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Abstract: Slow-wave synchronous acoustic stimulation is a promising research and therapeutic
tool. It is essential to clearly understand the principles of the synchronization methods, to know
their performances and limitations, and, most importantly, to have a clear picture of the effect of
stimulation on slow-wave activity (SWA). This paper covers the mentioned and currently missing
parts of knowledge that are essential for the appropriate development of the method itself and future
applications. Artificially streamed real sleep EEG data were used to quantitatively compare the two
currently used real-time methods: the phase-locking loop (PLL) and the fixed-step stimulus in our
own implementation. The fixed-step stimulation method was concluded to be more reliable and
practically applicable compared to the PLL method. The sleep experiment with chronic insomnia
patients in our sleep laboratory was analyzed in order to precisely characterize the effect of sound
stimulation during deep sleep. We found that there is a significant phase synchronization of delta
waves, which were shown to be the most sensitive metric of the effect of acoustic stimulation
compared to commonly used averaged signal and power analyses. This finding may change the
understanding of the effect and function of the SWA stimulation described in the literature.

Keywords: slow-wave activity; acoustic stimulation; inter trial phase clustering; phase-locked loop

1. Introduction

Sleep is a dynamic process and one of the most fundamental physical requirements
for human survival [1,2]. The electroencephalography (EEG) is most used for its examina-
tion [3]. Four sleep stages are commonly detected according to the more recent guidelines
published by the American Academy of Sleep Medicine (AASM) [4]: three non-rapid
eye movement stages (NREM1, NREM2, and NREM3) and rapid eye movement (REM)
sleep [5,6]. Deep sleep (NREM3) plays an important role in memory consolidation. NREM3
is characterized by slow wave activity (SWA) containing a frequency up to 4 Hz. Specifi-
cally, so-called slow oscillations (SOs) have a significant impact on memory [5,7–10]. SOs
are synchronized EEG waves with a frequency from 0.5 Hz to 1.0 Hz [9] as a neocortical-
hippocampal dialogue occurs, which allows for memory replay and redistribution into the
long-term neocortical memory stores [11–14]. They predominate in deep sleep [15,16].

To enhance memory consolidation, a number of studies have been conducted to ex-
plore methods to improve SWA during sleep. Attempts to increase memory consolidation
by stimulating EEG signals have used electrical, olfactory, and acoustic stimulation [17,18].
Synchronized auditory stimulation in EEG signals modulates SOs and improves consolida-
tion of the memory [19,20]. For the right effect, it is important to stimulate the SO waves in
their rising phase (upward going SO slope, going towards the up state) [21]. A number of
studies are examining memory consolidation by using synchronized auditory stimulation.
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For example, two phase-controlled stimulation was used in studies of Ngo et al. and Bese-
dovsky et al. [22–24]. The first step was an SO-negative peak detection, followed by the first
auditory stimulation with individual time delay settings, and the second stimulation was
1.075 ms delayed with respect to the first one. Results from Ngo et al. [22] were compared
with those of a Thalamocortical Neural Mass Model in the study of Costa et al. [25]. The
study [26] compared the precision of stimulation with [22] and the author’s implementa-
tion of the Phase-locked Loop (PLL) algorithm. A method based on the PLL was used for
EEG signal stimulation in studies of Papalambros et al. and Ong et al. [27,28]. Various
methods are being tested for stimulation efficacy when used on different populations, such
as the elderly, insomniacs, and those with psychiatric and cognitive disorders. Indeed,
the optimal timing has been recently examined to reach appropriate modulation of the
SOs [29]. The literature includes a comparison of different stimulation methods, mostly
on healthy young volunteers. The open loop method was used in the study of Weigen et
al. and involved three pulses with 1.075 s inter stimulus interval (ISI) followed by 5–9 s
pause between the next three pulses [30]. This study [30] tested the acoustic stimulation on
healthy young adult subjects. Auditory stimuli adjusted and targeted by an unsupervised
algorithm to be phase-locked to the negative peak of slow waves single pulse were used in
the case of Leminen et al.’s study on healthy young adults [31]. Debellemaniere et al. used
the linear regression fitting of a sinus wave to stimulate SOs on a filtered in their study on
young adults [32]. Twenty healthy young subject were tested using the PLL method with
approximately 1 s ISI followed by 5–6 s pause in study of Grimaldi et al. [33]. The open loop
method with 12 pulses and 1 s ISI followed by 15 s pause was used in study of Simor et al.,
and this study was performed on healthy young adults [34]. The closed-loop acoustic
stimulation during sleep was used in study of Fattinger et al. in the case of children with
epilepsy [35].

Our study investigates chronic insomnia patients. Insomnia is a sleep disorder in
which individuals complain of difficulties in falling asleep, maintaining sleep or early
waking from sleep last regularly for at least four weeks [36], and it is common problem in
elderly people [37]. It is the most common sleep disorder; in the adult population, 30–48%
have reported at least one symptom related to insomnia at some stage of their lives [38]. At
the same time, insomnia has a significant impact on the quality of life. It is a significant risk
factor for cardiovascular disease, hypertension, and type 2 diabetes and may lead to lower
productivity at work or a higher risk of workplace accidents [36,38]. There are still many
unknowns in the pathophysiology of insomnia due to its broad definition and clinical
heterogeneity [38]. It is generally accepted that the pathophysiology of insomnia could be
characterized by a lack of SWA. It was found by Merica et al. that the spectral power in
chronic insomnia patients is lower for delta and theta band frequencies [39]. In the same
study, it was found that beta band power spectral density was higher in chronic insomnia
patients during the REM sleep phase [39]. A similar power spectral density was found in
elderly subjects in a study by Carrier et al. [40]. The authors of that study found that, with
age, there was a decrease in the power spectral density in the SWA and in the theta and
sigma bands during sleep [40]. In contrast, in the beta band, power spectral density during
sleep increased with age [40].

Generally, there are two acoustic stimulation methods (fixed-step and PLL-based)
applied across studies that have not been quantitatively compared yet. A comprehensive
explanation of both methods and their rigorous comparison is essential for the further
research of acoustic stimulation. Most of the studies report results in healthy young
subjects [41]. However, some studies have presented results in elderly or middle-aged
subjects. Results were presented using only one implementation of the PLL method. For
example, the study of Papalambros et al. presented results in elderly subjects [27], in
patients with amnestic mild cognitive impairment [42] and in middle-aged adults [19,43].
One study, specificially that of Wunderlin et al. [44], shows that the effectiveness of current
implementations is not yet so high that the widespread use of SWA stimulation can be
considered, and this study was evaluated on the summarized results of 11 experiments.
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Furthermore, the target group for expanding use would be predominantly older individuals
in whom it is difficult to physiologically detect continuous long-term deep sleep [45].
Therefore, it is essential to search for sensitive methods for both the detection and analysis
of SWA. For this reason, we focused our research on the following points: quantitatively
comparing two types of methods (fixed-step and two implementations of the PLL method)
used for stimulating SWA and offering solutions for further testing.

