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SUMMARY
Characterizing likelihood of response to neoadjuvant chemotherapy (NAC) inmuscle-invasive bladder cancer
(MIBC) is an important yet unmet challenge. In this study, a machine-learning framework is developed using
imaging of biopsy pathology specimens to generate models of likelihood of NAC response. Developed using
cross-validation (evaluable N = 66) and an independent validation cohort (evaluable N = 56), our models
achieve promising results (65%–73% accuracy). Interestingly, one model—using features derived from he-
matoxylin and eosin (H&E)-stained tissues in conjunction with clinico-demographic features—is able to strat-
ify the cohort into likely responders in cross-validation and the validation cohort (response rate of 65% for
predicted responder compared with the 41% baseline response rate in the validation cohort). The results
suggest that computational approaches applied to routine pathology specimens of MIBC can capture differ-
ences between responders and non-responders to NAC and should therefore be considered in the future
design of precision oncology for MIBC.
INTRODUCTION

Urothelial carcinoma of the bladder is the fourth most common

cancer seen in men.1 Urothelial carcinoma of the bladder is

generally classified into either muscle-invasive bladder cancer

(MIBC), specifically invasion of carcinoma into the detrusor mus-

cle of the bladder (pathologic stage T2 or higher), as compared

with non-muscle-invasive disease. Radical cystectomy (RC)

with urinary reconstruction is generally considered as baseline

standard treatment for MIBC, when clinically a viable option.

Randomized controlled trials and subsequent meta-analyses

comparing cisplatin-based neoadjuvant chemotherapy (NAC)

followed by RC versus RC alone has demonstrated a small

(5%–10%) but significant survival benefit associated with plat-

inum-based combination chemotherapy.2–5 A careful review of

these previous randomized controlled trials of platinum-based

combination NAC highlights an important phenomenon: patients

who exhibit a pathologic response to NAC (which can be defined

as the absence of muscle-invasive disease at RC following NAC)

have a 5-year survival rate of approximately 80%–90%, while

those with residual MIBC at RC have a 5-year survival rate of

approximately 30%–40%; this is a robust difference and is

notably different than the roughly 50% 5-year survival for pa-
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tients with MIBC treated by RC alone. While only a modest

5%–10% benefit in 5-year survival is observed with NAC in all

comers, appropriate patient stratification based on well-de-

signed biomarkers of responsiveness will yield clinical action-

able information to best guide the treatment of MIBC patients.

In the context of NAC prior to RC, these biomarkers will need to

be able to be derived from tissue sampled prior to NAC and RC,

fromwhich a likelihoodof tumor response can begenerated. A va-

riety of types of biomarkers have been considered, spanning clin-

ical factors (such as demographic and extent of disease), tumor

intrinsic molecular factor (both somatic mutational feature and

gene expression derived features/subtypes), and tumor extrinsic

factors (state andcompositionof the tumor immunemicroenviron-

ment), as has been recently reviewed.2 In the context ofmolecular

features ofMIBCcancer that havebeen reported to be associated

with response to NAC, there has been considerable interest in the

characterization of luminal and basal subtypes of MIBC.6,7

Over thepast fewyears,wehavewitnessedagrowing interest in

applying various machine learning techniques to whole slide im-

ages derived from pathology specimens, commonly referred to

as digital pathology. These efforts have spanned the detection

ofmetastatic carcinoma in lymphnodes of breast cancer patients,

CAMELYON17,8 along with the development of system to grade
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prostate cancer biopsies.9 These techniques can generally be

divided into approaches that use deep neural networks to extract

features or methods that extract features via more conventional

feature engineering approaches. In this study, we seek to further

characterize a cohort we have previously reported on in terms of

the various types of predictive features of NAC responsiveness

described above. Specifically, we will examine imaging data

frompathologybiopsy tissuesstainedbyboth routinehematoxylin

and eosin (H&E) along with immunohistochemical stains for

various proteins, including cyclin D1, P16, P53, P63, Ki67, CK20,

CK5/6, GATA3, andHer2Neu. Of note, some of these immunohis-

tochemistry (IHC) staining patterns (CK5/6, CK20, and GATA3)

can be used to infer the luminal and basal subtypes described

above. In this study, we will use the imaging from H&E staining

along with the IHC to extract various features from cell nuclear

morphometry, IHC staining, along with spatial metrics based on

the topologyof thecell nuclei in the tissue. Thesewill subsequently

be used to develop predictive models of likelihood of response to

NAC using robust machine learning techniques.

In this study, a broad spectrum of computationally derived

features was developed both at the level of the single cell and re-

gions of tissue as represented in the cores of the tissue microar-

rays we examined. These features cover image texture, nucleus

morphology, clustering, and spatial correlations. Subsequently,

we applied robust image processing and feature selection with

machine learning techniques to evaluate the predictive and

prognostic performance using cross-validation and an external

validation cohort. We aim to characterize possible response-

modulating factors that may better guide the use of platinum-

based chemotherapy in the context of patients with MIBC.

RESULTS

Sample preparation and cohort characteristics
We examined two tissue microarray (TMA) datasets of pre-NAC

treatment MIBC, whose characteristics and composition have

been reported previously (Johns Hopkins discovery cohort10–12

and University Hospital Bern independent validation cohort13–15).

Sections fromthediscoverycohortwerestainedwithconventional

H&Ealongwith IHCofcyclinD1 (HUGOGeneNomenclatureCom-

mittee symbol: CCND1), P16 (CDKN2A), P53 (TP53), P63 (TP63),

Ki67 (MKI67), CK20 (KRT20), CK5/6 (KRT5/6), GATA3, and Her2-

Neu (ERBB2; Figures 1A and 1B).

In the validation cohort, only H&E was available. For the pur-

poses of this study, model training and cross-validation were

performed on the discovery cohort and external validation was

performed on the validation cohort. 7 patients were excluded

from the discovery cohort due to lack of treatment cycles (%2).

Part of the demographic and clinicopathological features were

highlighted in Figure 1C. Please refer to previous studies listed

above for complete clinical characterization of these cohorts.

The study design was summarized in Figure 1D.

Computational framework
A computational framework was proposed to extract features

from histology slides for patient stratification. The framework in-

cludes a central module and five submodules. First, TMAs were

digitized and then imported to open-source image analysis soft-
2 Cell Reports Medicine 2, 100382, September 21, 2021
ware QuPath.16 In QuPath, the preprocessing step, including

stain vector correction and core selection (see STAR Methods),

was performed to prepare qualified cores for computations (Fig-

ure 2). First, image texture features were directly computed from

raw H&E images. Next, core-level image registration and nuclei

segmentation were performed to capture colocalized nuclei

with respective labels. For each nucleus, centroid coordinate

and a set of boundary points were both produced in this process.

This information is input to compute nuclei morphology, clus-

tering, and spatial correlational features. Then, a pathologist-su-

pervised random tree-based classifier was trained to classify

cells and nuclei into lymphocytes, cancer cells, and stromal

cells, and their spatial distributions and correlations were quan-

tified. The outputs from feature computations modules were

combined to complete the feature matrix.

