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Abstract: In this work, silica nanoparticles were produced in situ, to be embedded eventually in the
polyamide layer formed during interfacial polymerization for fabricating thin-film nanocomposite mem-
branes with enhanced performance for dehydrating isopropanol solution. The nanoparticles were
synthesized through a sol-gel reaction between 3-aminopropyltrimethoxysilane (APTMOS) and 1,3-
cyclohexanediamine (CHDA). Two monomers—CHDA (with APTMOS) and trimesoyl chloride—were
reacted on a hydrolyzed polyacrylonitrile (hPAN) support. To obtain optimum fabricating conditions,
the ratio of APTMOS to CHDA and reaction time were varied. Field emission scanning electron
microscopy (FESEM) and atomic force microscopy (AFM) were used to illustrate the change in
morphology as a result of embedding silica nanoparticles. The optimal conditions for preparing
the nanocomposite membrane turned out to be 0.15 (g/g) APTMOS/CHDA and 60 min mixing of
APTMOS and CHDA, leading to the following membrane performance: flux = 1071 ± 79 g·m−2·h−1,
water concentration in permeate = 97.34 ± 0.61%, and separation factor = 85.39. A stable performance
was shown by the membrane under different operating conditions, where the water concentration in
permeate was more than 90 wt%. Therefore, the embedment of silica nanoparticles generated in situ
enhanced the separation efficiency of the membrane.

Keywords: thin-film; membrane; silica; pervaporation; interfacial polymerization

1. Introduction

Membrane technology replaces traditional separation processes because it is consid-
ered to be greener and more economical. Fabricating superior membranes is one of the
key factors in obtaining high separation efficiencies. Different fabrication techniques have
been applied to produce a wide variety of porous or dense membranes. Porous membranes
are suitable for microfiltration, ultrafiltration, and membrane distillation, whereas dense
membranes are usually used for reverse osmosis, forward osmosis, gas separation, perva-
poration, and vapor permeation [1,2]. For solvent dehydration, pervaporation is the most
commonly used separation process. Solvents, such as alcohols, tetrahydrofuran, and acetic
acid, have been dehydrated through pervaporation [3].

Polymeric membranes are widely used for pervaporation dehydration because they are
cheap, flexible, easy to process, and cost-effective. Membranes prepared through interfacial
polymerization demonstrate a promising performance compared to those prepared through
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a dry-phase inversion process. Such membranes are called thin-film composite (TFC)
membranes, in which a reaction occurs between an aqueous-phase monomer and an
organic-phase monomer [4]. TFC membranes are usually composed of a dense selective
layer (10–200 nm) on top of a porous support, and this layer is responsible for high
separation efficiencies. Furthermore, each layer can be optimized to produce membranes
with a higher performance [5]. Depending on the solvent, however, polymeric membranes
are prone to swelling; thus, many researchers modify polymeric membranes with inorganic
materials, such as silica [6–10], titanium dioxide [11–14], silver [15–17], zeolites [18–22],
molybdenum sulfide [23–25], and clay [26–29].

Among the inorganic materials, silica is the most widely used because its synthesis
is low-cost and easy to control. In preparing TFC membranes, inorganic particles can
be mixed with the aqueous phase or the organic phase to embed them in the resultant
thin selective layer. The process of synthesizing inorganic particles is an additional step
considered by several studies in fabricating membranes with enhanced performance. For
example, Fathizadeh et al. [22] dispersed nano-NaX zeolite in an organic phase of trimesoyl
chloride (TMC) to fabricate thin-film nanocomposite (TFN) membranes. They found that,
at an appropriate concentration of nano-NaX zeolite, the permeation flux and separation
factor were enhanced. Vatanpour et al. [14] dispersed titanium oxide/carbon dots in
the aqueous phase to improve the membrane performance. Their modified membrane
exhibited a smoother surface and a lower water contact angle than the unmodified one; in
turn, the TFN polyamide membrane had better permeability. Layered double hydroxides
(LDH), a type of clay, was mixed with an organic TMC solution by Zhao et al. [26], and it
was consequently embedded in the polyamide layer formed at the end of the interfacial
polymerization process. The water permeability of their membrane improved without
sacrificing its selectivity because of the moderate enlargement of the interlayer spacing
in LDH. Cheng et al. [30] dispersed graphene oxide in an aqueous phase to fabricate
a nanofibrous TFC membrane. The embedment of graphene oxide was conducive to
delivering a high permeation flux, along with an improved separation factor, during the
dehydration of isopropanol at 70 ◦C. Ang et al. [9,10] synthesized different sizes of silica
nanospheres and different shapes of hollow silica. Suitable size and shape improved both
the water flux and the antifouling property. All the aforementioned studies synthesized the
nanoparticles separately. Therefore, the cost of the production of membranes was more
expensive because of the additional synthesis processes and purification steps.