An open question of whether induced or modulated SWA is similar to naturally
occurring SOs was identified to be of high importance for clinical translation of the stimu-
lation methods in a recent systematic review [46]. The effect of stimulation was monitored,
and advanced metrics were proposed in this study on chronic insomnia patients to help
elucidate the exact mechanism of stimulation.

2. Materials and Methods

This section describes all methods used for analysis and evaluation. It is divided into
six subsections. Section 2.1 specifies the experimental design and the data acquisition.
The detection method is described in Section 2.2. Two examined stimulation methods are
described in Sections 2.3 and 2.4. Section 2.5 defines the methods used for stimulation
methods comparison, and Section 2.6 describes human EEG data analysis methods applied
for acoustic stimulation effect quantification.

2.1. Experiment Design

All participants provided written informed consent before they entered the study.
The study was approved by the Ethical Committee of the National Institute of Mental
Health (NIMH-CZ), approval code 133/18, as a part of the study, “Acoustic stimulation
during slow-wave sleep and its effects on declarative memory in insomnia.” Data were
recorded using the Brainscope polysomnography system (M&I spol. s.r.o., Prague, Czech
Republic) with a band-pass filter of 0.1–200.0 Hz and with a 1 kHz sampling rate. Only
the EEG signals were used for consequent analysis because of focusing on acoustic neural
activity stimulation.

The testing dataset is composed of 18 records from nine subjects (aged 20–52,
Mean = 25.67, Sd = 10.10, 3 women) for this pilot study. Each subject underwent the
stimulation and sham sleep EEG recordings (2 nights). Subjects were stimulated via pink
noise during the stimulation night. The sound levels were set up individually before the
recording started. Each subject determined individual sound levels in which the stimulus
was sufficiently loud and not disturbing. The fixed-step method of stimulation [22] was
used to identify the stimulation time after SWA detection. The sham night had the same
characteristics, and the proband also slept with headphones on, but no sound was presented.

The original dataset consisted of 21 subjects, but most of the records were excluded
because of small number of real detection and stimulation tags, and three records were
excluded because of a problem during recording and saving recorded file. This extended
dataset was used for testing purposes only with aim of making the results more reliable;
see Appendix C for details.

The entire records were scored by two expert scorers. The EEG records were subsam-
pled at 250 Hz for the subsequent analysis. The EEG records duration was 7.84 ± 0.12 h
(mean ± SEM). The mean of the detected actions in real-time measurement was 142, the
minimal number of detected actions was equal to 2, and the maximal number was equal to
413. The records were included into analysis if they showed 50 detections at least.

Simulation of Real-Time Stimulation

The stimulation during real-time simulations (offline EEG data re-streaming) was per-
formed in MATLAB software, release 2020a (The MathWorks, Inc., Natick, MA, USA), for
the comparison of different stimulation methods, namely, the fixed-step stimulation [22,23]
method and the PLL method [26]. The original real EEG records with a 1 kHz sampling



Sensors 2021, 21, 5169 4 of 26

frequency were used; see Figure 1. The easys2matlab toolbox [47] was used to import the
data in MATLAB.

Figure 1. Experimental design diagram. The real EEG records were used for two separate analyses.
The first branch (green) evaluates stimulation during real-time EEG records. Here, the effect of the
acoustic stimulation on SWA is evaluated. The second branch (blue) shows artificially streamed
data and quantitative comparison of both stimulation methods. Concrete setup and example of real
recording session is attached in Appendix A.

Uninterrupted segments of NREM2 and NREM3 EEG sleep recordings were used for
subsequent analysis. These NREM stages were selected based on the expert scorers scoring
of the individual phases of sleep. Only the segments with at least a duration of 5 min were
analyzed. The mean duration of the deep sleep parts was 5.58 ± 0.22 h (mean ± SEM).
The total numbers of detection/stimulation actions are given in Table 1 for the PPL-XOR
method and for the fixed-step method.

Table 1. Total number of actions (detection/stimulation) in the simulation case across the subjects.

Total Number of Actions [-]

Minimum Maximum Mean

Fixed-step 255 1889 1064
PLL-XOR 278 2597 1530

The goal of this part was to test the fixed-step and PLL stimulation methods and to
evaluate the detection and stimulation phase.

2.2. Detection of Slow Oscillations

The slow waves need to be stimulated in their rising phase to enhance the slow
oscillation rhythm [22]. The optimal detection is based on finding the ideal phase for real-
time SWA stimulation; see Figure 2. The SWA minimum was detected first for this reason.
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Figure 2. The demonstration of the slow-wave detection principle. The representative EEG signal is
depicted by the blue curve. The ideal stimulation time is represented by the yellow one (the rising
phase of the wave). The three following samples are taken as a reference points for minimum detection.

The SWA detection was applied to the reference signal. The reference signal was
created by the mean from F3 and F4 EEG channels re-referenced to the mastoids (M1
and M2 electrodes). Low-pass filtering was applied to the reference signal before SWA
detection. The infinite impulse response (IIR) low-pass filter (type Chebyshev, 3rd order)
with a cut-off frequency of 4 Hz was used. The IIR filter was used due to the necessity for
short processing times in real-time evaluation. A steeper filter was not chosen to avoid
instability. SWA is characterized by a large amplitude [48]. Since an SWA minimum
was detected when the negative voltage of the EEG wave exceeded −80µV (inspired by
studies [22,23]), the minimum was defined as index(min(x−1, x0, x+1)) = 0.

2.3. Fixed-Step Stimulation Method

The first tested method stimulated the SWA by a fixed time interval, which was
introduced in [22,23]. The first stimulation was set to 0.350 s after the detection; see
Figure 3. The second stimulation was set to 1.075 s after the first stimulation. A pause
lasting 2.500 s was applied after second stimulation. All of these parameters were set based
on the SWA characteristics and the fact that the stimulation should occur in the rising phase
of the wave.
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Figure 3. The blue curve represents the 1 Hz sine wave as an example of the EEG data. The black line
represents the detection at the minimum of the signal. The dashed lines represent the 1st and 2nd
stimulations. The shaded part of the graph represents the pause before the next detection.

2.4. Phase-Locked Loop

Phase-locked loops (PLL) are closed-loop feedback systems consisting of both analog
and digital components, including a voltage-controlled oscillator. They are used for the
generation of an output signal, the frequency of which is synchronized (or locked) to
that of a reference input. Phase-locked loops are used in many applications including
signal generation, frequency synthesis, frequency modulation and demodulation, tone
recognition, signal detection, and filtering [49].

The digital PLLs are basically designed with four components: a phase detector, loop
filter, voltage-controlled oscillator (VCO), and divider [50]. The phase detector generates
a signal that is sensitive to the phase difference. High-frequency components need to be
suppressed by the low-pass loop filter. The VCO generates a periodic output signal [51].

