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iza.glowniak@umlub.pl
6 Department of Infectious, Tropical Diseases and Immune Deficiency,

Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; mparczewski@yahoo.co.uk
7 Department of Nephrology, Medical University of Lublin, 20-954 Lublin, Poland; wojciech.zaluska@umlub.pl
* Correspondence: ewelina.grywalska@gmail.com (E.G.); paulina.niedzwiedzka-rystwej@usz.edu.pl (P.N.-R.);

Tel.: +48-533754455 (E.G.); +48-509572155 (P.N.-R.)

Abstract: The continually evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pandemic has resulted in a vast number of either acute or chronic medical impairments of a patho-
physiology that is not yet fully understood. SARS-CoV-2 tropism for the organs is associated with
bilateral organ cross-talks as well as targeted dysfunctions, among which acute kidney injury (AKI)
seems to be highly prevalent in infected patients. The need for efficient management of COVID-
related AKI patients is an aspect that is still being investigated by nephrologists; however, another
reason for concern is a disturbingly high proportion of various types of kidney dysfunctions in
patients who have recovered from COVID-19. Even though the clinical picture of AKI and COVID-
related AKI seems to be quite similar, it must be considered that regarding the latter, little is known
about both the optimal management and long-term consequences. These discrepancies raise an
urgent need for further research aimed at evaluating the molecular mechanisms associated with
SARS-CoV-2-induced kidney damage as well as standardized management of COVID-related AKI
patients. The following review presents a comprehensive and most-recent insight into the patho-
physiology, clinical manifestations, recommended patient management, treatment strategies, and
post-mortem findings in patients with COVID-related AKI.

Keywords: COVID-19; SARS-CoV-2; acute kidney injury; AKI; survival rate; glomerulopathy; SARS-
CoV-2 tropism; coronavirus

1. Introduction

Coronavirus disease 2019 (COVID-19), induced by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), is a fairly recent disease, first reported less than 2 years ago.
According to John Hopkins Coronavirus Resource Center, it has been responsible for more
than 2 million deaths as of the 16 March 2021 [1]. Patients diagnosed with COVID-19
present a wide range of various impairments and organ dysfunctions, while the course
of the disease depends on the individual, ranging from asymptomatic infection to severe
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symptoms and even fatal incidents [2,3]. The most common clinical manifestations include
interstitial and alveolar pneumonia, with around 5–20% progressing to acute respiratory
distress syndrome (ARDS), septic shock, or multiple organ failure [3–6]. Despite the most
prevalently diagnosed respiratory manifestations, gastrointestinal, neurological, olfactory,
and cardiac symptoms are also very common in patients of various ages. Additionally,
there is plausible evidence from the literature suggesting that COVID-19 might be a risk
factor for an acute kidney injury (AKI), with its incidence being estimated from around 4.8
to 36% in COVID-19 patients [7–14]. This incidence may vary in different ethnic groups [15].
Published data demonstrate that approximately 30% of patients hospitalized with COVID-
19 will develop AKI, while such risk is significantly increased in critically ill patients [16–18].
According to a recent meta-analysis, approximately 5.4% of COVID-19 patients require
renal replacement therapy (RRT), with this number increasing up to 16.4% among patients
admitted to intensive care units (ICUs) [8]. COVID-related AKI is associated with poor
outcomes of the disease and greater mortality rates [19–21], reaching 11.1–14.4% compared
with 1.2–5% among infected non-AKI patients [10,22]. Although the number of patients
with COVID-19-associated AKI is greater than that in other sepsis-related conditions,
the rate of AKI in COVID-19 patients is proportional to that observed in other forms of
sepsis [23]. (Figure 1)

Figure 1. The consequences of SARS CoV-2 infection leading to AKI. SARS CoV-2, severe acute respiratory syndrome
coronavirus 2; IL, interleukin; ARDS, acute respiratory distress syndrome; DAMPs, damage-associated molecular patterns;
ECMO, extracorporeal membrane oxygenation; TNF-α, tumor necrosis factor-alpha.

It is worth mentioning that from the practical experience of the authors of the manuscript
(MP), approximately 80% of hospital-admitted COVID-19 patients present with the clin-
ical symptoms of dehydration (due to, e.g., fever or hyperventilation). It has become a
practical routine that virtually every in-hospital-admitted patient receives 1000–2000 mL
of intravenous fluids/day in the first days following admittance. Therefore, it should
be underlined that dehydration may interact with and/or exacerbate the pathological
processes contributing to renal failure.

The above-mentioned data indicate an urgent need for an understanding of the
pathophysiology of renal injury caused by SARS-CoV-2 infection. In this review, we
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aimed to describe the most recent knowledge regarding the pathophysiology, clinical
manifestations, and proposed management strategies of COVID-19 patients who develop
AKI in the course of the infection.