Image preprocessing
‘‘TMA dearrayer’’ of QuPath identifies grid arrangements, and

each grid represents a TMA core. The discovery cohort was rep-

resented on two TMAs from which multiple sections were taken

that were stained for routine H&E along with multiple IHC. This

thereby necessitated registration of the individual TMA core im-

ages for our analyses. Tissue area variations of the identified

cores across different sections from the TMAs were calculated

(see STAR Methods) and visualized as a heatmap (Figure 3A),

wherein blue indicates low variability and red indicates high vari-

ability; the cross sign suggests at least one level for this core was

marked as missing due to lack of tissue (such cores were dis-

carded from downstream analysis). Area boxplot for a high vari-

ability (red in Figure 3B) suggested that area polarization and

clustering may contribute to the high variations. As the spatial

correlations between nuclei from different sections were

computed in this study, image registration was required to co-

localize different nuclei extracted from corresponding sections.

Due to the sequential orientation of the sections taken from the

TMAs, rather than a single reference image, we identified ‘‘adja-

cent’’ sections that were suitable for registration. To identify

adjacent sections for robust image registration, we developed

a three-step section grouping pipeline using t-distributed sto-

chastic neighbor embedding (t-SNE) and k-means clustering al-

gorithms (see STAR Methods). This resulted in the identification

of groups of sections from the TMAs that exhibited high intra-

group Spearman’s rank coefficient, thereby supporting the

notion that they are suitable for registration (Figures 3C and

S1–S4). Furthermore, TMA sections identified as adjacent visu-

ally have comparable local tissue landmarks that laid the basis

for image registration (Figures 3D and 3E; see STAR Methods).

Next, dice similarity coefficient (DSC) was employed to validate

the registration accuracy.17 Results show that the average

DSC scores reach over 0.95 for these TMA cores from the dis-

covery cohort (Figure 3F), supporting the proposed registration

pipeline. Outliers were mainly caused by the registration be-

tween incomplete sections of TMA cores. In the validation

cohort, the extracted TMA core images from the H&E stains

were subjected to color deconvolution to match the stain vector

estimated of H&E from the validation cohort. There was only a

single section of the validation cohort TMA; therefore, the regis-

tration pipeline described above was not needed.



Figure 1. Summary of image preparation and cohort characteristics
(A) Sample collection pipeline. Resected tumor tissues were collected from patients and several tissue cores with a 1-mm diameter. These cores were then

deployed to fill a recipient array block for immunohistochemistry. The stained-tissue microarray was then scanned for visualization and downstream analysis.

Scale bar, 200 mm.

(B) Representative images from the TMAs. Corresponding to the text legend from top to bottom, images are arranged left to right, top to bottom. Scale bar, 20 mm.

(C) Patient demographical features for two TMA datasets. Among all patients, 37 show response (R) to neoadjuvant chemotherapy while 60 do not (NR).

(D) Study design. The discovery cohort was selected for model training and cross-validation. Trained models were then tested on the independent validation

cohort.
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Image analysis and feature computations
Cores that passed preprocessing from both datasets were

subject to image analysis and feature extraction. A deep

learning-based algorithm StarDist18 was used to segment cells

from section with nuclear staining (H&E, cyclin D1, Ki67,

GATA3, P16, P53, and P63), and a classical watershed algorithm
was used to segment cells from sections with membranous or

cytoplasmic staining (CK5/6, CK20, and Her2Neu). Furthermore,

9 classifiers, each corresponding to a unique IHC stain, were

trained to distinguish stain-positive nuclei. Because no classifi-

cation was needed for H&E segmentations, the performance of

segmentation algorithm itself was evaluated. But for IHC-stained
Cell Reports Medicine 2, 100382, September 21, 2021 3



Figure 2. Diagram of computational framework

The framework is initiated by tissuemicroarrays (TMAs) construction and image generation. Next, image preprocessing calibrates stain vectors for each TMA and

then an area-variation-based criteria was adapted to select qualified cores for computational analysis. Afterward, image registration and segmentation were

performed on all TMAs to obtain colocalized nuclei with respective labels. Nucleus centroid and a set of boundary points were the readouts in this process that are

further loaded to feature computation modules to complete the feature matrix construction.
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sections, the segmentation and classification were treated as an

integrated workflow such that the evaluation reflected their joint

performance (seeSTARMethodsandsupplemental information).

The numerical estimates calculated in this process are deposited

atMendeley Data. In general, high precision and recall rateswere

achieved throughout all using cases. Moreover, a strong relation

between the algorithmic detections and manual approach was

observed (Spearman’s rank coefficient r = 0.9966 for H&E and

an average r = 0.9728 for all processes with regard to IHCs).

Linear regression results show that the slopes of fitted lines

were always around 1 across all cases. Altogether, the segmen-

tation algorithms and workflows show remarkable performances

in segmenting nuclei and have strong agreements with human

eyes and therefore validated for downstream computations. Pa-

rameters for algorithm setups were listed in Tables S1–S4.

In this study, computational features from qualified locations

were extracted to formulate the final feature matrix. To calculate

image texture features (see STAR Methods), cores with H&E
4 Cell Reports Medicine 2, 100382, September 21, 2021
staining were tiled into a series of 220 3 220 pixels rectangular

tiles and transformed into grayscale images. Depending on the

tissue size, the number of tiles per core ranges from 1 to 137

(median = 83) for the discovery cohort and from 5 to 178 (me-

dian = 136) for the validation cohort. For each 2D image matrix,

13 first-order statistics were calculated. Then, 12 distinct gray-

level co-occurrence matrices (GLCMs) were created to compre-

hensively capture the texture variations. For each GLCM, 21

second-order statistics were computed (Figure 3A). In this

part, 265 raw features are computed for each tile. To calculate

the nucleus morphology features (see STAR Methods), a set of

boundary points for each nucleus was recorded and 18 raw

shape descriptors, such as areas and perimeters, were docu-

mented. To calculate the clustering features (see STAR

Methods), Delaunay triangulations were generated for each

core and a distance threshold was applied to identify clusters

by removing long edges (Figure 4D). Then we measured 5 de-

scriptors to characterize clustering features. Previous studies



Figure 3. Image preprocessing pipeline
(A) For the TMAs of the discovery cohort, tissue areaswere calculated over all stained sections and coefficient of variation (CoV) was computed. The CoVmatrices

were then visualized as heatmaps. Cross signs indicate at least one area value was missing due to insufficient tissue detected within the associated core. Such

positions were discarded from further analysis. Scale bar, 200 mm.

(B) Area boxplot for a position (B-10, evaluable n = 8) with high variability suggests areas with specific stained sections were grouping with each other.

(C) t-SNE algorithm discovered TMA section adjacency groups for the section derived from the two TMAs that constituted the discovery cohort (evaluable labels

for both set n = 9). Pearson correlation coefficients were calculated for within- versus across-section adjacency groups, with representative examples shown

herein confirming the high correlation coefficient for within-adjacency group comparisons. Evaluable section pairs (n) = 96 for TMA set 1 and n = 121 for set 2.

(D) Similar local tissue landmarks shared by the cores with adjacent sections.

(E) Tissue boundaries are also registered using the transformation matrices generated during each image-level registration. Scale bar, 200 mm.