More PLL types have been used in the stimulation case during sleep via EEG, as in
studies [26,28]. Two types of PLL were implemented in this study. The first one was based
on the exclusive-OR (XOR) principle. This PLL-XOR method was chosen for its robustness.
For verifying the PLL-XOR method’s result, a second type of PLL was implemented,
namely the PLL implementation with an integral part.

Both of our PLL implementations generated an artificial harmonic signal with known
instantaneous frequency and phase. Stimulation was placed in a specific position in
the rising phase. It was necessary to do this at the same angle in waves with different
frequencies. The stimulation was performed if the PLL signal achieved a value in the
predefined interval (values in which the PLL signal reaches the right phase for stimulation).
This interval corresponded to 310–360◦, which extends the original target phase of 340◦

from the paper [27] to a 50◦ interval.

2.4.1. PLL-XOR Implementation

The XOR gate is one of the simplest PLL detectors [52]. This method is based on a
comparison of the positive and negative values of two signals; according to this, the PLL
signal is calculated. The rectangular signals are thus compared. Thus, the phase detector is
independent of the amplitude of the original signal with a benefit. The XOR gate computes
the output simply based on the different inputs [53], see Table 2, which represents the XOR
gate implementation for our purposes.
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Table 2. The XOR logical table. In this study, the first input is an incoming sample of the real EEG
signal, and the second input is an incoming sample of the artificial PLL signal. Logical 1 represents
the positive values of the signal, and Logical 0 represents the negative ones. The output is applied to
the phase-locked loop of the PLL artificial signal.

First Input Second Input XOR Output

1 0 0
0 1 1
1 0 1
1 1 0

The outputs from XOR were inserted into the buffers, and two buffers were used. The
first buffer (PXOR) contained present XOR values. The second buffer (MXOR) contained
XOR values from the recent past. Thus, the MXOR buffer represented the memory.

The equation representing the recomputing of the buffer’s values to the phase error
can be written as follows,

∆ω = 2π ·
(

L

∑ PXOR + k
N

∑ MXOR

)
, (1)

where ∆ω is the frequency difference, PXOR is the present XOR buffer, L is the number of
elements in the present XOR buffer, k is the past gain coefficient, MXOR is the memory XOR
buffer, and N is the number of elements in the memory XOR buffer.

The effect of the past values is affected by the past gain coefficient together with a
ratio of the present and memory buffer length. The number of elements was set to 50
in the present XOR buffer (PXOR) and to 1000 (based on the sampling frequency of EEG
records) in the memory XOR buffer (MXOR). The past gain coefficient k was set to 0.1. The
memory XOR buffer (MXOR) had a twofold higher influence than the present XOR buffer
(PXOR) due to this setting. The length of the present XOR (PXOR) determines the number
of samples after which the PLL signal is going to change. The present XOR buffer (PXOR)
was set to 50 due to a quick change in the PLL signal parameters. This is a compromise
between the quick change in the parameters and the number of elements in the buffer. The
present angular frequency ω of the PLL signal was computed from PLL signal frequency
difference ∆ω and the angular frequency from one time step in the past:

ω = G · mod
(
ωpast − ∆ω, 2π

)
, (2)

where mod(..., 2π) is the remainder of a division by 2π. The result of this operation is
multiplied by the gain coefficient G. The gain coefficient was set to 8 in this study because
of the lower number of elements in the present XOR buffer.

2.4.2. PLL Implementation with the Integral Part

Several implementations of the PLL method exist [50]. The first tested variant applied
in this study was the basic PLL implementation using the integral and proportional parts;
see Figure 4. This implementation was inspired by [51,54]. The reference EEG signal was
filtered by the low-pass finite impulse response (FIR) filter first. The filtered signal EEG f ilt
was multiplied by a proportional gain GP in the proportional part:

Propor = EEG f ilt · GP. (3)

The integral part Integ(n) contains its previous sample Integ(n − 1) and the filtered
reference signal EEG f ilt multiplied by an integral gain GI and a sampling period Ts. Thus,
the integral part Integ(n) is defined by the following equation:

Integ(n) = Integ(n − 1) + GI · EEG f ilt · Ts. (4)
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The signal error ErrorS was computed by adding both parts together:

ErrorS = Propor + Integ(n). (5)

Figure 4. Block diagram of the PLL method used in this study.

The instantaneous phase ϕ(n) was obtained from the signal error ErrorS, the sam-
pling period Ts, and the gain of the VCO GVCO, which transfers the voltage quantity to a
frequency quantity. It is defined by the following equation:

ϕ(n) = ϕ(n − 1) + 2π · ErrorS · GVCO · Ts. (6)

The instantaneous amplitude Amp of the simulated PLL signal was computed simply
by the sine function with the native frequency of the VCO fVCO and the actual time
sample t.

Amp(n) = sin(2π · fVCO · t + ϕ(n)). (7)

Since the PLL is rather sensitive to values of its parameters, the best fit of parameters
was found through an optimization process. The whole optimization procedure can be
summarized in the following steps. The training dataset was composed based on five
records. The native frequency of the VCO was set such that it matched the frequency of
the slow waves fVCO = 0.8. A low pass cut-off frequency fc = 0.03 Hz was set according
to [26]. The gain of the VCO was set to GVCO = 1. All EEG datasets were down-sampled
to Fs = 100 Hz in order to make the PLL simulation faster and optimizationally feasible.
Both proportional and integral part gains Gp and GI were varied in the interval [10−4,100].
The PLL was simulated on the training data, and each combination of varied gains was
evaluated by a criterion function.

The PLL parameter values were optimized by three approaches in order to compre-
hensively explore the process of tuning the PLL parameters. Here, we briefly overview all
criteria. The expressions for criteria enumeration are presented below.

The first criterion was calculated as a difference between the desired and instantaneous
phase of the physiological signal at the time of simulated stimulation: the phase-based
criterion. The second and most complex criterion was based on the time difference between
the desired time of stimulation corresponding to the desired phase of the physiological
signal and the time of simulated stimulation: the time-phase-based criterion. This last
criterion was implemented to prevent over-fitting the PLL to the repetitive phase at lower
aliasing-like frequencies. This simplest criterion was based on the same information as the
fixed-step method: the fixed-time-based criterion.

The phase-based criterion can be expressed as follows:

msePLLj = sum
{
[φEEG,desired − φEEG(ti,PLLj)]

2}/N,

where the msePLL,j is the mean squared error between the instantaneous phase of the physiolog-
ical signal at the time of simulated stimulation during the i-th stimulation event φEEG(ti,PLLj)
and the desired stimulation phase φEEG,desired, which was set to φEEG,desired = 312◦. The
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squared differences are summed across all stimulation events N across all five training
subject records.

The time-phase-based criterion is stated in the following expression:

msePLLj = sum
{
[t(φEEG,desired)− ti,PLLj ]

2}/N,

where the t(φEEG,desired) is the smallest possible time corresponding to the desired phase of
the physiological signal φEEG,desired simultaneously satisfying the condition
t(φEEG,desired) < ti,detect.