2. Acute Kidney Injury—Definition and Diagnostic Criteria

Acute kidney injury (AKI) is commonly diagnosed in critically ill patients with its
occurrence estimated at up to 50% in patients hospitalized in ICUs [24]. A rapid increase
in serum creatinine levels or decrease in urine output lies at the foundation of the condi-
tion [25]. AKI is a growing healthcare problem and is associated with high morbidity and
mortality rates among patients. Moreover, the treatment of this syndrome requires a long
hospitalization course and is generating high healthcare costs due to its cost-ineffective
nature, especially in the times of the SARS-CoV-2 pandemic [25,26]. According to the Kid-
ney Disease Improving Global Guidelines (KDIGO) 2012, clinical criteria of this condition
are implemented both from the Acute Kidney Injury Network (AKIN) criteria and RIFLE
criteria [27,28], as the diagnosis of AKI can be established in one of the following clinical
situations: an increase in serum creatinine levels ≥0.3 mg/dl within 48 h; an increase
≥1.5 times baseline within the previous 7 days; or urine volume ≤0.5 mL/kg/h for 6 h [29].
The Acute Disease Quality Initiative (ADQI) Group recommends the use of biomarkers in
the process of diagnosis of surgery-associated AKI [30]. The proposed biomarkers include
tissue damage markers such as TIMP2/IGFBP7 (combination of tissue inhibitor of met-
alloproteinases 2 and insulin-like growth factor binding protein) and NGAL (neutrophil
gelatinase-associated lipocalin) in patients at high risk of surgery-associated AKI. The
appropriatness of the use of these biomarkers in COVID-19 patietns has been evaluated by
two authors. In the paper by Luther et al., the urine levels of renal tissue damage markers
(TIMP2, NGAL, and KIM-2) in COVID-19 patients that developped AKI were elevated [31].
Similarly, He et al. demonstrated that a high NGAL urine level is a predictor of AKI and of
high risk of in-hospital death [32]. Together, these findings show that the incorporation
of such biomarker evaluation in COVID-19 patients represents an additional tool for the
identification of patients at high risk of AKI development.

The term ‘acute’ in relation to kidney disease means that the symptoms of functional
or structural damage last no more than 90 days [33,34]. As previously mentioned, AKI can
be caused by various health conditions, mostly hepato- and cardio-renal diseases [35,36],
sepsis [37], and bacterial toxins [38]; moreover, it frequently overlaps with other chronic
or acute renal diseases or may be diagnosed in patients without any coexisting health
problems [39]. Anatomically, with reference to kidneys, AKI can be divided into prerenal,
intrinsic, and postrenal syndrome [25]. KDIGO proposed staging of AKI based on the
laboratory parameters (serum creatinine level/eGFR) and urine output [39] (Table 1).
Typically, it develops without any specific symptoms and alarming signs, and, therefore, it
can remain unnoticed for a long time, especially if the patient does not come to a specialist
ward in a life-threatening condition [25]. It is necessary to be extremely vigilant not to
overlook the correct diagnosis.

Table 1. Staging of AKI according to the Kidney Disease Improving Global Guidelines [39].

Stage Creatinine Level/Estimated Glomerular
Filtration Rate (eGFR) Urine Output

1 1.5–1.9 times baseline or ≥0.3 mg/dL
(≥26.5 mol/L) increase <0.5 mL/kg/h for 6–12 h

2 2.0–2.9 times baseline <0.5 mL/kg/h for ≥12 h

3

3 times baseline; ≥4.0 mg/dL (≥353.6 mol/L)
increase; initiation of replacement renal therapy

(RRT); or in patients <18 years, a decrease in
eGFR<35 mL/min/1.73 m2

<0.3 mL/kg/h for ≥24 h
or anuria ≥12 h
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3. Mechanisms of COVID-19-Associated AKI

The pathogenesis of COVID-related AKI is multifactorial and includes direct and
indirect mechanisms of viral infection; both of them remain poorly understood and require
further evaluation (Figure 2 and Table 2). Although some of the pathological findings are
similar to those of other types of AKI, researchers have described mechanisms typically in-
volved in COVID-related AKI. Most of the mechanisms overlap with each other, enhancing
their intensity; therefore, it is difficult to clearly distinguish them.

The pathological changes in kidney during COVID-19-associated AKI include tubu-
lointerstitial, glomerular, and vascular damage.

The kidney picture presents with diffuse proximal tubule injury with loss of the brush
border and frank necrosis accompanied by vacuolar degeneration and tubulointerstitial
fibrosis. Electron microscopy imaging shows SARS-CoV-2 viruses in the tubular epithelium
(predominantly in the proximal tubule and podocytes) [3,40]. In the interstitial compart-
ment, inflammatory cell forms infiltrate, and edema can be seen. In the case of sever kidney
injury, the basement membrane is the only barrier between the filtrate and the peritubular
interstitium. Because of the increased endothelial permeability, glomerular filtrate leaks
from the tubular lumen into the interstitium [40].