The innovation in this work is that silica nanoparticles were synthesized in situ. That
is, the production of the nanoparticles was on-site. They were formed from the sol-gel
reaction between 3-aminopropyltrimethoxysilane (APTMOS) and 1,3-cyclohexanediamine
(CHDA); the ratio of APTMOS to CHDA was varied. Thus, no separate steps for the
separation and purification of nanoparticles were necessary, and these are the advantages
of our approach over that adopted by the previous studies described above. The growth
of the silica nanoparticles was affected by the APTMOS concentration and the duration
of stirring during the synthesis. This aqueous solution of CHDA with in situ-generated
silica nanoparticles was directly used to react with TMC to carry out interfacial polymer-
ization. As a result, a polyamide layer with embedded silica nanoparticles was formed on
a hPAN support. The embedment of silica nanoparticles generated in situ improved the
membrane selectivity. Through this simplified approach, which integrated in situ formation
of nanoparticles (i.e., the synthesis occurred in place), the cost of fabricating nanocomposite
membranes would be reduced.

2. Materials and Methods
2.1. Materials

Polyacrylonitrile (PAN) was provided by Tong-Hwa Synthesis Fiber Co. Ltd. (Taipei,
Taiwan). N-methyl-2-pyrrolidone (NMP) was supplied by Tedia Company Inc. (Fairfield,
OH, USA). CHDA and TMC were bought from Tokyo Chemical Industry Co. Ltd. (Tokyo,
Japan). APTMOS was manufactured by Sigma-Aldrich (Saint Louis, MO, USA). Toluene,
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and methanol were acquired from Echo Chemical (Miaoli, Taiwan). IPA was provided
by UNI-ONWARD Corp., New Taipei City, Taiwan. Sodium hydroxide was from Fullin
Chemical Co. Ltd., Taipei, Taiwan.

2.2. Synthesis of Hydrolyzed Polyacrylonitrile Support

In a 100 mL bottle, 15 g of PAN was dissolved in 85 mL NMP at room temperature,
with constant stirring at 200 rpm for 24 h. The solution was degassed for 1 day to remove the
bubbles generated from the previous step. Afterward, it was cast on nonwoven polyester
using a casting knife with a gap of 100 µm. The cast film was immediately immersed in
water for solidification, forming the PAN support. It was washed with water several times
to completely remove the excess NMP. For the process of hydrolysis, the wet PAN support
was immersed in 2 M NaOH at 50 ◦C for 10 min. Finally, the hPAN support was washed
until the pH of the wash solution became neutral. Prior to interfacial polymerization, the
hPAN was stored in distilled water.

2.3. Fabrication of Silica-Modified Thin-Film Nanocomposite Membranes

Figure 1 illustrates the membrane fabrication. A 0.5 wt% TMC/toluene solution was
prepared as an organic-phase solution. CHDA and different amounts of APTMOS were
dissolved in water, where the concentration of CHDA was fixed at 0.5 wt%. The solution of
CHDA with APTMOS was stirred for 1 h to carry out the sol-gel reaction. After that, the
hPAN was immersed in the aqueous-phase solution for 5 min. The excess solution was
then gently pressed out using a glass rod. Subsequently, the TMC solution was poured
onto the hPAN support to induce the interfacial polymerization reaction between CHDA
and TMC for 3 min. Finally, the membrane was dried at room temperature. To remove the
excess monomers, it was washed with methanol and dried again at room temperature.
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Figure 1. Schematic diagram of preparing a thin-film nanocomposite membrane with embedded
silica nanoparticles generated in situ from the reaction between APTMOS and CHDA.