Finally, the fixed-time-based fit was enumerated by

msePLLj = sum[(ti,desired − ti,PLLj)
2]/N,

where msePLL,j is the mean squared error between the desired time ti,desired and the time
of stimulation ti,PLLj for the j-th set of the PLL parameters. The desired time was set to
ti,desired = ti,detect + 0.35 s, where ti,detect is the time of SWA detection.

2.5. Detection and Stimulation Evaluation Methods

The EEG records were analyzed in MATLAB software, release 2020a (The MathWorks,
Inc., Natick, MA, USA). The analysis was performed partly in the Fieldtrip toolbox [55].

The first step was preprocessing. The M1 and M2 electrodes were used as a reference.
The following analysis was done on an average F3/F4 signal. The data for evaluation were
filtered by an IIR low-pass filter on 4.00 Hz.

The correctness of the detection and stimulation was computed via an analysis of
phase at the detection and stimulation time points. This evaluation was done by Hilbert
transformation [26,28].

The Hilbert transform allows one to extract a complex signal from a signal that contains
only a real part. The complex signal can be represented using Euler’s formula [56]:

fa(t) = M · expi2π f t, (8)

fa(t) = M · cos(2π f t) + j · M · sin(2π f t). (9)

These equations represent the analytical signal. Without any processing, EEG data
have the form M · cos(2π f t), which is an oscillatory signal that has only a real component.
The Hilbert transform is an approach for extracting the imaginary part of a real-valued
signal. This is done by creating and adding the phase quadrature component to the real
part. The phase quadrature component is created by rotating parts of the complex Fourier
spectrum of a real-valued signal [57]. The Hilbert transform does not affect the real part of
the signal [56].

The phase values were visualized by the polar histograms. The polar histograms
were divided into 20 bins, and the mean phase was computed and displayed. The CircStat
toolbox [58] was used for the descriptive statistic evaluation of polar phases.

2.6. Acoustic Stimulation Effect Quantification Methods

All data analyses mentioned below (see Figure 1, green part) were performed on
high-pass and down-pass filtered data 0.25–4.00 Hz provided by zero-phase finite impulse
response (FIR) filters. According to the previous paper [27], the mean of the frontal
electrodes (Fpz) was chosen for signal analysis. Only records (paired stim-sham) from
seven subjects that contained more than 50 detections were used. Outlying data segments
exceeding the amplitude limit Amax = 300µV and segments with an amplitude below
Amin = 10µV were excluded from analyses. The length of segments was set to 7 s divided
into 2 s pre-stimulus and 5 s post-stimulus intervals. It should be noted here that the final
length of the segment was shortened to 4 s involving 1 s pre-stimulus and 3 s post-stimulus
intervals in order to exclude boundary effects of the methods.
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Firstly, the EEG signal was analyzed via a standard method found in the
literature [22,23,27]. The averaged waveform was calculated from data segments that were
time-locked to the onset of the first sound stimulus. The averaged waveforms corresponding
to stimulation and sham conditions were statistically compared across subjects. This metric
mixed both amplitude and inter-trial phase synchronization of the brain response.

Secondly, the data segments were transformed by the Hilbert transformation to obtain
a signal amplitude time course. The Hilbert transform was applied to each single data
segment separately. The obtained amplitude time courses were averaged across trials
within each subject. The amplitude time series corresponding to stimulation and sham
conditions were statistically compared across subjects. It should be noted that this step was
done in order to measure the signal amplitude independently of the signal phase and the
amount of inter-trial phase synchronization of the brain response.

Thirdly, the inter-trial phase clustering (ITPC) was computed to measure the inter-trial
phase synchronization of the brain response independently of the response amplitude. Each
data segment was Hilbert-transformed, and the obtained analytical signal was normalized
to the unit-instantaneous amplitude of each time sample of each segment within each
subject. The complex signal was averaged across trials, and the amplitude of the average
was considered as the ITPC; see [56] for more details. The obtained ITPC time courses for
each subject and condition were statistically compared.

The dataset containing all night sessions and all subjects was filtered with respect
to the minimum number of stimulation trials needed for significant and unbiased ITPC
evaluation. Stimulation was provided by the fixed-step stimulation method described in
Section 2.3. The criterion for the minimum number of trials was based on the Rayleigh Z
approximation [56]:

ITPCcrit =

√
−ln(p)

n
, (10)

where ITPCcrit is the critical value corresponding to a chosen p-value considering n number
of trials [56]. Figure 5 depicts the computation of the mentioned criterion for the ITPC
across seven subjects. A critical number of trials was set to ncrit = 50, which corresponded
roughly to ITPCcrit = 0.3 for p = 0.01.

Figure 5. Critical ITPC values corresponding to a p = 0.01 statistical threshold analytically defined
by the Rayleigh Z approximation (thin blue line) and the experimentally calculated ITPC values
across seven subjects (thick black line). Both phenomena were computed and printed in comparison
with an increasing number of trials.
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Finally, a time–frequency representation of the brain response was calculated. The
ITPC and the signal power were calculated on the frequency interval between 0.25 Hz
and 25.00 Hz on the raw data segments with a length of 7 s. It should be noted that a
different filter width 0.25–25.00 Hz was applied in this case compared to the previous three
analyses. The short time fast Fourier transform (STFT) with the Hanning window was
applied across the whole segment with a time step of 0.1 s and across all frequencies from
0.1 Hz to 25 Hz. The window length was varied from 1 s to 0.1 s corresponding to 0.1 Hz
and 25 Hz, respectively.

A non-parametric statistical test equipped with cluster-based correction for multiple
comparison [59] was applied to all metrics described above. The averaged waveform,
amplitude, and signal power were baseline-corrected before statistical testing. The baseline
interval was chosen with respect to a well-synchronized detection period from 0.5 s to
0.35 s before the first stimulus. The averaged waveform and amplitude were corrected by
subtracting an averaged signal across time samples within the baseline period. The signal
power was normalized to the baseline period, and the relative change in signal power in
decibels was then statistically tested. The ITPC was naturally aligned across conditions
due to the very precise and the same detection of the SWA in both conditions, causing the
same phase synchronization during the baseline period.

3. Results
3.1. Detection/Stimulation Evaluation

The phase values in the time of detection and stimulation were computed and visual-
ized via polar histograms; see Figures 6 and 7. These figures represent the inter-subject
phase value evaluation. The red line in these polar histograms represent the mean phase
value. Figure 6 represents the evaluation of the fixed-step stimulation method, where
the mean value of phases is equal to 175.30◦. Figure 7 represents the evaluation of the
PLL-XOR method, where the mean value of phases is equal to 175.57◦. The descriptive
statistics parameter for the inter-subject characteristics of detection and stimulation are
given in Tables 3 and 4.

Figure 6. The inter-subject phase value analysis on digitally streamed real EEG records. The polar
histograms of phase values at the time of detection (left) and at the time of first stimulation (right)
for the fixed-step stimulation. The red line represents the mean of phase values.
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Figure 7. The inter-subject phase value analysis on digitally streamed real EEG records. The polar
histograms of phase values at the time of detection (left) and at the time of first stimulation (right) for
the PLL XOR implementation stimulation method. The red line represents the mean of phase values.

