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Landau-Zener transition (LZT) has been explored in a variety of physical systems for coherent population
transfer between different quantum states. In recent years, there have been various proposals for applying
LZT to quantum information processing because when compared to the methods using ac pulse for coherent
population transfer, protocols based on LZT are less sensitive to timing errors. However, the effect of finite
range of qubit energy available to LZT based state control operations has not been thoroughly examined. In
this work, we show that using the well-known Landau-Zener formula in the vicinity of an avoided
energy-level crossing will cause considerable errors due to coherent oscillation of the transition probability
in a single-passage LZT experiment. The data agree well with the numerical simulations which take the
transient dynamics of LZT into account. These results not only provide a closer view on the issue of
finite-time LZT but also shed light on its effects on the quantum state manipulation.

L
andau-Zener transition (LZT) has broad applications in atomic and molecular physics, quantum optics,
condensed matter physics, chemical physics, and quantum information science. For example, LZT has been
applied to investigating the jump time and quantum Zeno and anti-Zeno effects of cold atoms in accelerated

optical lattices1,2, the behavior of molecular magnets at low temperature3,4, nonequilibrium phase transitions5, and
it is also exploited as a tunable beam splitter of wave functions to generate entangled multipartite states6,7. LZT
also plays a key role in determining whether random optimization problems can be solved using the quantum
adiabatic algorithm8. Recently, LZT’s potential for robust manipulation of coherent quantum states has attracted
much attention in the context of quantum information processing6,7,9–18 because LZT may provide a simple and
effective solution to the realization of high fidelity quantum state control without the need for precise timing.

The time-dependent Hamiltonian describing LZT in quantum two-level systems can be written in the generic
form as

HLZ tð Þ~{
1
2

e tð Þsz{
1
2
Dsx, ð1Þ

where sx,z are Pauli matrices, e(t) 5 vt is the energy difference between the two diabatic (crossing) basis states (i.e.,
the eigenstates j "æ and j #æ of the sz operator) controlled by an external parameter which depends linearly on time
t, and D is the constant gap between the two instantaneous eigenenergy states j1æ and j2æ at the center of the
avoided crossing e 5 0, as depicted in Fig. 1(a). In such systems, when e(t) is swept through the avoided crossing,

transitions between j6æ with energies E+ tð Þ~+
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e tð Þ2zD2

q
can occur and the transition probability is given

by the well-known Landau-Zener (LZ) formula

PLZ~e{pD2
2v , ð2Þ

where v 5 jde/dtj is the Landau-Zener speed and we have set the reduced Planck constant �h ~ 1. Equation (2)
gives the probability of finding the system in the excited (ground) state at ef 5 e(t R 1‘) when it is started in the
ground (excited) state at ei 5 e(t R 2‘). By defining a 5 D2/4v as the adiabaticity parameter the LZ formula can
be simplified to PLZ 5 exp(22pa). Although analytical solution to the problem cannot be obtained when ei and/or
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ef are finite, it is well known that for ei,f

�� ��?D, the LZ formula pro-
vides an excellent approximation to the actual transition probability
and P# < PLZ. However, when ei,f

�� ��?D is not satisfied, the LZ for-
mula may become quantitatively inaccurate or even qualitatively
incorrect. In spite of some theoretical studies on the effects of finite
jei,fj/D on P#, there is an acute lack of adequate experimental
evidence.

On the other hand, understanding LZT with moderate values of
jei,fj/D is in urgent need because this region of parameter space is
important to quantum information processing. For instance, in
superconducting qubits the tuning range of energy level spacing is
usually limited to a couple of GHz or even as narrow as a few hun-
dreds of MHz while D/2p could be as large as 102 MHz6,7,19–26. For
quantum state control based on sweeping e through avoided cross-
ings, understanding LZT probability’s dependence on jei,fj/D and the
sweeping time is essential to high fidelity operation. The fidelity of
various techniques based on LZT relies critically on the accuracy of
the LZ formula which predicts a simple exponential dependence of
PLZ on the adiabaticity parameter a only. Therefore, for a qubit
starting from the ground (excited) state the probability of finding
it in the excited (ground) state after a single passage through the
avoided crossing is assumed to be determined entirely by a (i.e.,
D2/4v) but not the detail of the process such as jei,fj/D. Here, using
an artificial atom — a superconducting phase qubit — coupled to a
microscopic two-level system (TLS), we test the accuracy of the LZ
formula in the region of jei,fj/D , 4.3. We show that in contrast to
conventional wisdom, in the region of parameter space most relevant
to superconducting qubits, P# could deviate significantly from PLZ

determined by the LZ formula. Our experiment and numerical simu-
lation demonstrate P# can oscillate coherently as a function of ef for
constant a when jei,fj is comparable to D, which is named as coherent
Landau-Zener oscillation (LZO).