In the glomeruli, the observation of autopsies from kidneys of COVID-19 patients
shows the diffuse and focal segmental fibrin thrombus in the glomerular capillary loops and
endothelial injury. In the case of collapsing glomerulopathy, glomerular epithelial damage
occurs together with loss of podocytes integrity. Glomerular capillaries are segmental
or globally collapsed and sclerotic, with hyperplasia and hypertrophy of the glomerular
epithelium. Some cases present with diffuse erythrocyte stagnation in the glomerular
capillary or glomerular loop occlusion by erythrocytes over peritubular capillaries [40].

On the vascular level, the picture of AKI demonstrates vasoconstriction of intrarenal
vessels, increased vascular permeability, and microthrombi formation [3]. Vascular en-
dothelium damage occurs, which can be observed as swelling of endothelial cells. The
leukocyte–endothelium interactions are enhanced, leading to leukocyte migration into the
interstitium [40,41].

Figure 2. The summary of COVID-related AKI. SARS CoV-2, severe acute respiratory syndrome coronavirus 2; ACE2,
angiotensin-converting enzyme 2; APOL1, apolipoprotein L1.
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Table 2. Potential mechanisms of kidney damage associated with the SARS-CoV-2 infection.

Components of SARS-CoV-2
Infection Mechanisms of Kidney Damage

Cytopathic effect of replicating virus

Immune-mediated tissue damage

Glomerulonephropaty

Tubular injury

Renin–angiotensin–aldosterone system abnormalities

Proinflammatory properties of upregulated AGII

Polymorphism in ACE2

Upregulation/downregulation of ACE2

Ischemic injury

Septic shock and inflammation

Hypoxia

Hypercapnia

Mechanical ventilation

Rhabdomyolysis Medullary vasoconstriction, intrarenal hypoxia, and damage of renal
cells by reactive oxygen species

Microthrombi Inflammatory infiltrations, obstruction, and subsequent hypoxia

Hyperinflammation Cytokine storm

Complement activation

3.1. Sites of SARS-CoV-2 Invasion

SARS-CoV-2 enters the renal cells using the receptor angiotensin-1 converting enzyme
(ACE2), and for the endocytosis and membrane fusion, it uses transmembrane serine pro-
tease 2 (TMPRSS2). The S1 domain of SARS-CoV-2 (protein S1) mediates the entry of the virus
into target host cells after binding with the transmembrane ACE2 receptor [42]. The virus has
marked tropism for the respiratory tract, bowel, and heart cells, where ACE2 expression is
well represented. In the kidney, ACE2 is present in podocytes, proximal tubule, mesangial
cells, parietal epithelium of Bowman’s capsule, and collecting ducts [43–46]. Importantly,
ACE2 is expressed in the kidney stronger than in the lungs. The virus may enter the kidney by
invading podocytes; then, in the tubular fluid, it accesses ACE2 in the proximal tubule [47]. It
was hypothesized that ACE2 gene polymorphisms may predispose to kidney injury induced
by SARS-CoV-2 infection [48–50]. Interestingly, SARS-CoV-2 infection both prevents ACE2
from attaching to the receptor and alternates ACE2 expression within the proximal tubular
cells, especially in the areas of acute tubular injury [3,51]. Accumulation of the AGII protein,
not converted to AG1-7, promotes inflammation by increasing cytokine release and allowing
easier immune cell infiltration of the tissues [52,53].

Another receptor with a potential impact on the entry of SARS-CoV-2 is neuropilin-2
(NRP-1) [54]. NRP-1 is implicated in several aspects of a SARS-CoV-2 infection, includ-
ing possible spread through the olfactory bulb and into the central nervous system and
increased NRP-1 RNA expression in lungs of severe COVID-19 [54]. Moreover, NRP-1 may
also serve as an immune checkpoint of the memory T cell in COVID-19 [55]. It has been
identified that binding of the SARS-CoV-2 spike protein to the NRP-1 receptors impacts
the docking of the VEGF-A ligand [55]. NRP-1 may act as a host cell mediator that is
able to increase the infectivity of the virus and thus contribute to the tropism of the coron-
avirus [56]. Studies on the potential use of NPR-1 as a target for therapy are ongoing [57].
It is worth noting that the role of NRP-1 has also been confirmed in kidney diseases via
elevated vascular permeability and endothelial cell apoptosis leading to imbalanced kidney
regulations also increasing renal disorders [58].

In addition, studies have confirmed that priming the spike proteins of SARS-CoV-
2 may also be dependent on transmembrane protease serine 2 (TMPRSS2) and other
proteases, e.g., furin [56].
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3.2. Renin–Angiotensin–Aldosterone System Impairment by SARS-CoV-2

The renin–angiotensin–aldosterone system (RAAS) plays a vital role in the mainte-
nance of proper arterial pressure and tissue perfusion; therefore, any dysfunctions within
this system take part in the pathogenesis of renal diseases.