Table 3. Comparison of different stimulation methods in the case of the detection phase via descrip-
tive statistics parameters. The values are in degrees except for the skewness and kurtosis coefficients.

Method Mean Variance STD SEM Skewness [−] Kurtosis [−]

fixed-step 175.30 2.18 15.79 0.11 0.01 0.86
PLL-XOR 175.57 3.45 19.87 0.43 0.01 0.79

The individual characteristics of phase values in the case of detection and stimulation
for both stimulation methods are included in supplementary files; see Tables A1–A4.

Table 4. Comparison of different stimulation methods in the case of the stimulation phase via descrip-
tive statistics parameters. The values are in degrees, except the skewness and kurtosis coefficients.

Method Mean Variance STD SEM Skewness [−] Kurtosis [−]

fixed-step 256.97 27.18 55.81 0.40 0.09 −0.03
PLL-XOR 244.29 41.48 68.94 1.50 −0.10 −0.04

Given that the PLL implementation with the integral part could not be tuned, the
results are summarized in the following section. The results of tuning the parameters of
this PLL for all three methods are described here.

3.2. PLL with Integral Part Parameter Tuning

The PLL with the integral part was evaluated on the training dataset.
Different numbers of detections/stimulations were observed to set different parame-

ters (three types of optimal parameters for three PLL tuning methods); see Table 5. The
different number depends on the frequency characteristics of the PLL signal and the
amplitude difference, which is the threshold for resuming detection after pacing.

Table 5. Comparison of the number of stimulations of the three different tuning methods in the case
of PLL with the integral part.

Train Subj. ID Phase-Based Crit. Time-Phase-Based Crit. Fixed-Time-Based Crit.

subj 1 52 106 86
subj 2 344 3 2
subj 3 43 13 74
subj 4 165 1 110
subj 5 134 10 9
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Within the tuning of PLL parameters, we proposed three tuning methods, which
all tuned the PLL to obtain optimal parameters. Table 6 shows the average values of
the spectral range of the simulated matched PLL signal, the maximum spectral power,
and the values of the most optimal parameters G1, G2. The inter-subject phase values on
training dataset in case of different tuning method are depicted on Figures 8–10. Please see
Figure 8 for the evaluation of phase-based criterion, see Figure 9 for the evaluation of the
time-phase-based criterion and see Figure 10 for the fixed-time based criterion.

Figure 8. The inter-subject phase value analysis on the training dataset. The polar histograms of the
phase values at the time of detection (left) and at the time of first stimulation (right) for the PLL with
the integral part, the phase-based criterion. The red line represents the mean of phase values.

Figure 9. The inter-subject phase value analysis on the training dataset. The polar histograms of
phase values at the time of detection (left) and at the time of first stimulation (right) for the PLL with
the integral part, the time-phase-based criterion. The red line represents the mean of phase values.
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Figure 10. The inter-subject phase value analysis on the training dataset. The polar histograms of
phase values at the time of detection (left) and at the time of first stimulation (right) for the PLL with
the integral part, the fixed-time based criterion. The red line represents the mean of phase values.

Table 6. Comparison of parameters of the three different tuning methods in the case of PLL with the
integral part.

Tuning Version Spectral Range [Hz] Max Spectrum [Hz] G1 [−] G2 [−]

phase-based 0.38–1.36 0.86 0.0008 0.0007
time-phase-based 4.63–4.75 4.75 0.0092 0.8555
fixed-time-based 11.82–14.68 12.48 1.0000 0.5356

3.3. The Effects of Acoustic Stimulation

The EEG signal analysis revealed that the ITPC is more sensitive to changes in brain
activity in a frequency band of SWA due to sound stimulus compared to the averaged
waveform and amplitude metrics. The statistical increase in phase synchronization across
trials lasted from 0.6 s to 2.5 s after the first stimulus; see Figure 11. The average waveform
statistically increased on the interval from 1.4 s to 1.7 s; see Figure 12. The signal amplitude
statistically increased on the intervals from 0.2 s to 0.7 s and from 1.4 s to 1.8 s; see Figure 13.

The time–frequency data analysis confirmed that the robust increase in ITPC is specific
to frequency band between 0.5 Hz and 4.0 Hz; see Figure 14. The stimulation effect on the
phase synchronization lasted from approximately 0.2 s to 2.5 s after the stimulus application.
This is also in correspondence with the ITPC time course statistics.

The time–frequency signal power representation shows that the statistically significant
changes between the stimulation and sham conditions were mostly pronounced in a
broadband manner; see Figure 15. The changes in power due to sound stimulation were
not specific to slow waves in this case. There was an increase in delta and theta waves
on the intervals from 0.0 s to 0.7 s and from 1.2 s to 1.7 s. This result confirms the finding
of time-specific increases in amplitude previously mentioned and depicted in Figure 13.
There was a power increase in the sleep spindle band at times from 0.7 s to 2.5 s and in the
beta band during approximately the same time period.
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Figure 11. The grand average of the ITPC values across subjects for the stimulation (blue) and the
sham (red) conditions. The standard deviation is depicted by the filled band around the averaged
curves. The significant difference between the stimulation and sham was most pronounced at the
time intervals marked with gray-filled bars.

Figure 12. The grand average of the averaged waveform values across subjects for the stimulation
(blue) and the sham (red) conditions. The standard deviation is depicted by the filled band around the
averaged curves. The significant difference between the stimulation and sham was most pronounced
at the time intervals marked with gray-filled bars.
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Figure 13. The grand average of the averaged amplitude values across subjects for the stimulation
(blue) and the sham (red) conditions. The standard deviation is depicted by the filled band around
the averaged curves. The significant difference between the stimulation and sham was mostly
pronounced at the time intervals marked with gray-filled bars.

Figure 14. The time–frequency representation of the ITPC difference between the stimulation and
sham conditions. The significant difference was most pronounced within the outlined time–frequency
regions. The ITPC difference is clearly specific to the slow wave band.



Sensors 2021, 21, 5169 17 of 26

Figure 15. The time–frequency representation of the power relative difference in decibels between
the stimulation and sham conditions. The significant difference was most pronounced within the
outlined time–frequency regions. The power difference is shifted towards higher frequencies, and
significant differences can be observed across multiple bands.

4. Discussion

Research on the real-time stimulation of SWA is already being developed, and several
independent scientific teams have already described their implementations and initial
results. The aim of our paper was to add objectification by a quantitative comparison of the
two most commonly used approaches to stimulation. Our aim was also to extend a family
of acoustic stimulation effect metrics through a sensitive and well-established concept. This
will help in understanding the mechanisms underlying the stimulation efficacy and basic
principles, which are not yet known or clearly defined in the literature.