(F) DSC scores distribution for the discovery cohort. Though there are some outliers, the cohort achieved >0.95 mean DSC scores. Evaluable section pairs (n) =

801.
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have shown the predictive value of cell/nucleus orientation en-

tropy (COrE) in predicting recurrence in prostate cancer and

non-small cell lung cancer.19,20 We further extended the scope
to predict treatment outcomes in MIBC. In this study, cell sub-

graphs were defined by each cluster, and cell and nucleus orien-

tations were defined by calculating their first principal
Cell Reports Medicine 2, 100382, September 21, 2021 5



Figure 4. Image texture features, nucleus

morphology, and clustering feature compu-

tations

(A) Image patches were generated from original

H&E cores and then transformed to grayscale. For

each grayscale pixel matrix, 12 different combi-

nations of distance and angle were adapted to

create 12 unique gray-level co-occurrence

matrices (GLCMs). Features were then extracted

from each GLCM. Scale bar, 20 mm.

(B) Shape descriptors were calculated for each

segmented nucleus based on the boundary point

set. Scale bar, 20 mm.

(C) First principal component was computed for

each nucleus, and the angle of the component

vector with horizontal direction was then derived to

characterize the nucleus’s orientation.

(D) Delaunay triangulations and thresholding and

cell/nucleus orientation entropy (COrE) map

delineated in (C) jointly educated the render of the

angle-pair co-occurrence matrix (APCM). Clus-

tering and COrE features were computed for each

cluster and APCM.
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components. Two inputs jointly created a co-occurrence matrix

to capture angle pairs that co-occur in each cluster (Figure 4C).

We then computed 13 second-order statistics from each matrix.

Spatial correlations were evaluated within groups with at least

2 IHC sections identified using t-SNE algorithm. For all IHC-

stained sections within such groups, their associated nuclei

coordinates were converted into point patterns and multi-type

Ripley’s K function KijðrÞ was used to compute spatial statistical

features (see STAR Methods); note that the order of subscrip-

tions reflects the computation order (i.e., KijðrÞ computes the

Ripley’s K from points of type i to points of type j). As KijðrÞ and
KjiðrÞ are not equal analytically, each pair of point patterns was

evaluated twice with inverse input order (Figure 5A). Herein
6 Cell Reports Medicine 2, 100382, September 21, 2021
and referring back to Figure 3C, we

computed 14 features for subset 1 and

24 features for subset 2, expressed in per-

mutation formulas. The common features

between two sets were selected for

feature matrix.

To compute cell populational features,

a pathologist-supervised, random tree-

based classifier was trained to classify

cells and nuclei from H&E slides into lym-

phocytes, cancer cells, and stromal cells

(see STAR Methods). Then, we extracted

following cell populational statistics from

H&E tissue cores: first, KijðrÞ again was

applied to cell type pairs to compute

spatial dependencies (Figures 5B and

5C). Next, a spatial adjusted Shannon’s

entropy ESP was implemented tomeasure

the diversity of cell species.21 The metric

is spatially resolved as it incorporates

the factor of distance. Theoretically, the

increase of distance between the same
type of points and the decrease of distance between different

types of points cause the increase of entropy (see STAR

Methods). As a result, low entropy scores are associated with re-

gions where cell type dominancy occurs and high entropy scores

are associated with diversified regions (Figure 5D). Evolved from

spatial entropy analysis of different cell types, it is of interest to

know whether they correlate with each other. For example, lym-

phocytes exhibit better anti-tumor immunity if they infiltrate into

bulk tumors, but their effects are canceled when physical stro-

mal barriers are presented nearby.22 A straightforward way to

quantify the spatial correlation was measuring direct proximity

for a single cell by identifying the number of nearest neighbors

of each external type within 20 mm (Figure 5E). Spatial proximity



Figure 5. Spatial correlational and cell populational features computation

(A) Point patterns for a subset of labels from TMA subset 2 adjacency group 3. For each ‘‘adjacency’’ group identified using t-SNE algorithm, point patterns with

each member marker (e.g., GATA3) were identified and spatial Ripley’s K function, KðrÞ, was computed. For each computation, KðrÞwas evaluated at a series of

distances until reaching a maximum distance of 20 mm. KðrÞ produced theoretical and observation curves, and the area difference was calculated as spatial

statistical features. Blue line, theoretical curve; red line, observation curve.

(B) Cell classification workflow: segmented nuclei data were subjected to cell classification and spatial dependency characterization using KðrÞ. Subscription: L
(lymphocytes); C (cancer cells). Scale bar, 20 mm.

(C) Cell classification results. Cancer cells are generally large, immune cells are small and round, and stromal cells are usually elongated. The distributions of these

cell types were then compared using boxplot and tri-plot: cancer cells prevailed other cell types over all cores from the discovery set. Scale bar, 20 mm. In TMA

subset 1, evaluable cores (n) = 30 for responders and n = 36 for non-responders; in TMA subset 2, evaluable cores (n) = 24 for responders and n = 52 for non-

responders. Comparisons for densities between cell types were assessed using Wilcoxon rank-sum test. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

(D) ESPwas calculated to capture spatial heterogeneity. As a result, low ESP was found to associate with homogeneous regions, whereas high ESP scores

associate with heterogeneous regions. Scale bar, 20 mm.

(E) Direct spatial proximity is a measure for every single cell by counting the number of cells of exterior types within the 20-mm range.

(F) Degree of colocalization (DoC) score was computed for each cell by comparing the cell density gradient of cells of its own type and target type. Cells with DoC

scores larger than 0.847 were considered highly colocalized cells against target type.

Cell Reports Medicine 2, 100382, September 21, 2021 7
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captures the correlation between cells and their direct neigh-

bors; however, the correlation patterns remain unknown. To

address this challenge, we implemented the degree of colocali-

zation (DoC) algorithm to quantitatively gauge the spatial corre-

lations.23 In this study, we focus on the correlation between three

pairs of cell types: lymphocytes and cancer cells, lymphocytes

and stromal cells, and stromal cells and cancer cells. For both

cell types in each correlation pair, the DoC was computed and

then assigned to every cell (see STARMethods). DoC is a numer-

ical score that boundedwithin [�1,1], suggesting anti-correlation

to correlation. To identify highly colocalized cells, an empirical

threshold was determined by shifting an existing point pattern

left by 10 mm and then computing its DoC score with the parent

point pattern. This approach results in 90% of total cells’ DoC

being larger than 0.847, whichwas then defined as the threshold.

For each pair, the number of highly colocalized cells and the dis-

tribution of DoC scores were measured as features (Figure 5F).

Overall, 6 composition features, 6 spatial statistical features, 1

spatial entropy feature (Esp score), 6 direct spatial proximity fea-

tures, and 12 raw DoC features were computed in this part. The

above calculations were repeated for the validation cohort

except spatial correlation features derived from the IHC stains,

because only a single H&E-stained section was available for

the validation cohort. All computed feature names were listed

in Table S5.