Results
In our experiment we use a superconducting phase qubit. However,
since a single phase qubit does not have an intrinsic avoided energy-
level crossing, we utilize an avoided level crossing arising from inter-
action between the qubit and a microscopic TLS27,28. As discussed
below in more detail, when the transition frequency of the qubit v10

is close to that of the TLS vTLS, which is fixed, the first and second
excited states of the coupled qubit-TLS system form an effective
quantum two-level system described by the LZ Hamiltonian (1).
Note that to make quantitative comparisons between the theory/
numerical simulation and the experiment without free parameters,
all relevant system parameters, including the energy relaxation and

dephasing time of the qubit and the energy gap D, are obtained from
direct measurements.

A microscopic picture of the superconducting phase qubit is
shown in Fig. 1(b). The qubit consists of an L < 770 pH supercon-
ducting loop intersected by a Al/AlOx/Al Josephson tunnel junction
with a critical current I0 < 1.4 mA and a junction capacitance C <
240 fF. By varying the magnetic flux applied to the superconducting
loop the potential energy of the qubit becomes asymmetrical. The
ground state and the first excited state in the upper potential well,
represented by j0æ and j1æ respectively, can be used as the computa-
tional basis states of the qubit. For an isolated qubit, the transition
frequency between j0æ and j1æ, v10, is a single-valued function of the
external flux bias Wx which is coupled inductively to the supercon-
ducting loop through an on-chip flux bias line.

As shown in Fig. 2(a), however, the microwave spectrum of the
qubit v10(Wx) has a rather large avoided energy-level crossing at Wx

< 22.8 mW0 (with respect to the flux bias point at which v10/2p <
16.348 GHz) indicating significant interaction between the qubit
and a microscopic TLS30. The transition frequency between the
TLS’ ground state jgæ and excited state jeæ and the qubit-TLS coupling
strength are vTLS/2p 5 16.450 6 0.002 GHz and D/2p 5 70.0 6

0.5 MHz from the spectrum and vacuum Rabi oscillation, respect-
ively. Note that in this coupled qubit-TLS system the time-dependent
energy difference between the two diabatic states involved in LZT is
e(t) 5 v10(t) 2 vTLS which depends linearly on the flux bias to a
good approximation. The relationship between the flux bias and e
can be found from Fig. 2(a).

Fig. 1(c) illustrates the experimental procedure used to observe
coherent LZO. We begin by setting the initial diabatic energy of the
effective quantum two-level system ei at about 100 MHz below vTLS

with a static flux bias. The qubit is prepared in its ground state by
waiting for much longer than the energy relaxation time T1 < 70 ns
of the qubit. A microwave pulse is then applied to the qubit when it is
biased at a fixed value ei/2p < 2100 MHz. The microwave pulse
coherently transfers the population of the qubit-TLS from j0gæ to one
of the system’s eigenstates j2æ through a process that is discussed in
detail in Methods. The lack of oscillation in T1 measurement taken at
ei as shown in Fig. 2(b) confirms that the initial state of the qubit-TLS
system at t 5 0 is indeed the eigenstate j2æ. As illustrated in Fig. 1(c),
a time-dependent flux W(t) 5 WLZt/tsp is then superimposed between
t 5 0 and t 5 tsp onto the static flux bias to sweep e linearly from ,
2100 MHz to its maximum value ef. The corresponding LZ speed v
is thus (ef 2 ei)/tsp. This is followed immediately by a 5-ns readout
pulse which performs a projective measurement of the probability P#
of finding the qubit in state j1æ (i.e., the coupled system is in state j1gæ
corresponding to j #æ in Fig. 1(a)).