2.4. Membrane Characterization

The surface chemical functional groups and elemental composition were examined using
attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy (Perkin Elmer
Spectrum 100 FTIR Spectrometer, Waltham, MA, USA) and K-Alpha™ + X-ray photoelectron
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spectrometry (XPS, ThermoFisher Scientific Inc., Renfrew, UK), respectively. The membrane
was vacuum-dried before it was placed on the ATR-FTIR sample stage. Field emission
scanning electron microscopy (FESEM, S-4800, Hitachi Co, Tokyo, Japan) was used to
capture the surface and cross-sectional images of the membranes. For the determination
of the surface morphology, samples were attached to an FESEM stage with carbon tape,
and for the cross-sectional FESEM images, samples were freeze-fractured, and then the
fractured samples were affixed to the FESEM stage. Before the FESEM test, the samples
were sputtered with Pt dust to protect the membranes during the test. Nanoparticle sizes
were analyzed using transmission electron microscopy (TEM, JEOL JEM-2100, Tokyo,
Japan). To measure the thickness of the selective layer and the size of the nanoparticles,
ImageJ software was used. Surface roughness (root mean square, Rq) was quantified
using atomic force microscopy (AFM, NanoScope® V, Bruker, Billerica, MA, USA). Samples
were attached to an AFM sample stage. The image was then captured with a scan size of
10 × 10 µm. The membrane hydrophilicity was evaluated using an automatic interfacial
tensiometer (PD-VP Model, Kyowa Interface Science Co. Ltd., Niiza-City, Saitama, Japan).
After 1 min of contact between the water drop and the membrane surface, the water contact
angle was measured and recorded.

2.5. Pervaporation Test

The membranes, having an effective area (A) of 7.07 cm2, were tested using a laboratory-
made pervaporation apparatus [31]. A 70% aqueous isopropyl alcohol (IPA) solution at
25 ◦C was fed into the system. The downstream pressure was fixed at 1.0 cmHg, and the
sampling time was after 15 min. A trap was employed to collect the permeate, which
was frozen at the point of collection, as the trap was immersed in liquid nitrogen. Gas
chromatography (China Chromatography, GC 2000, Taipei, Taiwan) was used to measure
the concentrations of feed and permeate. The permeation flux (J) and separation factor (β)
were calculated using the following equations.

J =
m
At

(1)

β =
Yw/YIPA

XW/ XIPA
(2)

The mass in the trap was represented by m, which was collected after 15 min of
sampling time (t). YW and XW were the concentrations of water in permeate and feed, re-
spectively. YIPA and XIPA were the concentrations of IPA in permeate and feed, respectively.

3. Results and Discussion
3.1. Surface Chemical Property

Figure 2 indicates the ATR-FTIR spectra of three membranes. The peak at 2241 cm−1 of
hPAN corresponds with stretching vibration of CN bands, whereas the peak at 1735 cm−1 is
attributed to CO stretching bands. As a result of interfacial polymerization between CHDA
(with APTMOS) and TMC, a polyamide layer was formed on top of the hPAN support, and
its formation is evidenced by the appearance of strong peaks of amide I and amide II at
1641 and 1556 cm−1, respectively [32]. The peak at 1391 cm−1 of TFN is attributed to CH2
vibration of APTMOS, and changes in the peak around 1102–1041 cm−1 (Figure 2b) suggest
the embedment of silica coming from the Si-O-Si chain [33]. The chemical compositions of
TFC and TFN membranes, as deduced from their XPS analysis, are listed in Table 1. TFN
has 1.29% Si on its surface, implying that APTMOS underwent a sol-gel reaction to form
a network with CHDA. Therefore, silica nanoparticles were generated in situ during the
preparation of TFN through interfacial polymerization.
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650 cm−1; (b) wavenumber from 1400 to 650 cm−1.

Table 1. Elemental compositions of TFC and TFN membranes.