Machine-learning models using computational
pathology features improve accuracy in predicting
neoadjuvant chemotherapy efficacy
Region-, cluster-, and cell-level features were first aggregated to

core level (see STARMethods). After aggregation, 1,187 features

from 5 categories form the feature matrix used in these analyses:

(1) 49 cell populational features; (2) 53 clustering features,

derived from images of H&E staining; (3) 55 nucleus morphology

features, derived from images of H&E staining; (4) 1,012 image

texture features, derived from images of H&E staining; and (5)

18 spatial correlational features, derived from images of the

various IHC stains we examined in this study. Of note, we

observed strong variance at feature space across cores from

the same patient (STAR Methods; Figure S5). To preserve such

heterogeneity, we aggregated computational features and

passed patient outcomes to core level such that predictions

were made for each core. We then conducted 6 trials to evaluate

the predictive power of various combinations of computational

features. In the first trial, we trained four support vector machine

(SVM) models with combinations of different kernels and types

and a random forest (RF) model on demographic and clinico-

pathological (CP) features to establish a baseline. Due to the

low dimensionality of CP features (Table S5), no feature selection

was performed. SVM and RF models were trained and tested

with 1003 Monte Carlo cross-validation. For each run, CP

feature matrix was randomly partitioned into training and internal

validation set in ratio of 4:1. Using 16 CP features, our best SVM

and RFmodels achievedmean accuracy (ACC) of 59.79% (SVM)

and 54.21% (RF) and mean area under the receiver operating

characteristic curve (AUC) of 0.54 (SVM) and 0.52 (RF). These

values then served as the baseline against future trials. For trials

2–6, SVM and RF models were trained on 10 most relevant fea-
8 Cell Reports Medicine 2, 100382, September 21, 2021
tures selected using minimum-redundancy maximum relevance

(mRMR) from each category to generate five standalone accu-

racies. Prediction results were summarized in Table S6.

The results showed single feature category could indepen-

dently improve the mean performance up to 30.53% for ACC

and 28.85% for AUC (RF model). In general, category 5 (features

derived from IHC) confers the best independent performance in

terms of both absolute ACC and AUC values and improvement

rate and was universally observed across evaluated models. It

is also noteworthy that variations of ACC were significantly

reduced compared to the baseline, suggesting these features

have better prediction stability across samples. We further

measured the F1 score for each trial, and results indicate that

the predictions were non-biasing. It is further of interest to

know how different feature categories can be combined with

each other andwhether that will result in increased performance.

We adapted 4 feature combination and analytical strategies: (I)

30 most relevant features that only rely on imaging of H&E slides

(categories 2–4); (II) 40 most relevant features that rely on imag-

ing of H&E slides and pathologist-derived measurements (cate-

gories 1–4); (III) 40 most relevant features derived solely from

imaging of both H&E and IHC stains (categories 2–5); and (IV)

45 most relevant computational features over all possible cate-

gories (categories 1–5). We then focused on our best classifier

(SVM with nu-classification and polynomial kernel) that reached

a high mean ACC of 72.52% and AUC of 0.67 using all compu-

tational features.We first compare the AUC and ACCdistribution

after 100 runs of Monte Carlo cross-validation using one-way

ANOVA, and we found both two metrics generate identical sta-

tistical inferences: all strategies perform significantly better

than baseline in terms of ACC (Figure 6A) and AUC (see Fig-

ure S6). It is worth underscoring that analytical strategy I, which

is based solely on the H&E images and does not require

immunohistochemistry or clinical characterizations, was able

to significantly improve the model performance compared to

the baseline. We also observe some improvement in model per-

formance using strategies III and IV, in which information from

the various IHC stains were included in the model, suggesting

that there could be a role in leveraging these types of biomarkers

to further refine the predictivemodel. To validate our findings, we

repeated the feature mining process on an external validation

cohort, keeping the model fixed. Considering the validation

cohort only contains H&E slides, spatial correlational features

from the IHC stains examined in the discovery cohort were not

computed; however, spatial features based on H&E were still

included. Given that adding cell populational features and labels

(category 1) did not significantly improve the model perfor-

mance, we focused on validating the model using analytical

strategy I, which is based on H&E-only derived features. Starting

with a model using clinical and demographic features available

across both cohorts (clinical T stage and age at operation), per-

formance metrics were ACC = 59.31% ± 8.50%, AUC = 0.52 ±

0.06 for discovery cohort (training and cross-validation), and

ACC = 59.49% ± 10.53% and AUC = 0.5 ± 0.11 for validation

cohort (independent model testing). When adding H&E-derived

features (feature selection performed with 30 most relevant

features, forming strategy V), ACC and AUC metrics improved

to an ACC of 69.17% ± 9.59% and AUC of 0.64 ± 0.09 across



(legend on next page)
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cross-validation in the discovery cohort and ACC = 65.82% and

AUC = 0.61 in the external validation cohort. Adding H&E-

derived features to the available baseline clinical and demo-

graphic features resulted in an increase performance of

16.62% and 23.08% for ACC and AUC, respectively. This sup-

ports the assertion that H&E-derived features could add predic-

tive information in this clinical context above what is available in

clinical and demographic data. Note, all model parameters for

strategy V were trained using the discovery cohort and subse-

quently fixed prior to being applied to the validation cohort. In

all cases, ACC was based on 0.5 threshold on model output

(ranging from 0 to 1), in which we observed mean response

rate of 64.64% for predicted responder as compared to the

baseline response rate of 38.03% in the discovery cohort. A

similar ability of the model from strategy V to enrich for re-

sponders was observed in the external validation cohort using

the same 0.5 model threshold in which we observed a response

rate of 64.71% for predicted responder as compared to the

baseline response rate of 40.51% in the validation cohort.

We further explored the cooperativity of computational-derived

and pathologist-measured features, in this case, the pathologist

case/patient level estimate of the CD8-FoxP3. While all computa-

tional features were calculated from each core, CD8 and FoxP3

slides were not available, so we were unable to calculate core-

level ratios. Alternatively, we directly used the patient-level ratio

as a surrogate and then trained the SVM model. Importantly, the

model attained a good accuracy of 72.62% ± 6.63% (AUC =

0.68 ± 0.07; F1 score = 0.80 ± 0.05). Although the value of CD8-

FoxP3 ratio in predicting response to NAC is evident,10 it is still

striking that the performance can be further improved only using

the global ratio estimates. Unfortunately, we were not able to vali-

date suchfinding, as IHCstainingwasnot available for theexternal

validation cohort. Nonetheless, such discovery corroborates the

hypothesis that the immune system can modulate the response

of bladder cancer to chemotherapy.24

Machine-learning predictions may identify response-
modulating factors in MIBC tumor microenvironment
To better understand the underlying pathological conditions that

trigger the response to NAC, we identified top 10 ranked features
Figure 6. Classification results from machine learning models

(A) Comparison between ACC distributions after 100 runs of Monte Carlo cross-v

and each strategy evaluated on discovery cohort is as follows: baseline (59.07% ±

(70.34% ± 6.97%); and strategy IV (72.52% ± 6.99%). ACCs with strategy V (blu

10.46%) are shown, supporting the generalizability of the strategy V model. Data

Carlo cross-validation in the discovery cohort and proportion ±95% confidence

subset of clinical and demographic features available across both discovery and v

In discovery cohort, evaluable cores (n) = 54 for responders and n = 88 for non-

sponders.

(B) Outputs from the best model: SVM with radial basis kernel and trained on all c

least once during 100 runs of CV. For those selected features, the top 10 most re

feature categories are attached. The number of evaluable cores is consistent wit

(C) Comparison of enlisted feature distributions between responders and non-re

(D) Based on these distributions, 4 resistance-favored factors and 4 response-favo

like and they tend to have rapid cancer proliferation rate, close spatial proximity

morphology, sparse nucleus spatial proximity, and a high degree of muscle-infilt

environment. One-way ANOVA test in (A) is performed by comparing groupmeans

0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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that were derived from cross-validations of our best model with

strategy IV. According to our study design, 100 runs of Monte

Carlo cross-validation were performed, and for each run, the 45

most predictive featureswere selected formodel training. Results

show that, among the 100 feature selections, 226 features have

been selected at least once (19.04% of total features). For those

226 features, top 10 features were chosen based on frequency

(Figure 6B). Not surprisingly, spatial correlational feature was

the dominant category, and no image feature was enlisted. By

comparing their means over responders (Rs) and non-responders

(NRs) (Figure 6C), we hypothesized two distinct patterns that may

play a role in modulating the response to NAC (Figure 6D).