Figure 1 | Circuit and experimental procedure. (a) A general avoided energy-level crossing with diabatic basis states (the dashed lines) and adiabatic basis

states (the solid lines). The constant gapD between the two instantaneous eigenenergy states at e 5 0 is the tunneling amplitude, i.e., the coupling strength.

(b) Optical micrograph of the sample with Al/AlOx/Al Josephson junctions on the silicon substrate. MW, WLZ and RO represent the microwave pulse to

prepare the initial state, the sweeping flux bias to induce LZT and the 5-ns flux bias pulse to tilt the potential well in order to readout the qubit state,

respectively. The planar coils and dc-SQUID magnetometer are coupled inductively to the qubit. (c) A typical time profile of the manipulation and

measurement waveforms employed to perform the single-passage Landau-Zener experiment.

www.nature.com/scientificreports
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We first measure P# vs. tsp at a constant value of ef by keeping WLZ

fixed while increasing tsp from almost 0 ns to 45 ns. The maximum
tsp is selected to avoid too much influence of the qubit’s energy
relaxation. By stepping WLZ from 0 to 211 mW0 the value of corres-
ponding ef is then varied from about 21.4D to , 4D, in which the
condition ef

�� ��?D is no longer satisfied. This procedure is repeated at
each ef to obtain P#(ef, tsp). Fig. 3(a) shows the dependence of P# on ef

and tsp. It can be seen that P# vs. tsp decays exponentially for ef , 0
(WLZ g [22.8 mW0, 0]) with a characteristic time T1 due to energy
relaxation. As ef becomes positive, P# vs. tsp becomes oscillatory.
Since the avoided crossing is traversed only once, the observed oscil-
lation in P# vs. tsp with constant ef must be a consequence of the
moderate value of ef/D and is not caused by the Landau-Zener-
Stückelberg interference which requires multiple passages through
the avoided crossing.

It is worth noting that the observed oscillation is not a consequence
of ill-prepared initial states with non-negligible probability amplitude
in the excited state j1æ of the effective Hamiltonian (1) because the
microwave pulse used to initialize the system resonantly couples j0gæ
to j2æ and has negligible coupling to j1æ due to large frequency
detuning. Furthermore, this process of transferring the system to
the desired initial state j2æ via a resonant microwave pulse is robust
in the sense that it does not depend sensitively on the accuracy of the
pulse duration tMW. Deviation in pulse duration simply leaves some
probability amplitude in j0gæ which has no effect on LZT other than
reducing the visibility of the oscillation (see Methods for detail on the
initial state preparation). Therefore, we are confident that the oscil-
lation observed in the non-adiabatic region of the parameter space
arises neither from Landau-Zener-Stückelberg interference nor
unwanted probability amplitude of j1æ in the initial state. This is also
supported by the good agreement between the results of experiment
and numerical simulation shown in Fig. 3(b), which uses j2æ as the
initial state at the start of the single passage sweep.

Discussion
By replacing ef with ei 1 vt, solving the problem of sweeping e in a
finite range is transformed to finding P# at finite time. Previous
studies have discovered that LZ transition probability reaches the
asymptotic value given by equation (2) at t?tLZ (assume e 5 0 at t
5 0), where tLZ~2

ffiffiffi
a
p �

Dmax 1,
ffiffiffi
a
p� �

is called the Landau-Zener
time, and oscillates in the vicinity of avoided crossing (corresponds
to t # tLZ) due to the transient dynamics12,31,32. Since corrections to
the standard LZ formula are significant only if the adiabaticity para-
meter a # 1, the region of e within which transient dynamics plays an
important role is given by ef ƒt{1

sp , where ‘‘#’’ means less than or
comparable to. By examining the experimental data we find that the

region of most noticeable coherent LZO coincides with ef ƒt{1
sp

which agrees well with the result of numerical simulation. These
results unambiguously show that coherent LZO is originated from
the transient dynamics of the LZT.