SARS-CoV-2 infects cells using ACE2 as its receptor. ACE2, through the modulation of
the RAAS, plays an important physiologic role in the homeostasis of tissue microcirculation
and inflammation [59]. It converts angiotensin II (AGII) to angiotensin 1-7 (AG1-7), a
protein with anti-inflammatory, vasodilatory, anti-fibrotic, and natriuretic activity [60,61].
AG1-7 exerts this activity by binding to a G-protein-coupled Mas receptor (MasR). In con-
trast to AG1-7, AGII presents pro-inflammatory, pro-fibrotic, and anti-diuretic properties.
It acts also as a vasoconstrictor [52]. All of these actions are mediated by binding AGII
to the Ang T1 receptor (AT1R) on the cellular surface [59]. Interestingly, opposite effects
may be induced if AGII attaches to Ang T2 receptors (AT2Rs). These two receptors for
AGII are differentially distributed in the renal tissue. AT1R is predominately expressed
in the cortex and AT2R in the medulla, which results in distinct AGII effects in these two
renal localizations: vasoconstriction at the renal cortex and vasodilation at the medulla.
SARS-CoV-2 infection unbalances the RAAS since cellular internalization of viruses induces
degradation of the membranal ACE2. This results in depletion of Ang1-7, which may lead
to microcirculatory dysfunction, enhanced inflammatory processes, hypercoagulability,
fibrosis, and tissue damage.

3.3. Viral-Induced Tissue Damage

One of the possible causes of AKI in COVID-19 patients is tissue damage directly
caused by the renal tropism of SARS-CoV-2; however, the scientific data on this matter
remain unclear.

In 2019, a researcher from Wuhan, China, described the presence of the SARS-CoV-2
genetic material using the RT-PCR method in urine samples and suspected that the new
coronavirus may also be involved in renal failure [62]. Some studies have proved acute
kidney tubular injury in COVID-19 patients as well as the presence of virions in these
organs in post-mortem examination [63–65].

However, these observations remain unconfirmed in some studies. For example,
Rabb et al. described tubular injury in the renal biopsy samples of critically ill patients
with SARS-CoV-2 but without detection of the viral genetic material from the renal tissue,
urine, and serum samples [66]. Moreover, Sharma et al. did not find viral material from
renal biopsy despite the fact that the patients were diagnosed with COVID-related AKI
and all had tubular injury [67]. It is worth noting that the differences between those
results may also be the cause of the different stage of virus replication. The authors also
emphasize that acute renal tubular damage is associated with ischemia rather than viral
damage, during which the glomeruli or interstitial tissue is damaged [68]. Interestingly,
post-mortem observations also revealed pathogenic changes in the renal glomeruli in
the form of sclerotic capillary vessels and renal epithelial hyperplasia [69]. Computed
tomography (CT) scans of the kidneys in COVID-19 patients show the signs of edema
and ongoing renal inflammation [19]. Direct failure of renal tissue has also been proven
using microscopy by describing the presence of SARS-CoV-2-like particles in damaged
podocytes, which were also detached from the glomerular membrane [63].

Patients with COVID-related AKI can develop collapsing glomerulopathy, an ag-
gressive variant of focal segmental glomerulonephritis, which is typically caused by vari-
ous viral infections in both direct and immune-mediated mechanisms (Figure 1) [70–74].
There is a described genetic (high-risk APOL-1 gene) and ethnic (Africans) susceptibility
to COVID-19-associated glomerular disease [64,73,75]. The immune particles, such as
macrophages and complement components C5b-C9, triggered by the virus, also influence
the pathogenesis of COVID-related AKI by promoting innate immune-related cell damage
at the tubulointerstitium [76].



Int. J. Mol. Sci. 2021, 22, 7082 7 of 18

Nevertheless, many pathologists believe that the presence of the viral-like particles
may be misleading and that it does not clearly indicate the presence of replicating SARS
CoV-2 in given tissues [77,78].

3.4. Ischemia

Renal ischemia in the course of COVID-19 may result from septic shock, which is an
extremely dangerous complication of this disease. It is estimated that septic shock may
develop in up to 6% of all patients with SARS-CoV-2 infection, and it is the key cause
of multiorgan failure and a third major cause of death in COVID-19 patients [12,79,80].
The main pathological mechanism associated with kidney damage in septic shock is
hypoperfusion resulting in tissue hypoxia and ischemia [3]. Renal ischemia is one of the
main causes of tubular damage. It rapidly induces a number of structural and functional
alterations in renal proximal tubular epithelial cells, which can be described as acute
tubular injury [3,41]. The tubular epithelial cells undergo injury and, if it is severe, death by
apoptosis and necrosis (acute tubular necrosis), with organ functional impairment of water,
electrolyte homeostasis, and reduced excretion of waste products of metabolism [40].