In responders (Rs), we observed high expression of CK20,

which is associated with the luminal subtype of MIBC, a subtype

which in some studies has been associated with response.25

However, this association is somewhat tenuous, as there are

also studies showing that the basal subtype is associated with

this response.15 Interestingly, both Ki67 and P16 staining den-

sities were significantly higher in responders. Increased Ki67

intensity is associated with increased cell proliferation, and over-

expression of P16 is evidence of aberrant cell cycle regulation

(usually due to defects in the Rb and/or P53 tumor suppres-

sors).26,27 This co-expression pattern of increased Ki67 and

P16 that is linked to rapid cell proliferation is consistent with

the general principle that more proliferative tumors should be

more responsive to platinum-based chemotherapy. We also

observed that the ‘‘area.of.triangle.min’’ score and ‘‘elongation.

min’’ were found to be significantly high in responders, which in-

dicates a tight spatial and high ratio of elongated cells.

In NR, ‘‘min.diameter.CoV’’ and ‘‘MOI_CoV,’’ which measures

the variationsof nuclei’sminimumdiameterandmomentof inertia,

were high in NR. High CoVs suggest nuclei shapes in NR’s tumor

sitesweremorediverse; ‘‘COrE_IDM_mean’’ was also found to be

high in NR, indicating cell orientations in NR tumors were more

chaotic; the low CD8+/FoxP3+ ratio as previously described indi-

cates that the present lymphocytes are mainly regulatory T cells

(Treg cells); and in addition, low ‘‘DoC_TS_max’’ and high

‘‘DoC_SL_mean’’ indicate that the tumor infiltration of lympho-

cytes was impeded by stromal barrier. Taken together, the im-

muno-suppression effect of Treg cells and severe stromal burden
alidation (CV) using different feature combination strategies. ACC for baseline

11.8%); strategy I (65.38% ± 5.40%); strategy II (63.52% ± 5.40%); strategy III

e bar) on discovery cohort (69.17% ± 9.59%) and validation cohort (65.82% ±

were presented in the format of mean ± SD over the distribution from Monto

interval of that point estimate in the validation cohort. The * designates that a

alidation cohorts (clinical T stage and age at operation) was used in strategy V.

responders; in validation cohort, n = 32 for responders and n = 47 for non-re-

omputational features. Among all features, 226 features have been selected at

levant features were identified based on their frequency and their associated

h (A).

sponders.

red factors were hypothesized.While tumors in responders weremore luminal-

, and more elongated cells, non-responders tend to have more diversified cell

rated tumor with lymphocyte-inflamed but immune-suppressed tumor micro-

; comparison in (C) is performed using two-tailedWelch two-sample t test. *p <



Figure 7. Patient survival stratification us-

ing predicted outcomes

(A) Patient stratification strategy. Probabilities of

being responders for each corewere averaged over

cross-validation in the discovery cohort and

compared to a series of thresholds ranging from 0.1

to0.9.Patients thatwerepredicted responderswere

labeledas low-riskgroup,andconversely,predicted

non-responders were labeled as high-risk group.

(B) Kaplan-Meier curve for the optimized split

(threshold = 0.25) based on cross-validation in the

discovery cohort. p value was computed using log

rank test.
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may hypothetically result in an impaired anti-tumor immunity that

favors the resistance to NAC. However, one important caveat is

some selected features did not attain statistical significance

amongR andNR, demonstrating that patterns shall be interpreted

with caution and require further validations.

Machine learning predictions stratify patients into good
and poor survival group
We further tested the potential of our bestmodel in patient survival

stratifications. For each run of Monte Carlo cross-validation, pre-

dicted probabilities of being Rs of each selected core in testing

set were recorded. Next, predicted outcome label was assigned

to each core using a series of cutoff thresholds of model outputs

ranging from 0.1 to 0.9. Patient-specific survival data were as-

signed to each core to keep the analytical logic consistent. A sig-

nificant stratification (log rank p < 0.01) of overall survival was

observed with a model threshold of 0.25 in the discovery cohort,

wherein predicted responders exhibited improved overall survival

(Figure 7). Survival data were not available for the validation

cohort; however, the findings in the discovery cohort are consis-

tent with the well-established understanding that MIBC patients

who respond to NAC exhibit improved clinical outcomes.

DISCUSSION

In this study, we developed predictive models of cisplatin-based

NAC in MIBC based on nucleus morphology and tissue architec-

ture, including imaging from IHC staining of various salient

proteins in the context of MIBC. We analyzed H&E- and IHC-

stained section from TMAs collected from the discovery cohort

and subsequently tested in an independent validation cohort

(H&E only), all of which were composed of comparable MIBC pa-

tients treated with NAC.

In this study, we were able to, in part, perform some degree of

data augmentation (in attempt to increase the relative number of

data points) by formulating the classification task at the level of

distinct regions of tissue (i.e., each core in the TMA) rather that

at the patient level, which is usually sampled multiple times on

a TMA via multiple cores. TMA cores represent regional sam-

pling of a given specimen (usually ~1 mm), and as such, our

workflow can be readily generalized to sampling of different re-
Cell Reports M
gions from whole slide imaging as

needed. Further, analysis of core-level

data preserves the intra-tumoral hetero-
geneity coming out of the patient, which makes the proposed

models less sensitive to the location where the cores were taken

from and allows a flexible design of TMA. Future work will be

required to extend these approaches to aggregate sampling

from multiple regions of a tumor into a single measure for that

sample/patient in order to be best utilized clinically; unfortu-

nately, the size of the discovery and validation cohorts in terms

of patient numbers did not support this approach analytically.

Previous studies have shown that image features and machine

learning techniques can discern subtle differences that are not

readily noticeable to pathologists between tissues from patients

with different disease subtypes, cancer grades, and survival;28–31

here, we further extend the scope to predict response to NAC in

MIBC. Spatial heterogeneity is a hallmark of cancer, and features

of the tumor microenvironment (TME) may drive tumor responses

to specific therapies.32 Profiling of TME can provide critical insight

into such heterogeneity, which motivated us to develop predictive

models by quantitative characterization of TME.33 Specifically,

spatial heterogeneity is reflected by alternations in various levels,

ranging from single-cell to tissue architecture.34,35 Therefore, we

carefully designed our feature matrix in a multi-level manner and

hypothesized that such characterization could capture the hidden

variations.