The first major issue of SWA stimulation is the objectification of subject measurements.
Because of the real-time response, it is not possible to work with FIR filters such that they
guarantee an ideal steepness, and it is generally difficult to find a metric that can ideally
detect slow oscillations across different subjects [46]. There is also an issue with adjusting
the sound level. In this study, the threshold was set individually so that a subject could
hear it well but not be disturbed by it. For objectification, it would be appropriate to
determine a threshold according to the “standardized” procedure. This may not be a large
issue in younger subjects. However, in older adults, the difference in hearing quality is
very high. An algorithm that would systematically determine the optimal sound level
for each individual based on testing before the measurement itself is essential for future
clinical studies.

SWA detection can be a problem in the case of chronic insomnia patients or, for
example the elderly, due to sleep variability [60]. Insomnia is a common problem in the
case of elderly people [61] as well. The NREM3 phase is not homogeneous, and fluctuating
sleep occurs more frequently in these cases. In our laboratory, the course of the proband’s
sleep was monitored by the constant supervision of a laboratory technician. For this reason,
we switched on the detection only after the visual identification of stable deep sleep by the
laboratory technicians, which is recommended for future studies.

There is a trend in the literature to replace the fixed-step method [20] with PLL meth-
ods so as to effectively stimulate the following SWA (not only the first wave after detection).
There have been many implementation types of PLL, such as [26,54,62]. Two types of PLL
were implemented and analyzed in this study. Specifically, PLL implementation with the
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integral part and PLL-XOR implementation were tested. These two types are commonly
used as a digital PLL implementation.

The study [26] also implemented the PLL method with an integral part for SWA
stimulation. The authors described their implementation process in detail, but we were
unable to replicate some parts. For example, the cut-off frequency of the low-pass filter was
set to 0.03 Hz, which was a limit that was not applicable to a standard filter in real-time
processing in our case. Our IIR filters with such a cut-off frequency were unstable, and
the FIR filter could not be used for real-time processing due to its slow response. For
these reasons, we implemented the PLL method with an integral part based on Scher
implementation [54], and the parameter set was tuned in this implementation. This
implementation principally corresponded to the implementation in the study [26]. Both
implementations applied a low-pass filter after the phase detector and then used an integral
form to convert the filtered signal to the current phase of the PLL signal. However, the
PLL method in our study also used the proportional form in the calculation. Despite small
differences between our method and a previously reported method [26], both algorithms
are similar enough for the the purpose of comparison.

Generally, we observed a very high sensitivity of the PLL behavior to its parameters,
which ultimately convinced us to give priority to the fixed-step method. However, we
approached the PLL parameter optimization in three different ways. The first approach,
called the phase-based method, resulted in PLLs oscillating at very low frequencies, lower
than 0.5 Hz, which was a much lower frequency band with respect to the typical SWA band
between 0.5 and 4.0 Hz. It is hypothesized that the PLL fitted very slow drifts of the EEG
data, which could not be attenuated by stable filters. It is not possible to apply an FIR
filter for real-time stimulation due to its very high order, and the IIR filter is not stable in
this case. Though the slow drifts lower than 0.5 Hz were tempered, it was not possible to
completely eliminate them.

The second approach, called the time-phase-based method, was an extended form
of the previous phase-based method. In that way, we eliminated the ambiguity of the
phase-based method, which led to the fitting of the slow drifts. In this case, the PLL
signal oscillated with a higher frequency, and the main peak in power spectral density
was approximately 5 Hz. The results showed that the stimulation was performed in the
rising phase of the real signal. However, the problem lay in the incorrectly high PLL
frequency, causing the second stimulation to be performed in the same rising phase of the
real EEG records as the first stimulation. Thus, spurious PLL fitting could be observed
if the PLL frequency became very high, compared to the frequency of interest. Here, the
PLL output signal frequency was approximately 5 Hz, and the frequency of the SWA was
approximately 0.5 Hz.

The fixed-time-based method optimized the PLL parameters based on a prior specifi-
cation of the delay between detection and stimulation. This approach was applied to avoid
the influence of noise in EEG recordings, causing the noise in the phase estimates to be
required by the phase-based and time-phase-based methods. Even the noise-free criterion
resulted in difficulties in terms of over-fitting the PLL parameters. Very small changes in a
prior fixed-time delay produced significant changes in PLL behavior, which was quantified
by the mean frequency of the PLL output in our case. In this case, the PLL signal had the
highest frequency across all three tested criteria, and the mean value of the phase in which
the stimulation occurred did not correspond to the desired value to which the PLL was to
be adjusted.

Generally, we state that the PLL method showed very complex behavior, which is not
necessarily captured by the optimization metrics used in previous studies. An over-fitted
PLL can result in a narrow polar histogram, while its output signal is far from optimally
fitting the original EEG data. Thus, a spuriously working PLL can be obtained.

For example, it is essential to ensure that the interval in which the stimulation at
the rising phase of the PLL output takes place is very narrow. Afterwards, for fast PLL
oscillation, the stimulation was skipped; see Section 2.4. For this reason, there could be a



Sensors 2021, 21, 5169 19 of 26

small amount of stimulation events, and the PLL could therefore be wrongly fit because of
the incorrectly distributed weights between subjects. To eliminate this phenomenon, we
extended the stimulation interval in the rising phase of the PLL. The number of stimulations
was thus increased, and the PLL signal had spectral characteristics corresponding to SWA;
see Table 6. However, the resulting stimulations in the EEG were than scattered throughout
the wave, including the falling phase (downward negative-going wave, going towards
the down state); see Figure 8. This indicates the poor synchronization of the PLL and
EEG signals.

Acoustic stimulation during slow-wave sleep can have a positive effect on memory
consolidation. In recent years, many studies [17] have been published that describe the
methods and the effect of stimulation in the context of memory change. However, the effect
of stimulation on the electrical activity of the brain as such has not yet been clearly described.
At the same time, no quantitative comparison of the two methods commonly used for
acoustic stimulation was performed. The new statistical look at acoustic stimulation in our
study should help others to use and develop acoustic stimulation further.

Both stimulation methods were applied on the same dataset. No brain response was
elicited because the data were artificially streamed. Thus, only the first stimulation was
evaluated. Overall, the fixed-step method stimulated more frequently compared to the
PLL-XOR implementation method. This was due to the stimulation interval, which was too
short for some fast oscillations. The fixed-time pause, which assumes the slowest frequency
of 0.5 Hz, is shorter for a number of cases than the pause of the PLL method.

The fixed-step method has less variance, which could indicate greater homogeneity of
the stimulation position. Shifting from the mean value of the stimuli to the rising phase
would not lead to so many cases of stimulation at the falling phase. PLL-XOR has a
higher value of kurtosis, which suggests that there are more extreme values in the phase
distribution than in the fixed-step method. However, this difference is not significant.
Skewness values are low for both methods, which indicates a relatively symmetrical
distribution. A fixed-step method shows positive skewness values, while those of the
PLL-XOR method are negative. We consider negative values to be advantageous here,
which means that outlying values are concentrated in the left part of the distribution; i.e.,
stimulation occurs earlier. This means that PLL-XOR should again have the advantage that
stimulation in the falling edge will not occur as often (in the case of good phasing).