The assumption of an ischemic background of AKI in COVID-19 is supported by
the numerous pathologies found in post-mortem studies: erythrocyte-related occlusion
of glomerular capillary loops and peritubular small vessels, proximal tubule injury with
necrosis, and degeneration of vacuoles [3,63]. As previously mentioned, the mechanisms
overlap, and the dysregulation within the RAAS system in the pathogenesis of renal
ischemia in COVID-related AKI is also reported. The elevated level of AGII resulting from
ACE2 degradation by SARS-CoV-2 and subsequent AG1-7 depletion may predispose to
vasoconstriction in renal vessels [41,80]. Local blood flow to the outer medulla, reduced
due to arteriolar vasoconstriction, is further compromised by local edema [40].

Ischemic complications can also be induced indirectly by respiratory failure. Lung
damage commonly observed in patients with severe COVID-19 leads to generalized hypox-
emia and hypercapnia. Renal tissue is physiologically extremely well supplied in blood;
thus, a decrease in blood oxygenation and its reduced supply, together with the increased
demand caused by sepsis, increases the risk of ischemic damage [81]. Alveolar damage in
the lungs has been reported to be a cause of damage in renal mesangium, endothelium,
glomeruli, tubules, and the accumulation of white blood cells in renal tissue [82]. Moreover,
hypercapnia is associated with neurohormonal dysregulation, with increased activity of
the sympathetic part of a nervous system with its vasoconstrictive potential [83].

Interestingly, it was reported that life-saving mechanical ventilation has a negative
impact on kidney oxygenation and is associated with a significantly higher risk of AKI
development. Mechanical ventilation causes many physical and physiological changes in
lung tissue and in the respiratory muscles functioning, which results in reduced cardiac
output and exacerbation of renal edema, reducing the flow of the oxygenated blood through
the kidneys [82,84].

3.5. Rhabdomyolysis

Rhabdomyolysis, a rare condition where damaged skeletal muscles break down,
has been reported as a complication of severe COVID-19 [85,86]. Rhabdomyolysis may
contribute to kidney injuries occurring in COVID-19 patients [86]. Myoglobin derived from
damaged skeletal muscles induces renal injury in several mechanisms. Myoglobin itself
forms pigment casts in the tubules obstructing the normal flow of fluid. Moreover, direct
tubulotoxicity is mediated by reactive oxygen species (ROS) generated by iron released
from heme. In the third mechanism, medullar vasoconstriction exacerbates intrarenal
hypoxia, leading to renal failure [87]. In post-mortem investigations of 26 COVID-19
patients, pigmented casts have been detected in kidney tubules. The clinical history of
these patients has shown elevated serum creatine kinase levels, which is a marker of muscle
damage. The etiology of both findings remains unknown; however, they are probably
associated with rhabdomyolysis [63]. A case series report presenting data from renal
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biopsies of 10 COVID-19 patients who had clinical features of AKI also demonstrated
myoglobin casts in renal tubules together with elevated serum creatine kinase levels, both
probably due to the ongoing rhabdomyolysis [67].

3.6. Thrombotic Events

There are multiple observations of thrombotic events in patients with COVID-19,
even when they are under anticoagulation treatment [79,88,89]. In most patients with
SARS-CoV-2, elevated levels of D-dimers were observed and were correlated with an
increased risk of renal failure [12,62,79,90]. Moreover, higher mortality rates were observed
in the group of people with COVID-19 and increased thrombotic risk [89]. Furthermore,
post-mortem examinations of kidney tissues indicated the presence of fibrin thrombi in
renal vessels, which suggests that thrombotic complications are considered one of the
causes of COVID-related AKI. Sharma et al. described the thrombotic microangiopathy
in two patients with SARS-CoV-2-induced AKI; however, both were in the at-risk group
because of their disorders [67]. Venous thrombosis as a cause of renal failure has also been
described by Xia et al. [68].

3.7. Hyperinflammation

Multiple overlapping mechanisms, as described earlier, can lead to hyperinflamma-
tion. The cytokine release syndrome (CRS) and further hyperinflammatory state are some
of the major pathological mechanisms described in COVID-19 and hence in COVID-related
AKI. Viral replication itself was reported to be associated with the induction of a hyper-
inflammatory state [91]. Patients with confirmed infection present significantly higher
plasma levels of inflammatory markers and factors than those of uninfected patients due to
the onset of the cytokine storm, which is associated with a more severe course of the disease
and greater morbidity rates in such patients. One of the major pathways associated with
the induction of hyperinflammation includes the enhanced activation of the complement
system and subsequent production of C3a and C5a responsible for the initiation of the
pro-inflammatory responses [92]. Other relevant features include the impairments within
CD4+ CD8+ T cells and NK cells in addition to the overactivation of macrophages and neu-
trophils [93–95]. There is debate regarding whether pharmacological immunomodulation
should be implemented in patients with COVID-related AKI.