The framework involved computational derivation of image-

based features that quantitatively characterized tissue regions

and the cells contained therein covering 5 different classes: image

texture; nucleus morphology; clustering; spatial correlations; and

cell population. The predictive power of each categorywas tested

by identifying a subset of features that was most relevant to NAC

treatment response jointly with SVM and RF models in cross-val-

idations. In this study, all engineered features were carefully

crafted and care was taken to explicitly allow for model explain-

ability. In Figure 6A, we presented the 10most predictive features

fromour best classifier, and distributions across Rs andNRswere

gauged. Specifically, non-responsive tumors tended to associate

with more diversified cell morphology and orientation, stromal

burden, and low CD8/FoxP3 ratio, while responsive tumors

tended to associate with rapid proliferation, close spatial prox-

imity, more elongated cells, and features of a luminal MIBC sub-

type (CK20 staining). The biological and mechanistic relevance of

these associations would have to be tested experimentally.
edicine 2, 100382, September 21, 2021 11
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Our results suggest that image features could enhanced pre-

diction accuracy for Rs and NRs to NAC in MIBC and provide

potentially more stable performance in comparison to a baseline

model of only conventional clinicopathologic variables. We

explored potential synergistic effects with different combinations

of feature categories and observed that the addition of imaging-

derived features from the H&E-derived features to standard clin-

ical and demographic information in this context (strategy V) is

able to improve performance from baseline to achieve cross-vali-

dation estimated accuracy of 69.17% in the discovery cohort

based on 0.5 model threshold, in which we observe an enriched

response rate of 64.64% in predicted responders relative to the

baseline response rate of 38.03% in the discovery cohort. Impor-

tantly, in an independent validation cohort, the applicable model

trained on the discovery cohort is able to achieve comparable ac-

curacy of 65.82% and enriched response rates of 64.71% in pre-

dicted responders as compared to the baseline response rate of

40.51% in this cohort. Hence, a similar ability of the model to

enrich for responders is observed across discovery and validation

cohort, attesting to the generalizability of the approach. These

promising results, however, are based on relatively smaller sized

cohorts and will need additional validation with larger sized co-

horts in addition to the need to aggregate information from multi-

ple sampling points from a given sample/patient. Consistent with

the previous reports from this cohort, the CD8/FoxP3 ratio metric

derived from human interpretation is a significant predictor of

response (mean ACC = 72.62%; mean AUC = 0.68). However,

the variability of these measures in cross-validation of the discov-

ery cohort overlapped the performance estimates of models that

use H&E only (i.e., no IHC-stained sections). Additionally, only an

H&E-stained section from the validation cohort was available for

assessment of generalizability. Taken together, the results from

the discovery cohort suggest that the inclusion of the salient

IHC staining of key tumor and immunological biomarkers will in-

crease performance, but based on the limited size of this dataset,

we cannot establish this at this point.

In summary, we explored the predictive power of multi-scale

computational features extracted from histology and immuno-

histology images of response to NAC in treating MIBC. The

features attained from the process pipeline are carefully

hand crafted to ensure biologically interpretability and repro-

ducibility. To the best of our knowledge, this presents a pio-

neering work in utilizing image features for such stratification.

Although no population-level inference will be made at this

point, our workflow is fully automated and reproducible for

additional evaluation. Importantly, our results reveal that

routine H&E slides could yield response prediction power.

Given that H&E staining is ubiquitously available, our study

could potentially advance the treatment for MIBC patients in

a fast and low-cost manner.

Limitations of the study
There are several limitations to this study worth mentioning.

Although data augmentation was implemented and performance

was characterized in strict cross-validation and independent

external cohort, the sample size was still small and prevented

us from making population-level inference. Importantly, the IHC-

based models cannot be fully validated due to the lack of IHC
12 Cell Reports Medicine 2, 100382, September 21, 2021
staining in the external validation cohort. In this study, proteins

were stained on consecutive cores of tumor biopsy; therefore,

registration was required to measure their spatial correlations.

However, registration cannot fully align the tissue images in the

context of serial section from tissue; hence, the derived point pat-

terns do not completely reflect real nucleus distributions across all

IHC stains. Multiplexing methods, on the contrary, enable simul-

taneous profiling ofmultiple protein markers; in this case, location

mismatches, tissue folds, and z axis differences are substantially

eliminated. Though predictions and inferences have been occa-

sionallymade at core level,36,37 the proposedmodel with selected

features should be further assessed by larger cohort at patient

level to render clinical application values. In addition,manually en-

gineering features is viable when handling low-dimensional

dataset; however, in future studies, we intend to increase the re-

gion of interest (ROI) resolution from tumor microenvironment to

cell niche, which would exponentiate the computational cost. In

this context, (1) handcrafting features would be low efficient

and (2) extracted features are hardly interpretable due to high

texture subtlety. The aforementioned issue can be alleviated by

incorporating artificial intelligence, such as convolutional neural

networks, which could facilitate the feature mining in an end-to-

end manner. This enables feature engineering without discipline

expertise and hardcore handcrafting.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-P16 Roche/Ventana Cat#705-4793; RRID: AB_2833232

Mouse monoclonal anti-P53 Roche/Ventana Cat#760-2542; RRID: N/A

Rabbit monoclonal anti-Ki67 Roche/Ventana Cat#790-4286; RRID: AB_2631262

Mouse monoclonal anti-CK5/6 Roche/Ventana Cat#790-4554; RRID: AB_2861320

Rabbit monoclonal anti-Her2 Roche/Ventana Cat#790-2991; RRID: AB_2335975

Mouse monoclonal anti-P63 Biocare Medical Cat#PM163AA; RRID: AB_10582857

Mouse monoclonal anti-GATA3 Biocare Medical Cat#CM405B; RRID: N/A

Mouse monoclonal anti-CK20 Cell Marque Cat#320M-18; RRID: AB_1158255

Rabbit monoclonal anti-CyclinD1 Roche/Ventana Cat#790-4508; RRID: AB_2335988

Biological samples

H&E and IHC tissue microarrays -

Discovery cohort

Johns Hopkins University

School of Medicine

N/A

H&E tissue microarray - Validation cohort University Hospital Bern N/A

Deposited data

GitHub Raw features https://github.com/popellab/

MIBC-Predictive-models/tree/Code

Mendeley Data Performance evaluations of segmentation

and classification algorithms

https://doi.org/10.17632/v7xh2m76tw.1

Software and algorithms

QuPath (version 0.2.0-m12) Bankhead et al.16 https://qupath.github.io/

MATLAB (verson 2020a) MathWorks https://www.mathworks.com/

products/matlab.html

R (version 3.5.3) CRAN https://www.r-project.org/

RStudio desktop (version 1.4) RStudio https://www.rstudio.com/

Python (version 3.8) Python Software Foundation https://www.python.org/

Pycharm Python IDE (version 2020.3.3) JetBrains https://www.jetbrains.com/pycharm/

StarDist Schmidt et al.18 https://github.com/stardist/stardist

https://github.com/popellab/

MIBC-Predictive-models/tree/Code

Analysis code N/A

Prism (version 9.0.0) GraphPad Software https://www.graphpad.com/

scientific-software/prism/

BioRender BioRender https://biorender.com/

Adobe Photoshop CC (2020) Adobe https://www.adobe.com/
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Lead contact
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Materials availability
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Data and code availability
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available from the corresponding author upon reasonable requests. The codes for computational methods are made publicly avail-

able at GitHub: https://github.com/popellab/MIBC-Predictive-models/tree/Code. Performance evaluations of segmentation and

classification algorithms are deposited at Mendeley Data: https://doi.org/10.17632/v7xh2m76tw.1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

For discovery cohort, we queried the Johns Hopkins Hospital (JHH) Institutional Review Board approved bladder cancer database to

include 73 patients who received cNAC followed by open RC between 2000 and 2013. Patients with unknown follow-up, cause of

death, or documentation of inadequate cNAC dosing (receive less than 3 cycles of cNAC regimens) were excluded from the

cNAC subset described above. Here, dose reduction was defined as a reduction in either gemcitabine or cisplatin dose owing to

patient intolerance as defined in the original publication on this cohort12. For the purposes of this study, all pre-treatment biopsy

(TUR) specimens meeting criteria were examined based on imaging of hematoxylin and eosin or the designated immunohistochem-

ical staining of these tissues. For the external validation cohort, 56 patients with MIBC from University Hospital Bern were selected,

whose characteristics were comparable to the discovery cohort. IHC staining and antibody details were provided in supplemental

information. Please refer to our previous studies for clinicopathological and demographic features of the discovery cohort10–12

and validation cohort13–15. The studies involving human participants were reviewed and approved by the clinical research ethnics

board of each institution. Written informed consent for participation was not required for this study in accordance with the national

legislation and the institutional requirements.