C (%) O (%) N (%) Si (%)

TFC 72.60 16.38 11.02 -
TFN 74.55 14.98 9.18 1.29

3.2. Morphology and Water Contact Angle Analysis

The surface of the hPAN membrane is smooth (Figure 3a). Among the three mem-
branes described in Figure 3, hPAN has the lowest surface roughness (Rq = 23.23 ± 1.02 nm)
(Figure 3d). From the interfacial polymerization between CHDA and TMC on top of hPAN,
a TFC membrane was formed. Its structure shows nodules on the surface (Figure 3b), the
roughness of which is 56.97 ± 5.10 nm (Figure 3e). With the incorporation of APTMOS into
CHDA, silica nanoparticles were generated in situ by way of a sol-gel reaction, and the
surface of the resulting membrane is shown to be very rough (Figure 3c), indicated by a
surface roughness of 119.67 ± 6.85 nm (Figure 3f). Distinct silica nanoparticles can also be
observed (Figure 3c).

To determine the size of the silica nanoparticles embedded in the polyamide layer, the
following procedure was conducted. A solution of CHDA with APTMOS was dropped
onto a copper mesh (200-mesh size) coated with a carbon film, which served as a sub-
strate. A drop of TMC solution was then added to the CHDA solution. Upon contact
of the two solutions, interfacial polymerization immediately took place. A polyamide
layer with embedded silica nanoparticles was formed on the substrate. Afterward, the
unreacted monomers were washed away with methanol, and the substrate with a layer of
polyamide-silica was vacuum-dried. Through TEM, the nanoparticle size was measured to
be 27.45 ± 5.87 nm (Figure 4). The TEM image provides support that silica nanoparticles
were formed from the reaction between APTMOS and CHDA, which were eventually
embedded in the polyamide layer.

It can be discerned from Figure 3h,i that the TFC membrane has a thicker polyamide
layer (158.03 ± 24.72 nm) than the TFN membrane (107.55 ± 14.58 nm). The presence of
silica nanoparticles in the CHDA solution hindered the reaction between CHDA and TMC,
resulting in a thinner polyamide layer for the TFN membrane. Furthermore, amine in
APTMOS could also react with TMC, and this is also a probable reason for the production
of a thinner polyamide layer.
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Figure 4. TEM image of silica nanoparticles embedded in the polyamide layer.

Figure 5 presents the water contact angle of different TFN membranes. Increasing the
ratio of APTMOS to CHDA from 0 to 0.15 also increases the contact angle from 44.2 ± 3.7◦ to
69.95 ± 0.77◦. This increase is because of the presence of CH2 groups in silica nanoparticles
on the membrane surface, making the membrane less hydrophilic. This is the effect of
the presence of silica nanoparticles; having a less hydrophilic surface adversely affects the
membrane performance. The next section discusses the advantages of embedding silica
nanoparticles in the polyamide layer.
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3.3. Membrane Performance

The conditions for fabricating the membranes were varied in terms of the follow-
ing variables: ratio of APTMOS to CHDA and mixing time. The optimum conditions
would give the highest membrane performance. Figure 6a illustrates the effect of the
ratio of APTMOS to CHDA on separation efficiency. From 0 to 0.15 g APTMOS/g CHDA,
the flux decreases from 1659 ± 90 to 1071 ± 79 g·m−2·h−1, whereas the water concen-
tration in permeate increases from 90.02 ± 3.62% (β = 21.05, taken from Figure 6b) to
97.34 ± 0.61% (β = 85.39). Adding APTMOS created a new Si-O-Si network around the
polyamide chain, leading to the blockage of defects in the chain, resulting in high selectivity.
However, increasing the ratio to 0.2 g APTMOS/g CHDA led to oversaturation of silica
nanoparticles or too much silica network in the aqueous phase, causing an interruption in
the reaction between CHDA and TMC. This interruption created more defects in the selec-
tive layer, resulting in low efficiency when separating water from isopropanol. Therefore,
the optimal ratio is 0.15 g/g APTMOS/CHDA.
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The time for mixing CHDA and APTMOS affects the growth of silica nanoparticles in
an aqueous CHDA solution (Figure 7). From 30 to 60 min, the permeation flux decreases
while the water concentration in permeate increases (Figure 7a). When the mixing time
is less than 60 min, the amount of silica nanoparticles in an aqueous CHDA solution is
probably inadequate to cover up the defects in the polyamide network, and this results
in an increased separation factor (Figure 7b). However, when the mixing time is 120 min,
the permeation flux increases to 1416 ± 70 g·m−2·h−1, with the water concentration in
permeate equal to 94.25 ± 0.83% (β = 38.25, as deduced from Figure 7b). The low separation
factor for a mixing time of more than 60 min is attributed to a lot of nanoparticles in an
aqueous CHDA solution, leading to an aggregation of the nanoparticles and a strong
interruption in the reaction between CHDA and TMC. This could result in a defective
polyamide layer. Therefore, 60 min is the optimal mixing time.
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Figure 7. Effect of APTMOS and CHDA mixing time on pervaporation membrane performance, as a
function of (a) permeation flux and water concentration in permeate and (b) separation factor. APT-
MOS/CHDA ratio = 0.15; reaction temperature = 30 ◦C; concentration of IPA = 70 wt%; downstream
pressure = 1 mmHg; and operating temperature = 25 ◦C.