3.8. Drug-Induced AKI

Many drugs with a potential nephrotoxic effect are used to improve the clinical
outcome of patients with the SARS-CoV-2, including those in the critical condition. Reports
from post-mortem investigations in patients who developed AKI during COVID-19 showed
the presence of crystals in the proximal kidney tubules and casts; these results may support
the hypothesis [68]. Moreover, in two case reports, drug-related kidney damage in the
form of oxalate nephropathy was described [96].

4. Laboratory Examinations and Histopathology
4.1. Laboratory Findings

Among the basic parameters determined in patients with suspected kidney injury
and the acute condition are the level of serum creatinine and the eGFR index. In the case
of COVID-related AKI, as in other AKI cases, serum creatinine levels are much higher
compared to those of healthy individuals, and, of course, the eGFR level is significantly
reduced; in almost 70% of patients, several abnormalities in the urine samples are detected
and include proteinuria, hematuria, and, less frequently, leukocyturia [19,97,98]. Most
patients with COVID-related AKI present an increased white blood cell count with elevated
levels of neutrophils and a lowered number of lymphocytes [68]. Selected laboratory
parameters reflect an increased AKI risk in the course of the COVID-19 disease.

Elevated IL-6 activity was linked with a higher risk of renal failure. Moreover, patients
with elevated levels of IL-6, creatinine and D-dimers are those with significantly greater
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mortality rates [68,99]. The observations of laboratory abnormalities in severe COVID-19
coincide with each other in the following aspects: severely ill patients were reported to
present higher levels of IL-6, D-dimers, LDH, platelets, hsCRP, white blood cells with pre-
dominant neutrophils, and fewer lymphocytes [62,100–106]. While high levels of platelets
are usually described, lowered platelet levels may be associated with a higher risk of
death [107–109]. In addition, researchers showed that the presence of protein in urine upon
admission to hospital was associated with a higher risk of developing AKI, and in patients
with SARS-CoV-2 who subsequently developed proteinuria, it was associated with a higher
risk of death. In addition, patients who presented hematuria more frequently required
admission to the ICU, needed mechanical respiratory assistance, and had a higher risk of
death [110]. Laboratory findings on patients with COVID-related AKI are summarized in
Table 3.

Table 3. Laboratory findings on patients with COVID-related AKI.

Material Abnormal Parameter Elevated/Lowered

Urine samples
Protein

Elevated
Hematuria

Blood count

WBC

ElevatedNeutrophils

Platelets

Lymphocytes Lowered

Pro-inflammatory markers

Ferritin

Elevated

IL-2R

IL-6

hsCRP

LDH

Coagulation markers D-dimer Elevated

Renal markers

Creatinine
Elevated

Blood urea nitrogen

eGFR Lowered

4.2. Histopathologic Features

At the very beginning of the pandemic, the heterogenous guidelines regarding the
handling of the patients who died due to COVID-19 were significantly restricted in order to
prevent potential post-mortem viral transmission resulting in limited knowledge about the
macroscopic and microscopic changes occurring during COVID-19. Nevertheless, the intro-
duction of proper personal protective equipment (PPE) allowed for further investigations,
enabling the study of microscopic damages induced by SARS-CoV-2 infection and, thus,
the exact pathophysiological mechanisms of viral action. COVID-19 patients who suffer
from AKI present a wide spectrum of various glomerular and tubular impairments [14].
Acute tubular injury remains the most common constituent of AKI; thus, its clinical (both
macroscopic and microscopic) components are primarily observed during either ante-
or post-mortem studies [111]. Interestingly, the severity of the acute tubular injury was
demonstrated to be associated with creatinine levels [112]. Other less common microscopic
pathologies include acute endothelial injury, collapsing glomerulopathy, acute tubular
necrosis, podocytopathy, acute interstitial nephritis, and microangiopathy [67,113,114].

Su et al. in a post-mortem study on 26 COVID-19 patients with AKI confirmed the
presence of viral particles in the kidneys, especially in the cytoplasm of renal proximal
tubular epithelium, distal tubules, and podocytes [63]. The observations by electron mi-
croscopy showed increased thickness of the glomerular basement membrane, expansion
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of the mesangium, and microvillous transformation. Even the light microscopy showed
significant SARS-CoV-2-induced damages, including proximal acute tubule injury, vacuo-
lar degeneration, the obstruction of glomerular capillary loops by erythrocytes, deposits
of hemosiderin in the tubular epithelium, and even necrosis. Furthermore, antemortem
studies presented the cytopathic effects exerted by SARS-CoV-2 on the cells of the proximal
tubules and podocytes [115]. During the autopsy of those with either confirmed or sus-
pected COVID-related AKI, both the renal and myocardial tissues were recommended to be
sampled for further studies [15]. Postmortem studies demonstrated that the most common
characteristics of acute tubular injury include vacuolization, cytoplasmic simplification,
luminal ectasia, and either degenerative or regenerative nuclear changes [112]. While the
above-mentioned data remain poorly described in the literature, they provide plausible
evidence of kidney SARS-CoV-2 tropism [116].