METHOD DETAILS

Core selection
As we aimed to extract cancer-associated features for patient stratification, only cores from the tumor site were considered in this

study. Furthermore, we observed some cores were subjected to severe tissue loss due to the sectioning and staining. Such cores

contain less or no histology information and therefore should not be included in the downstream computational analysis. Given the

dimension of each TMA, we first used the ‘TMA dearrayer’ algorithm in QuPath to identify cores and grid arrangement. Each core

would be assigned an identifier using a combination of letter and number (e.g., A-1) to suggest its column and row position. And

the algorithm would set a core as missing if the detected tissue below the density threshold. To ensure the integrity of materials,

we removed locations that have at least one missing core.

Core registration
A 3-step pipeline was proposed to group markers for registration. To start, a pixel classifier was trained to capture tissue boundaries

and associated tissue areas for the core to quantify the tissue variations. For each dataset, these procedures were repeated for all

selected locations across 10 sections (H&E, Ki67, p53, etc) and the area variations for each location can be computed using coef-

ficient of variation (CoV), defined as:

CoV =
s

m

where s and m denote the standard deviation and mean of areas, respectively. Let us define the number of selected locations as n.

Suppose ten markers were defined as variable nx, where x = 1, 2,., 10; then the tissue area of variable nx at location n as Ax, n. Such

that:

v1 =
�
A1; 1; A1;2; A1;3;.; A1;n

�

v2 =
�
A2; 1; A2;2; A2;3;.; A2;n

�

v10 =
�
A10; 1; A10;2; A10;3;.; A10;n

�
With each vx is an n-dimensional object, the third stepwas applying t-distributed stochastic neighbor embedding (t-SNE) algorithm to

map each object to two-dimensional space and ‘kmeans’ clustering algorithm was performed to detect groups with similar objects.

Hence, the associated markers within each group were considered as adjacent markers to each other and were eligible for registra-

tion. For each group, onemember was selected as the reference and should be kept consistent across each location. The registration

was performed using the MATLAB toolbox ‘Registration Estimator’. Also, each round of registration will generate a transformation

matrix that can be used to register coordinates.

To validate the pipeline, the Pearson correlation coefficient between each pair of vx from the same cluster and among different

clusters were computed. High intra-cluster coefficients and low inter-cluster coefficients suggested successful grouping. For each
e2 Cell Reports Medicine 2, 100382, September 21, 2021
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location, the boundaries of reference and moving cores were extracted as polygons in coordinates format. Then, polygons from

moving cores were registered using corresponding transformation matrices. Next, Dice Similarity Coefficients (DSC) were

measured for each pair of reference-moving polygon. DSC is a spatial overlap index and the value ranges from 0, indicating

no overlap between two polygons, to 1, indicating complete overlap. Therefore, high overall DSCs across all pairs suggested suc-

cessful registration. For simplicity, only positions that all associated cores were intact (only one tissue piece) were included to

evaluate the registration accuracy in this study. Values of parameters to set up the MATLAB registration algorithm were listed

in supplement Table S1.

Nucleus segmentation and classification
Apreviously describedworkflowwas adapted33. In brief, color deconvolution was performed to correct the stain vectors of each TMA

slide. Then, a deep learning-basedmethod called ‘StarDist’ was used to detect nucleus-stained cells18. A tutorial that describes how

to implement StarDist directly within QuPath is provided here: https://qupath.readthedocs.io/en/latest/docs/advanced/stardist.

html. Also, a built-in unsupervised watershed algorithm within QuPath was used to detect membrane-stained cells. Afterward,

nine Random Tree classifiers, each for a single IHC TMA, were trained to detect positive nuclei. Parameter values to set up the seg-

mentation and cell classification algorithms were listed in Tables S2–S4.

Performance evaluation of segmentation and classification algorithms
The evaluation process was carried out by randomly selecting 200 sub-regions (100 from each of the TMAs of the discovery) with a

size of 1003 100mm from all qualified cores. Then, nuclei were counted using both algorithm and manual approach. After all counts

were recorded for 200 sub-regions, the following statistics were summarized: the number of nuclei that detected both manually and

by the algorithm/workflow (true positive, TP); the number of nuclei detected manually but were missed by the algorithm/workflow

(false negative, FN); the number of nuclei detected by the algorithm/workflow but rejected by manual approach (false positive,

FP). Based on these statistics, the following metrics were calculated to evaluate the performance of the algorithm/workflow:

R =
TP

TP+FN
P =
TP

TP+FP
seR =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R$ð1� RÞ
TP+FN

r

seP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P$ð1� PÞ
TP+FP

r

whereas R denotes Recall rate (Sensitivity), and P denotes Precision (1 – false discovery rate); seR and seP denotes their standard

error of mean, respectively. In addition, the correlation between algorithmic results and manual approach results were evaluated

calculating the Spearman’s rank coefficient.

Computation of image texture features
Image texture features were calculated from gray-level co-occurrencematrices (GLCMs) extracted fromH&E slides. First, each qual-

ified H&E core was split into multiple tiles of 2203 220 pixels and trimmed to tissue boundaries to exclude backgrounds. As GLCM

requires input tiles image to be rectangles, irregular-shaped tiles were removed from further computations. Next, all rectangular tile

images were converted to grayscale images. At this point, 13 first-order statistics were computed to characterize the grayscale im-

age. To further capture the texture feature defined by the input image, 12GLCMswere created based on 12 spatial pixel relationships

of varying distances (d = 1, 3, 5) and directions (q = 0�; 45�; 90�; 135�). Next, 21 s-order statistics (features) that describe the pixel

distributions in each GLCM were derived. The GLCM features were calculated using the function ‘glcm’ from R package radiomics.

Complete feature names were listed in Table S5.

Computation of nucleus morphology
QuPath segmentation algorithms converted a single nucleus boundary to a point collection, which can be mapped to form a polygon

that mimics the corresponding nucleus object. For each polygon, 18 nucleusmorphology descriptors were computed. R packages sf

and smoothr were used to interpolate point sets of nucleus boundary where necessary. Complete nucleus morphometrics names

were listed in Table S5.
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Computation of clustering features
As nuclei, especially cancer nuclei, are often densely exist in tissue cores, density-based clustering algorithms like DBSCAN

and HDBSCAN usually underperform in such cases. Hence, a spatial distance-resolved clustering workflow was used for clustering

identification. Such workflow has been validated in previous studies and shows better performance in feature mining from tissue mi-

croarray images. For each qualified H&E core, nuclei were used as nodes to create Delaunay triangulation network and edges were

used to model the spatial interaction between two connected nodes (nucleus). Next, an empirical distance threshold was applied to

remove long edges which indicate a low probability of spatial engagement. Next, clusters were defined as maximal connected com-

ponents of the network with at least 30 nodes. Considering the cut of tissues is a deterministic factor of cluster shapes in TMA cores,

we only extracted non-morphometric features, such as the number of triangles, from each cluster. Next, the clustering information

and nucleus orientations can be merged to calculate the cell/nucleus orientation entropy (COrE) features. In brief, statistical features

were derived from nucleus orientation angle co-occurrence matrices created for each cluster. Detailed methodology was described

by Lee et al.19. The Delaunay triangulation was generated using functions ‘tri.mesh’ and ‘triangles’ fromR package tripack; maximum

connected components were detected using function ‘components’ from R package igraph. Complete clustering feature names

were listed in Table S5.