The mean value of the PLL-XOR stimulation position and that of the fixed-step method
are similar (approx. 250◦), but the PLL-XOR method has a greater variance and a high
amount of stimulation in the falling phase. Our study and comparison show that PLL
cannot be easily adapted for universal use by different studied populations and individuals.
When we looked at the optimal PLL parameters that were tuned for each record separately,
they varied across individuals. Therefore, if we try to find unique common parameters
for all individuals, we encounter the inability of PLL to adapt to our requirements. The
fixed-step method does not have many cases where the falling phase of the SWA has been
stimulated. The fixed-step method seems to be a better variant due to its robustness and
good stimulation position results.

In this study, a combination of the ITPC and amplitude analysis was proposed to study
the effects of acoustic stimulation by the fixed-step approach during sleep. In previous
papers [22,23,26], the averaged signal across stimulation or sham trials was mainly utilized
to demonstrate the effect of the stimulation. We showed that the ITPC is more sensitive
to the effects compared to the commonly used averaged signal. The ITPC is amplitude-
independent, which allows us to address the phases of the SWA specifically. This is in
contrast with the commonly used averaged signal, which contains information about both
amplitude and phase. For the first time, it has been shown that the phase synchronization
of the SWA is increased by acoustic stimulation to a greater extent than the amplitude.
An important fact is that, instead of the prolongation of SWA due to stimulation, the
ITPC measures have the specific qualities of the SWA during the deep sleep period. More
technically, ITPC measures how much the temporal features of the SWA are consistent
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across all detections. This finding can lead to a proper understanding of the actual effect of
the acoustic stimulation and can give rise to more theories explaining the effects.

Further, the ITPC is the first step towards a rigorous interpretation of cross frequency
coupling (CFC); see [56]. The CFC is becoming a broadly observed phenomenon in EEGs
during sleep, and phase amplitude coupling (PAC) is the most common case. However,
for PAC to be rigorously interpreted, the ITPC has to be known to eliminate potentially
spurious couplings due to a stimulus presentation. Generally, the contribution of an evoked
response to the observed changes in the SWA due to an actual sound stimulus is still an
open question. We believe that computing the ITPC can contribute to a better distinction
of these two mixed phenomena and will allow us to use and interpret advanced methods
rigorously.

We have found that the time–frequency representations of the ITPC and signal power
are not as similar as one would expect. The ITPC and signal power showed rather comple-
mentary results. The ITPC was increased in a frequency-specific band during a broad time
period. The signal power changes in a more time-specific manner and are distributed over
a broad frequency band. Again, the ITPC was increased mostly in the band of SWA with a
longer duration compared to signal power changes.

The combination of the ITPC and power time–frequency representations is a gen-
eral way of analyzing the effects of acoustic stimulation, since the ITPC is amplitude-
independent and power is phase-independent. This approach is suitable for distinguishing
between evoked and induced changes. For example, our results showed that the signal
power in the spindle band changed due to the acoustic stimulation, while the phase syn-
chronization did not. Thus, the spindle activation is not likely to occur due to the evoked
response to the acoustic stimulus. The specific latency of the observed changes simultane-
ously brings further information that can be confronted with known evoked phenomena in
EEGs. Utilizing the proposed approach and integrating the obtained information can shed
light on the distinction between evoked and induced changes due to acoustic stimuli and
can support rigorous theories explaining the treatment effects of this promising method.

5. Conclusions

The aim of the work was to shed light on the stimulation of SWA in sleep and its
effect on spontaneous brain activity using acoustic stimuli. We were not able to achieve the
optimal location of stimulation for PLL methods, since optimal parameters for PLL were
not universal across individuals and the PLL behavior was too sensitive to its parameters.
The fixed-step method achieved satisfactory results for chronic insomnia patients. We have
concluded that the simpler approach, i.e., the fixed-step method, was more suitable for
experiments in insomnia patients compared to the PLL method. It was shown that a purely
phase-based quantification of the SWA resulted in the most sensitive discrimination of the
stimulation and sham conditions. The ITPC and signal power are two complementary
metrics that quantify the effect of acoustic stimulation. With regard to our finding that
the waves are phased by the stimulation, i.e., that we do not elicit a new response in
the sense of its amplitude, we only synchronize the spontaneous activity of the brain. It
seems appropriate to move the stimulation closer to detection. This finding is in contrast
to the previous wisdom, which is to move the stimulation time as close to the wave
maximum as possible. The sooner the pulse is sent, the greater the chance of phasing
the waves and thus increasing the amplitude of the average SWA. If the fixed time is
shortened, the stimulation is more likely to take place at the rising phase. SWA minimum
detection is simple and robust, and it is not time-consuming in real-time stimulation. Its
accuracy depends primarily on the sampling frequency; in the case of 1 kHz, satisfactory
performance was achieved.
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Appendix A. Experimental Design

Figure A1. Example of the output in our SWA detection and stimulation software (top left), the
technical monitoring room during online nightly recording of polysomnographic record used for this
study (top right), the recorded EEG signal displayed offline in BrainVision software (bottom left),
and the BrainScope hardware used to record the recordings analyzed in this study (bottom right).
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Appendix B. Detection/Stimulation Evaluation

Table A1. Fixed-step method evaluation of detection phases via descriptive statistics parameters. The values are in degrees,
except the skewness and kurtosis coefficients.

Measurement Code Mean Variance STD SEM Skewness [−] Kurtosis [−]

MEA01 178.68 1.10 11.25 0.26 0.00 0.93
MEA02 178.71 1.06 11.04 0.31 0.00 0.93
MEA03 177.71 1.11 11.27 0.55 0.01 0.93
MEA04 169.90 1.21 11.77 0.74 0.01 0.92
MEA05 174.21 4.03 21.48 0.52 0.02 0.77
MEA06 182.03 0.90 10.18 0.36 0.00 0.94
MEA07 170.93 2.52 16.99 0.63 0.00 0.84
MEA08 178.86 1.21 11.76 0.44 0.00 0.92
MEA09 176.07 2.06 15.37 0.43 0.01 0.87
MEA10 170.45 3.08 18.79 0.47 0.00 0.81
MEA11 177.85 1.30 12.20 0.42 0.00 0.91
MEA12 178.83 1.29 12.17 0.35 0.01 0.92
MEA13 167.92 2.14 15.66 0.43 0.00 0.86
MEA14 170.47 2.01 15.19 0.54 −0.01 0.87
MEA15 180.96 1.14 11.45 0.39 0.01 0.92
MEA16 178.66 1.56 13.39 0.44 0.01 0.90
MEA17 175.11 1.59 13.52 0.44 0.00 0.90
MEA18 169.92 3.63 20.40 0.52 −0.02 0.77

overall 175.30 2.18 15.79 0.11 0.01 0.86

Table A2. Fixed-step method evaluation of stimulation phases via descriptive statistics parameters. The values are in
degrees, except the skewness and kurtosis coefficients.

