonic increase.

Panels (d) � (f) illustrate the social optimum cases, showcasing a similar trend to panels (a)� (c) but with relatively lower
values. Panel (g), depicting the Social Efficiency Deficit (SED), highlights distinctive regions. When the basic reproduction
number (R0) is below 1 (indicated by the dark purple region), and the disease does not propagate significantly, resulting in an
absence of an actual social dilemma regarding vaccination. Subsequently, a yellow region emerges with an elevation in R0,
signifying the onset of disease spread. This phase represents a transient state from a disease-free condition to a diseased state.
In the presence of multiple vaccines, individuals face heightened uncertainty regarding the decision to undergo vaccination
and the selection of the most beneficial vaccine. Following this transitional phase, a conventional scenario unfolds when R0
surpasses 1. In this case, the disease becomes established, prompting individuals to opt for vaccination and reducing the social
dilemma, as indicated by the purple region. Moreover, as both R0 and the waning immunity rate (u) increase, the social
dilemma exhibits a monotonic escalation, transitioning from purple to yellow regions. The social dilemma attains its
maximum magnitude when both R0 and u reach their peak values.

The top row of Fig. 9 provides a comprehensive overview of crucial metrics for the NE state, including the total number of
vaccinated individuals, the total number of infected individuals, and the Average Social Payoff (ASP). The second row focuses
on the SO state, featuring the total number of vaccinated individuals, the total number of infected individuals, the ASP, and the
SED. Each panel is delineated by the cost of vaccine 1 (cv1) along the y� axis (ranging from 0 to 1) and the cost of vaccine 2 (cv2)
along the x� axis (ranging from 0 to cv1).

In panel (a), the total number of vaccinated individuals reaches a minimum when both vaccine costs are maximized, a
scenario that aligns with expectations. As the cost of vaccine 1 increases significantly, panel (b) illustrates a corresponding
increase in the total number of infected individuals.

Panel (c) depicts the ASP, considering the total number of infected and vaccinated individuals multiplied by their asso-
ciated costs. Notably, an increase in vaccination costs leads to a rise in the total average social payoff.

In the social optimum (SO) panels (d) � (f), the suggested strategy is to maximize the number of vaccinated individuals,
minimize the number of infected individuals, and consequently, minimize the ASP respectively. The difference between panel
(f) and panel (c) is represented in panel (g), illustrating the SED. In the SED panel, it is evident that an increase in both vaccine
costs exacerbates the social dilemma, reaching its maximum when both costs are at their highest levels.

A detailed analysis of the most important metrics for the NE state is shown in the upper row of Fig. 10. These metrics
include the total number of vaccinated persons, the total number of infected individuals, and the Average Social Payoff (ASP).
The second row focuses on the SO state, featuring the total number of vaccinated individuals, the total number of infected
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Fig. 9. The total number of vaccinated people, the total number of infected people, ASP, and SED. Panels (a) � (c) are for the NE case and panels (d) � (f) are for
the SO case. Panel (g) represents the SED, which is the difference between panels (f) and (c). All the panels are drawn in terms of the cost of vaccine 1 (cv1) along
the y� axis ranging from 0 to 1 and the cost of vaccine 2 (cv2) along the x� axis both ranging from 0 to cv1. The total number of vaccinated people is depicted
with a range from 0 to 130, the total number of infected people is depicted with a range from 0 to 140, the ASPs are depicted with a range from � 220 to � 120
and the SED is depicted with a range from 0 to 80. The other parameters are the same as in the basic case. From the figures, we see that the social dilemma is
maximum when both the cost is maximum.
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individuals, the ASP, and the SED. Each panel is delineated by the inertial effect of vaccination (m) along the y� axis (ranging
from 0 to 1) and the sensitivity parameter (k) along the x� axis (ranging from 0 to 1).

In panels (a) � (b), an observable trend emerges, indicating that an increase in the inertial effect (m) and a decrease in the
sensitivity parameter (k) correspond to an increase in vaccination uptake and a decrease in the number of infected in-
dividuals. This alignment is plausible, as a higher inertial effect tends to boost vaccination uptake, while lower sensitivity to
cost reduces vaccination uptake. The impact on infected individuals follows a similar pattern.
Fig. 10. The total number of vaccinated people, the total number of infected people, ASP, and SED. Panels (a) � (c) are for the NE case and panels (d) � (f) are for
the SO case. Panel (g) represents the SED, which is the difference between panels (f) and (c). All the panels are drawn in terms of the relative sensitivity due to
vaccination cost (k) along the x� axis ranging from 0 to 1 and the inertial effect of vaccination rate (m) along the y� axis both ranging from 0 to 1. The total
number of vaccinated people is depicted with a range from 0 to 130, the total number of infected people is depicted with a range from 0 to 150, the ASPs are
depicted with a range from � 180 to � 130 and the SED is depicted with a range from 0 to 30. The other parameters are the same as in the basic case. From the
figures, we see that the social dilemma is monotonically increasing with the increase of m and decrease of k.
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Panel (c) presents the Average Social Payoff (ASP), combining the outcomes from panels (a) and (b) with their associated
costs. The ASP is depicted as not being particularly sensitive to the parameters m and k.