Computation of spatial correlational features
Centroid coordinates of nuclei were transformed to point patterns. For each location, multitype Ripley’s K function was computed to

count the observed and theoretical number of nuclei of type i (e.g., CyclinD1) within 20 mm of nuclei of type j (e.g., Ki67), where i and j

were adjacent labels. KðrÞ was evaluated at a series of consecutive distances until reaches maximum evaluation distance d. As a

result, two curves were created and the area difference was calculated to characterize the dependence between the points of

type i and j. In this study, we assume the density of a point pattern is homogeneous over the tissue core as the region was small.

Hence, KðrÞ can be computed using the function ‘Kcross’ from R package spatstat. Complete clustering feature names were listed

in Table S5.

Computation of cell population features
101 cells/nuclei were randomly selected from 20 H&E cores from TMA subset 1 and then annotated into 3 classes: lymphocytes (L),

cancer cells (C), and stromal cells (S), by pathologist ASB based on their morphology. Specifically, 36 lymphocytes, 9 stromal cells,

and 56 cancer cells were annotated. Next, a random tree classifier was trained and then tested on cells in another 20 cores from TMA

subset 2. Afterward, 157 cells with predicted types were censored by ASB, and corrections weremade accordingly to fine-tuning the

classifier.

The classifier then assigned types to all other nuclei. For a nucleus set Sk = fVg, where i represents the nucleus type k˛ fL;C;Sg,
and V represents the set of the associated 2D nuclear centroid gx;gy˛V, g˛f1; 2;.;ng. Next, direct spatial proximity was computed.

For each nucleus set Sk , the number of all immediate neighbors from other sets were computed using the formula:

NjðgÞ =
�
dimðbÞ : dðb;gÞ%dt; cg˛Si;cb˛Sj

�
where j˛VXðjsiÞ; dðb;gÞ represents the Euclidean distance between nucleus g of set i and nucleus b of set j. dt represents an

empirical proximity threshold. To compute the spatial dependency, multiple KðrÞ was evaluated for each cell type pair. The spatial

Shannon’s entropy is defined as:

ESP = �
Xn

i =1

dint
i

dext
i

pi log 2pi

where dint
i represents the average Euclidean distance between all points from set i; dext

i represents the average Euclidean distance

between all points from set i and the points of all other sets; pi is the percentage of type i within the core.

To compute the degree of colocalization (DoC) for a given cell type pair, a series of circles with increasing radius were generated

centered at each nucleus of from set i. Then for each circle, densities of type i nucleus and type j nucleus were calculated and Spear-

man’s rank coefficient rij was measured between two density gradients. Next, each coefficient was weighted to a DoC score using

the equation:

Di = rij$e

�
� Nij

Rmax

�

where Nij is the distance of the current point to its nearest neighbor of type j. Rmax is the maximum search radius.

Nucleus-nucleus Euclidean distance was calculated using function ‘nn20 from R package flexclust; A C++ implemented k-dimen-

sional tree search (cKDTree) algorithm from Python library Scipy38 was used to accelerate searching of nearest neighbors; Spear-

man’s rank coefficient was calculated using function ‘spearmanr’ also from ‘Scipy’. Complete clustering feature names were listed

in Table S5.
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Feature aggregations
Core-level feature is the unit for feature matrix construction. However, the majority of features computed using the aforementioned

procedures were tile-level (image texture features) and cell/nucleus level features (shape descriptors). Therefore, data aggregation

was needed to unify all features to the same level. In this study, four metrics: maximum, minimum, mean, and coefficient of variation

(CoV) were computed for all non-core level features. Each aggregated feature corresponded to four core-level features, and suffixes

‘_mean’, ‘_max’, ‘_min’, and ‘CoV’ (or ‘Std’ if the data vector could contain negative values) were assigned to each core-level feature

indicating the aggregation metric.

Assessment of inter-core heterogeneity in feature space
For both discovery and external validation cohort, patients with at least two cores were subject to heterogeneity analysis. For each

patient, Pearson’s correlation coefficient r, range from �1 to 1, were computed for each pair of scaled core-level feature vectors.

High r indicates two feature vectors were correlated therefore confer low inter-core variance; conversely low r indicates heteroge-

neity across cores at feature space.

Feature selection
The featurematrix was created by combining all features so that each row represented a sample (core) and each column represented

a feature. Depends on the status of each patient, either 0 (responder) or 1 (non-responder) was assigned to associated cores as the

target variable. To avoid data overfitting due to the high dimensionality of the feature matrix but relatively small sample size, minimum

redundancy maximum relevance (mRMR) algorithm was used to reduce the feature dimensions. mRMR can find a subset of most

discriminative features that jointly maximizing the correlation to the target variable while minimizing redundancy within themselves.

Feature selection was only performed to the training set and different numbers of predictive features were selected (depends on the

scale of feature pool).

Classifier construction and evaluation
Support vector machine (SVM) with combinations of two types (C-classification and nu-classification) and two kernels (radial and

polynomial) and random forest (RF) models were implemented in this study. A 100-fold Monte Carlo cross-validation method was

used to evaluate classifiers. For each fold, the feature matrix was split into a training set and internal validation set with a ratio of

4:1. Depending on the feature assembly strategy, 10 - 45 most predictive features were identified by mRMR. The model accuracy

(ACC), which defined as:

ACC =
Number of correct predictions

Total number of predicitons

area under the receiver operating characteristic curve (AUC), and F1 score reached during the cross-validation were labeled to

describe the performance for the fold. After the cross-validation, all recorded ACC, AUC, and F1 score were averaged to characterize

the overall predictive value of features. For external validation, features that were common across both discovery and validation

cohort (i.e., feature categories 2, 3, 4 in conjunction with clinical and demographic features) were used for feature selections and

the entire discovery cohort were used for training. Same model evaluation metrics: ACC, AUC, and F1 score were computed on

the external validation cohort. For discovery cohort, evaluations metrics with mean and standard deviations were reported. For vali-

dation cohort, standard deviations were incomputable since the model output is a single number. In this case, 95% confidence in-

terval was computed. mRMR was performed using function ‘mRMR.ensemble’ in R package mRMRe; SVM classifier was trained

using function ‘svm’ in R package e1071; RF classifier was trained using function ‘randomForest’ in R package randomForest.

QUANTIFICATION AND STATISTICAL ANALYSIS

One-way ANOVA test and comparisons between the means of two populations were done using either a Welch two-sample t test or

Wilcoxon rank-sum test using GraphPad Software. We performed the log-rank test to compare the survival times between predicted

low risk versus high risk group using ‘survdiff’ function in R package survival. Kaplan-Meier curve and risk tables were generated us-

ing ‘ggsurvplot’ function in R package survminer.
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