3.4. Operating Conditions

The operating conditions can be adjusted to attain the maximum membrane per-
formance. Increasing the downstream pressure from 1 to 9 cmHg decreases both the
permeation flux and the separation factor (Figure 8). The upstream pressure is constant
at 760 mm Hg. At a low downstream pressure, the desorption rate of molecules during
pervaporation is fast because of the strong driving force, leading to a high permeation flux.
However, increasing the downstream pressure decreases the flux. According to Dalton’s
law, the effect of augmenting the downstream pressure at the same upstream pressure is to
weaken the vacuum (in other words, the driving force is reduced).

Figure 9a displays the membrane performance at different concentrations of IPA
in the feed. From 10 to 90 wt% IPA, the permeation flux decreases from 2538 ± 143 to
531 ± 26 g·m−2·h−1. The water concentration in permeate also decreases from 98.66 ± 0.65
to 92.04 ± 1.71%. At a low concentration of IPA, there is a high driving force for water to
penetrate the membrane, leading to a high permeation flux. As to the separation factor, it is
optimal at 70 wt% IPA (Figure 9b).

Figure 10 evaluates the stability of TFN membranes at different temperatures. As
can be discerned from Figure 10a, when the feed temperature increases from 25 to 70 ◦C,
the permeation flux also increases from 1071 ± 79 to 4048 ± 330 g·m−2·h−1, while the
water concentration in permeate also increases from 97.34 ± 0.61 to 99.4 ±0.3% (the
equivalent separation factor is indicated in Figure 10b, increasing from β = 85.38 to
β = 386). Increasing the temperature enhances the driving force, the effect of which
is to hasten the motion of the molecules, resulting in an increased driving force of satu-
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ration vapor pressure on the upstream side. Thus, the permeation flux increases [34]. In
addition, at a high temperature, the free volume in the membrane is enlarged, allowing
more molecules to pass through easily. During pervaporation at high temperatures, the
water molecules have a strong interaction with the membrane (for example, hydrogen
bonding between the membrane and water), resulting in decreased dissolution or sorption
rate. Therefore, the water molecules can be transported faster than IPA, leading to the
enhancement of the separation factor at high temperatures.
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flux and water concentration in permeate and (b) separation factor. APTMOS/CHDA ratio = 0.15;
mixing time = 60 min; reaction temperature = 30 ◦C; concentration of IPA = 70 wt%; and operating
temperature = 25 ◦C.

Membranes 2022, 12, x FOR PEER REVIEW 9 of 14 
 

 

± 1.71%. At a low concentration of IPA, there is a high driving force for water to penetrate 

the membrane, leading to a high permeation flux. As to the separation factor, it is optimal 

at 70 wt% IPA (Figure 9b). 

 

 

Figure 8. Membrane performance at different downstream pressures, in terms of (a) permeation 

flux and water concentration in permeate and (b) separation factor. APTMOS/CHDA ratio = 0.15; 

mixing time = 60 min; reaction temperature = 30 °C; concentration of IPA = 70 wt%; and operating 

temperature = 25 °C. 

 

 

Figure 9. Membrane performance at different IPA concentrations in feed, in terms of (a) permeation 

flux and water concentration in permeate and (b) separation factor. APTMOS/CHDA ratio = 0.15; 

mixing time = 60 min; reaction temperature = 30 °C; downstream pressure = 1 mmHg; and operating 

temperature = 25 °C. 