Measurement Code Mean Variance STD SEM Skewness [−] Kurtosis [−]

MEA01 293.63 16.85 43.94 1.01 0.01 0.35
MEA02 287.15 17.27 44.49 1.24 0.03 0.35
MEA03 255.20 14.17 40.29 1.96 0.08 0.34
MEA04 259.04 8.53 31.27 1.96 0.03 0.55
MEA05 262.79 29.45 58.09 1.40 0.15 0.03
MEA06 312.89 16.57 43.58 1.53 0.07 0.34
MEA07 207.82 20.93 48.98 1.82 −0.21 0.24
MEA08 270.97 26.02 54.61 2.05 0.09 0.02
MEA09 279.79 31.55 60.13 1.69 0.33 0.05
MEA10 231.27 21.05 49.11 1.23 −0.01 0.09
MEA11 264.62 25.47 54.02 1.86 0.06 0.10
MEA12 273.21 10.60 34.86 1.00 0.07 0.52
MEA13 206.67 19.24 46.95 1.30 −0.27 0.34
MEA14 203.46 17.00 44.14 1.58 −0.18 0.28
MEA15 298.24 15.54 42.20 1.42 0.09 0.39
MEA16 289.72 23.08 51.43 1.70 0.13 0.18
MEA17 233.65 15.24 41.80 1.35 −0.09 0.29
MEA18 195.03 16.07 42.91 1.08 −0.23 0.34

overall 256.97 27.18 55.81 0.40 0.09 −0.03
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Table A3. PLL-XOR implementation method evaluation of detection phases via descriptive statistics parameters. The values
are in degrees, except the skewness and kurtosis coefficients.

Measurement Code Mean Variance STD SEM Skewness [−] Kurtosis [−]

MEA01 175.18 5.39 24.86 2.19 0.00 0.69
MEA02 180.80 1.51 13.14 1.64 0.01 0.90
MEA03 175.03 2.79 17.88 4.00 0.02 0.82
MEA04 172.66 1.20 11.73 2.62 0.01 0.92
MEA05 175.63 3.12 18.92 1.07 0.01 0.80
MEA06 184.54 0.40 6.76 0.64 0.00 0.97
MEA07 165.74 4.65 23.09 2.01 −0.01 0.71
MEA08 176.57 5.01 23.96 2.58 0.01 0.72
MEA09 179.93 0.62 8.42 0.48 0.00 0.96
MEA10 182.77 4.67 23.12 3.06 −0.01 0.71
MEA11 183,98 8.86 31.87 8.23 −0.15 0.51
MEA12 178.49 1.06 11.04 0.77 0.01 0.93
MEA13 171.37 10.30 34.36 8.59 −0.05 0.38
MEA14 166.52 3.70 20.59 2.52 0.00 0.77
MEA15 165.93 8.00 30.27 2.64 −0.02 0.54
MEA16 176.67 3.08 18.80 1.14 0.01 0.81
MEA17 160.24 4.41 22.48 2.51 0.00 0.73
MEA18 176.10 3.30 19.43 2.07 −0.01 0.79

overall 175.57 3.45 19.87 0.43 0.01 0.79

Table A4. PLL-XOR implementation method evaluation of stimulation phases via descriptive statistics parameters. The
values are in degrees, except the skewness and kurtosis coefficients.

Measurement Code Mean Variance STD SEM Skewness [−] Kurtosis [−]

MEA01 224.24 39.00 66.85 5.89 −0.26 0.00
MEA02 298.87 31.93 60.49 7.56 0.07 0.05
MEA03 230.45 38.12 66.10 14.78 −0.13 −0.14
MEA04 269.53 23.18 51.54 11.52 0.13 0.19
MEA05 212.73 40.47 68.10 3.87 −0.11 0.02
MEA06 305.74 36.82 64.95 6.19 −0.13 −0.06
MEA07 200.03 25.47 54.02 4.70 −0.18 0.29
MEA08 234.40 32.78 61.29 6.61 −0.04 0.28
MEA09 319.60 36.20 64.41 3.68 −0.04 0.01
MEA10 246.41 35.22 63.53 8.41 −0.10 0.14
MEA11 221.62 31.47 60.05 15.51 −0.23 0.23
MEA12 287.88 36.62 64.78 4.56 0.01 0.03
MEA13 178.38 35.69 63.95 15.99 0.03 0.26
MEA14 202.68 18.62 46.19 5.64 −0.15 0.42
MEA15 196.56 24.91 53.43 4.67 −0.14 0.40
MEA16 268.91 40.89 68.46 4.17 −0.03 −0.05
MEA17 206.67 30.09 58.72 6.57 −0.18 0.26
MEA18 213.24 36.31 64.51 6.88 −0.22 0.11

overall 244.29 41.48 68.94 1.50 −0.10 −0.04

Appendix C. Extended Dataset Evaluation

The whole dataset, consisting of 39 records, was used for extended analysis. The
results obtained from this dataset are only supportive, as these were records with a low
incidence of SWA detections. For this reason, the analysis was performed only for the
fixed-step stimulation method. The aim is to support/refute the main finding of the study
that the fixed-step stimulation method is sufficient. This dataset is measured with same
electrode positions as mentioned in the study on insomnia patients.

The mean number of detections and stimulations was equal to 132 events. The EEG
records duration was 7.92 ± 0.06 h (mean ± SEM). The deep-sleep segments’ duration
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was 49.58 ± 6.52 min (mean ± SEM). The minimal and maximal deep-sleep duration was
10 min and 181.32 min. Low-pass filtering was applied to the reference signal before SWA
detection. The infinite impulse response (IIR) low-pass filter (type Chebyshev, 3rd order)
with a cut-off frequency of 4 Hz was used.

The phase values in the time of detection and stimulation were computed and visu-
alized via polar histograms; see Figure A2. This figures represent the inter-subject phase
value evaluation. The red line in these polar histograms represents the mean phase value.
Figure A2 represents the evaluation of the fixed-step stimulation method, where the mean
value of detection phases is equal to 168.91◦ and mean of stimulation phases is equal to
307.05◦. The descriptive statistics parameter for the inter-subject characteristics of detection
and stimulation are given in Table A5. These results are consistent with the assumptions
and support the main outcome of our study.

Figure A2. The inter-subject phase value analysis on the wilder dataset. The polar histograms
of phase values at the time of detection (left) and at the time of first stimulation (right) for the
fixed-step method.

Table A5. Descriptive statistic for case of detection and stimulation using fixed-step method of stimulation. The values are
in degrees except for the skewness and kurtosis coefficients.

Type Mean Variance STD SEM Skewness [−] Kurtosis [−]

detection 168.91 2.29 16.20 0.23 0.00 0.85
stimulation 307.05 20.21 48.13 0.67 0.12 0.28
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