5. Management and Treatment Options

Since the ongoing pandemic is still evolving while the pathomechanisms of SARS-
CoV-2 infection are continually discovered, there are clear management guidelines for
COVID-related comorbidities such as AKI. To date, there are no supportive data that show
an advantage of a particular treatment over another; in fact, there is no specific treatment
for COVID-19 AKI. The implementation of the supportive care guidelines included in the
Kidney Disease: Improving Global Outcomes (KDIGO) is recommended in COVID-19
AKI patient management [117]. All COVID-19 patients administered to the hospital who
are supposed to be at a high risk of AKI development should be monitored in terms of
potential kidney injury; close monitoring of creatinine levels along with urine output is
recommended [118]. Except for the COVID-19 infection itself, AKI might occur as a result
of the donation of infected organs. The risk of acquiring COVID-19 from organs dedicated
for donation is very low; however, it was demonstrated that SARS-CoV-2 presents a signifi-
cant tropism for the kidney, and, thus, a potential infection from a donor is possible [119].
Therefore, the major approaches to proper management of COVID-19 AKI patients include
the control of the potential source of infection, proper isolation of a patient, hemody-
namic support, electrolyte (especially hyperkaliemia) and acid-base control, fluid balance,
avoidance of potentially nephrotoxic drugs, and asymptomatic supportive care [120].

The involvement of extracorporeal therapies is of major importance due to the
presence of bilateral damages, such as the coexisting tubular–alveolar, lung–kidney, or
cardiovascular–kidney crosstalk [121]. Approximately, in up to 31% of cases of critically ill
patients, clinicians decide to introduce RRT; however, the above-mentioned aspects, such
as potentially infected organs from donations, should be taken into consideration [122].
Moreover, while considering RRT, clinicians should be aware of the increased risk of
coagulopathy in AKI patients with COVID-19 [123].

Some antiviral drugs are currently used to treat COVID-19-related AKI. Remdesivir
(nucleotide analog inhibiting viral RNA-dependent RNA polymerase) was reported to
be effective as an initial treatment for patients with AKI and without a concomitant liver
disease; however, it is registered for use in patients with eGFR>30 mL/min per 1.73 m2 [124].
The administration of remdesivir and convalescent plasma has been approved by the US
Food and Drug Administration (FDA) as one of the potential COVID-19 treatment strategies.
A viral drug with a similar mechanism of action—favipiravir—has also been administered
to COVID-19 AKI patients; however, its efficacy is unconfirmed [125,126]. Since one of the
characteristics of AKI is a cytokine storm, tocilizumab—a humanized monoclonal antibody
to IL-6 receptor—might be potentially used in COVID-19 AKI patients [127]. Another
proposed therapy includes the administration of interferons; however, their efficacy to date
has been poor [128]. There is also strong evidence of a positive effect of hemodialysis in
patients with COVID-19-induced AKI [129].

Attention should be drawn to the potential therapeutic approach based on restoration
of the impaired RAAS balance during COVID-19 infection [130]. It is suggested that
the cytokine storm and the coagulopathy during COVID-19 infection may be linked to
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the depletion of ACE2 and AG1-7, which, in the conditions of homeostasis, has a visible
renoprotective impact [130]. Stimulation of the ACE2/AG1-7/MasR axis may be a potential
target for COVID-19-associated AKI treatment.

Due to the lack of rigorous restrictions regarding COVID-19 AKI treatment, clinicians
should be aware that the benefits of the proposed treatment must outweigh the possible
negative effects, and each therapy should be individualized for every patient.