In the social optimumpanels (d)� (e), vaccination remains at a maximum level, and infection remains at a minimum level.
Given that the parameters m and k are not present in the equations for vaccination flow, the social optimum suggests that
both vaccination and infection should incur minimum costs. Panel (f), representing the average social payoff, also exhibits low
sensitivity to the parameters m and k.

The difference between panel (f) and panel (c) is represented in panel (g), depicting the Social SED. In the SED panel, a
monotonic increase in the dilemma is observed with an increase in the inertial effect (m) and a decrease in the sensitivity
parameter (k). This illustrates that a higher inertial effect and lower sensitivity lead to an escalation of the social dilemma.

4. Conclusion

The dynamics of infectious diseases and the vaccination process are invariably shaped by individual behaviors. In the
context of multistrain infectious diseases such as seasonal influenza and COVID-19, the decision-making process is pre-
dominantly contingent upon factors such as the cost and efficacy of available vaccinations. Furthermore, the rate of waning
immunity constitutes a crucial determinant in the selection of vaccinations.

In the context of epidemic models, each individual is initially regarded as susceptible and possesses the freedom to opt for
any available vaccination. The initial selection is contingent upon factors such as the overall count of infected individuals, as
well as the cost and efficacy of the vaccinations. Typically, individuals tend to opt for vaccinations with lower costs. Given the
inherent imperfections in vaccinations, individuals experience a gradual decline in immunity over time. Consequently, the
phenomenon of waning immunity also exerts a notable influence on the selection of vaccinations, particularly in consider-
ation of their long-term efficacy.

Some previous studies also studied these kinds of models. Epidemicmodels withmultiple vaccination options considering
cost and efficacy were mentioned in (Rajib Arefin et al., 2019). The vaccination behavior of humans and the waning immunity
effect in epidemic models were also analyzed in (Buonomo, 2020; Kabir, 2021; Khan et al., 2022a, 2023; Wu, Zhang, Song, &
Xia, 2024; Zuo et al., 2022a, 2022b). Some analytic and numerical simulations concerning the multistrain epidemic model
were presented in (Khan et al., 2022a, 2023; Rajib Arefin et al., 2019). Human behavior towards vaccination involving cost and
efficacy was studied in (Ariful Kabir et al., 2019; Kabir& Tanimoto, 2020; Khan et al., 2023; Rajib Arefin et al., 2019). However,
no other studies were conducted concerning a multi-strain epidemic model considering two vaccination options in the
presence of waning immunity and the cost-effectiveness of vaccinations.

In our current study, we employed behavior equations to scrutinize vaccination choices, considering the presence of
multistrain dynamics. Through numerical simulations, we observed an initial preference among individuals for vaccines with
lower costs and reduced efficacy. However, as the waning rate increased, there was a shift towards favoring vaccines with
higher costs and efficacy. Notably, the presence of multistrain dynamics led to an earlier attainment of vaccine equilibrium.

Our subsequent investigation focused on vaccine dominance, revealing scenarios where both vaccines could dominate
within specific parameter ranges. Additionally, we identified instances of co-existence, where both vaccines were chosen
equally. The analysis of equilibrium highlighted that increasing the efficacy ratio between two vaccines diminished certain
dominance patterns.

Furthermore, our examination delved into the social dilemma inherent in the model. We computed average social payoffs
at equilibrium, encompassing costs associated with infection and vaccination. A comparisonwasmadewith socially optimum
average social payoffs, determined by considering a time-constant vaccination rate for both vaccines. Discrepancies between
these two payoffs elucidated the social efficiency deficit, explaining the social dilemma inherent in the model. Our findings
indicated that escalating waning immunity rates and transmission rates heightened the social dilemma. Regarding vacci-
nation costs, the dilemma reached its maximum when both vaccination costs were at their peak. Moreover, the social
dilemma was exacerbated when the sensitivity constant related to vaccination cost was minimized, and the inertial effect of
vaccination rate was maximized.

Our exploration of vaccination behavior, vaccine dominance, and the social dilemma was conducted using a simple or-
dinary differential equation model (mean-field approximation). The inclusion of a social context in our data lends credibility
to our results. In future investigations, we plan to employ a multiagent simulation approach to further analyze and validate
these findings.
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