Figure 10 evaluates the stability of TFN membranes at different temperatures. As can 

be discerned from Figure 10a, when the feed temperature increases from 25 to 70 °C, the 

permeation flux also increases from 1071 ± 79 to 4048 ± 330 g∙m−2∙h−1, while the water con-

centration in permeate also increases from 97.34 ± 0.61 to 99.4 ±0.3% (the equivalent sepa-

ration factor is indicated in Figure 10b, increasing from β = 85.38 to β = 386). Increasing 

the temperature enhances the driving force, the effect of which is to hasten the motion of 

the molecules, resulting in an increased driving force of saturation vapor pressure on the 

Figure 9. Membrane performance at different IPA concentrations in feed, in terms of (a) permeation
flux and water concentration in permeate and (b) separation factor. APTMOS/CHDA ratio = 0.15;
mixing time = 60 min; reaction temperature = 30 ◦C; downstream pressure = 1 mmHg; and operating
temperature = 25 ◦C.

Figure 11 demonstrates the long-term performance of the TFN membrane in circulated
mode. For a period of 168 h, the membrane has a stable permeation flux and water
concentration in permeate. These data suggest that the membrane appears to have no
tendency to undergo swelling, even for a long period of operation. Table 2 lists the
performance of the membrane, in comparison with that of several membranes reported
in the literature. At a similar IPA concentration in feed and operating temperature, the
overall performance of our TFN membrane is comparable to that of the other membranes.
Although some membranes were reported to have a high separation factor, the permeation
flux turned out be very low.
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Figure 10. Membrane performance at different operating temperatures, in terms of (a) permeation
flux and water concentration in permeate and (b) separation factor. APTMOS/CHDA ratio = 0.15;
mixing time = 60 min; reaction temperature = 30 ◦C; concentration of IPA = 70 wt%; and downstream
pressure = 1 mmHg.
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Figure 11. Membrane performance for a period of 168 h. APTMOS/CHDA ratio = 0.15; mixing
time = 60 min; reaction temperature = 30 ◦C; concentration of IPA = 70 wt%; downstream pressure =
1 mmHg; and operating temperature = 25 ◦C.

Table 2. Comparison of data on performance of various pervaporation membranes for dehydrating
isopropanol solution.

Membrane IPA in Feed
(wt%)

Temperature
(◦C)

Permeation Flux
(g·m−2·h−1)

Water Conc. in
Permeate (wt%)

Separation
Factor (β) Reference

TFN 70 25 1071 97.34 85 This work
Chitosan-HMDI/PSf 70 30 1600 97.1 78 [35]

PDAA/PVDF 70 25 2411 95.7 52 [36]
HEC/SA/PAN 70 22 1212 95.54 50 [37]

CS/PSf 70 50 900 98 114 [38]
PVA-MA-PL (3 wt%)/PA-17 80 22 296 98.2 218 [39]

PVA-g-PNHMA 87.4 40 11 93.2 95 [40]
PVA-g-PNHMA 87.4 30 8.5 98.12 362 [41]
PERVAP® 2201 70 60 300–400 98.5 153 [42]
PERVAP® 2510 87.5 70 1100 99.2 868 [43]

4. Conclusions

In this work, we adopted a simplified but versatile approach of fabricating TFN
membranes with enhanced performance through the integration of silica nanoparticles
generated in situ. The size of the embedded silica nanoparticles in the polyamide layer was
27.45 ± 5.87 nm. This embedment led to an increased water contact angle for the membrane,
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resulting in a higher separation factor. If the weight ratio of APTMOS to CHDA was 0.15
and the time of mixing APTMOS and CHDA was 60 min, then the resultant TFN membrane
delivered optimum performance (flux = 1071 ± 79 g·m−2·h−1, water concentration in
permeate = 97.34 ± 0.61%). Generating silica nanoparticles from the reaction between
APTMOS and CHDA created a new Si-O-Si network around the resultant polyamide
chain, which served to block the defects in the chain, and this translated to high selectivity.
Embedding silica nanoparticles that were generated in situ enhanced the stability of TFN
membranes subjected to different operating conditions, such as temperature, concentration
of IPA in feed, and downstream pressure. The technique applied in this study is a step-up
as far as incorporating inorganic nanoparticles into TFN membranes is concerned, as the
need to separately synthesize, recover, and purify the nanoparticles is eliminated.
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