6. Clinical Outcome and Survival Rate

Despite the introduction of several types of COVID-19 vaccines and their proven
efficacy in the prevention of the spread of SARS-CoV-2 infection, morbidity and mortality
rates remain high in the general population. Similarly, those rates are unpredictable in
cases of underlying malignancies and medical conditions, such as AKI, due to impaired
immunological responses as a consequence of infection [131,132]. Moreover, it seems
difficult to estimate the mortality risk of COVID-19 patients because of new reports contin-
uously suggesting previously unknown pathophysiological mechanisms of SARS-CoV-2
infection in addition to a wide spectrum of immunological responses depending on the
patient’s clinical condition and concomitant disorders. The duration, as well as the re-
covery rates of COVID-19 AKI patients, remains unknown [133]. However, the presence
of COVID-induced AKI in hospitalized patients is significantly associated with worse
clinical outcomes and higher mortality rates compared to those of patients without this
complication [99,118,119,134–138]. Furthermore, AKI related to SARS-CoV-2 infection is
associated with greater mortality rates compared to those of AKI induced by other causes,
and its prevalence increases with the severity of infection [129,134,139,140]. Interestingly, it
was observed that chronic treatment with ACE inhibitors or angiotensin receptor blockers
(ARBs) might result in a significantly greater risk of AKI in patients with SARS-CoV-2 via
upregulated ACE2 levels [141]. On the other hand, ARBs or ACE inhibitors may restore the
RAAS balance impaired by SARS-CoV-2 invasion. Depleting AGII or blocking its receptor
AT1R would enhance the ACE2/AG1-7/MasR axis exerting anti-inflammatory, anti-fibrotic,
and vasodilating properties [59]. Therefore, despite the unclear effects of RAAS inhibitors
on ACE2 levels, on susceptibility for SARS-CoV-2 infection, and on COVID-19 severity,
RAAS inhibitors should be continued in COVID-19 patients or those at risk of it [142].

Several researchers reported that the mortality rate of COVID-19 AKI patients varies
from 35 to 80% and might increase when RRT necessarily reaches the range of 75–
90% [18,143,144]. It was demonstrated that advanced AKI stages or its progression, as well
as the older age of patients and medical history of heart failure, constitute potential risk
factors associated with higher mortality rates; interestingly, there was no such association
in the case of patients who required RRT [99,139,145]. Except for the above-mentioned
factors, diabetes and hypertension along with increased baseline serum creatinine levels
and increased serum IL-6 levels are associated with a higher risk of COVID-19-related
AKI; stage 3 AKI (according to KDIGO) is an independent predictor of death in those
patients [68,146]. Despite a high mortality percentage, some patients were reported to
recover up to three weeks after the onset of AKI symptoms [147]. A reason for concern is
that, apart from the unsatisfactory survival rates, those who survived COVID-19 and the
related AKI present a high proportion of persistent kidney dysfunctions [11,148]. Therefore,
the control of renal functions of all COVID-19 patients (especially plasma creatinine) is
crucial to minimize further damages and prevent potential disabilities [149]. It is clini-
cally important to further investigate the possible factors associated with worse clinical
outcomes of COVID-19 patients with AKI. For those patients who have tested positive for
SARS-CoV-2 infection, it is recommended to provide a consultation with a nephrologist to
minimize the potential side effects of possible COVID-19-induced AKI, providing better
clinical outcomes for those patients at the same time.
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7. Future Perspectives

One of the major aspects associated with a comprehensive understanding of the
pathophysiology of AKI during the course of COVID-19 includes the need for more
renal biopsies to be performed. Data obtained during the microscopic examinations
would significantly help us to understand the process more comprehensively, providing
an ability to identify the potential risk factors and establish guidelines for the prevention
of AKI. Large, multicenter studies are required to fully understand not only the impact of
COVID-19 on kidney dysfunctions during the course of infection but also its long-term
effects, as well assisting in the search for non-invasive ways of identifying patients with
an increased risk of AKI. Moreover, there is a need for further continuation of the clinical
trials focused on both newly identified drugs and previously known medications in order
to introduce the most effective treatment options.

8. Conclusions

Kidney injury associated with the course of COVID-19 can be either caused by multior-
gan failure or directly induced by the SARS-CoV-2 kidney tropism. The primary findings in
renal biopsy are acute tubular injury and epithelial necrosis, but SARS-CoV-2 infection may
exacerbate preexisting kidney conditions, such as lupus nephritis or membranous glomeru-
lopathy. Furthermore, studies suggest that the pathophysiology of COVID-19-related AKI
is similar to that of sepsis-associated AKI, as the majority of damage within the kidneys is
due to the hemodynamic and immunologic effects of the infection, as supported by the
increased levels of CRP and Il-6. Moreover, the increased levels of D-dimers and fibrinogen
were found in the blood samples of patients diagnosed with COVID-19-related AKI; since
the increase in the levels of the above-mentioned factors correlates with the severity of
kidney damage, it might indicate a thrombotic mechanism of renal injury. The intensity of
ACE2 receptor expression in patients diagnosed with COVID-19 remains debatable, with
some studies indicating overexpression and others its downregulation. A plethora of drugs
is currently under investigation in relation to their utility to treat COVID-19-related AKI.
Remdesivir was observed to be effective in such treatment. Additionally, because of the
cytokine storm etiology of AKI, tocilizumab showed promising results in clinical trials.
AKI is associated with a higher rate of negative outcomes; thus, although the incidence of
AKI during the course COVID-19 is significantly lower compared to that of ARDS, there is
a growing demand for an understanding of its pathophysiology and standardized patient
management in order to reduce morbidity and mortality rates.
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