Figure 2 | Spectroscopy and Rabi oscillation. (a) Microwave spectroscopy measurement of the coupled qubit-TLS system. The splitting isD/2p 5 70.0 6

0.5 MHz centered at v/2p 5 16.450 6 0.002 GHz. The beginning point of the flux bias for the single passage LZ sweeping is denoted as 0 mW0,

corresponding to ei/2p 5 (v10 2 vTLS)/2p < 2100 MHz in the upper abscissa. (b) Rabi oscillation and T1 at ei, respectively. The experimental data (the

red circles and blue triangles) agree well with the theoretical fits (the black solid lines).

Figure 3 | Coherent LZO. (a) Experimentally measured P# vs. ef and tsp. (b)

Numerically calculated P# vs. ef and tsp with all input parameters obtained

from the experiment. The white dashed lines correspond to the value of

modified adiabaticity parameter a9 5 10. Notice that in the region below

(above) the lower (upper) white dashed line, one has a9 ? 1 thus the

system evolves adiabatically and no oscillation in P# is expected as

confirmed experimentally. The LZ speed v equals the slope of any straight

lines originated from the lower-left corner of the tsp-ef plane. For example,

the yellow dashed line in (a) has v 5 400/19.5 < 20.5 MHz/ns. For the sake

of clarity, the temporal evolution of the system along the yellow dashed line

(constant v) is presented separately in Fig. 4(b).

www.nature.com/scientificreports
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Such coherent LZO has little effect on the adiabatic evolution.
Because in the true adiabatic regime, by definition the system always
stays in the instantaneous ground state and no LZT could occur. In
order to find the region of approximate adiabatic evolution in our
experiment, it is necessary to modify the definition of the adiabaticity

parameter to a’~
vTLS{v10ð Þ2zD2

4v
. For the adiabatic theorem to

hold a’?1 is required. As shown in Fig. 3(a), the white dashed lines
represent a9 5 10. It is clear that there is no coherent LZO observed
in the region a’?1.

In a popular analogy to optics an avoided crossing acts as an
effective beam splitter, with a transmission coefficient correspond-
ing to PLZ in the LZ formula, for quantum wave functions. This
beam splitter analogy has been applied successfully to the visualiza-
tion and explanation of the behavior of superconducting and semi-
conductor qubits6,9,19,20,33–36. In this analogy, a single sweep through
the avoided crossing is equivalent to passing a beam of light
through the beam splitter only once. When ei,f

�� ��?D, P# < PLZ

and thus a greater LZ speed corresponds to a higher transmission
coefficient of the beam splitter according to the LZ formula. But
when ei,f

�� ��?D is not satisfied, P# differs greatly from PLZ. As an
example, P# vs. tsp, and thus the LZ speed v, with ef/2p 5 200 MHz
is shown in Fig. 4(a). The maximum in the difference dP# between
the experimental P# and those obtained from the LZ formula (2),
shown in the inset of Fig. 4(a), can reach 0.21. The observation of
coherent LZO strongly suggests that when ei,f

�� ��?D is not met
corrections to the LZ formula should be considered to avoid con-
ceptual difficulties.

Coherent LZO also has significant consequences on the coherent
manipulation of quantum states of single qubits and coupled two-
qubit systems based on LZT10,12. For this approach of quantum state
control, the LZ transition probability PLZ plays a central role since
each single passage through the avoided crossing results in a unitary
operation ULZ given by Ref. 12

ULZ~
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{PLZ
p

e{iQs {
ffiffiffiffiffiffiffi
PLZ
pffiffiffiffiffiffiffi

PLZ
p

{i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{PLZ
p

eiQs

� �
,

where Qs is the Stokes phase37, which has no effect on the single-
passage LZT process discussed here and thus can be set to zero for the
sake of convenience. As mentioned above, the transition frequency
v10 of most artificial atoms, in particular the superconducting qubits,

is limited to a couple of GHz. Because the speed of two-qubit opera-
tions is proportional to the inter-qubit coupling strength D, increas-
ing jei,fj/D by reducing D is undesirable. Hence, evaluating ULZ

according to the LZ formula (2) could result in significant errors
when ef ?D is not satisfied. In order to conduct a quantitative ana-
lysis, the experimental data along the yellow dashed line correspond-
ing to constant v, in the Fig. 3(a) are extracted and shown in Fig. 4(b).
Oscillation in P# is clearly observed and it is qualitatively different
from the exponential decay predicted by equation (2), when deco-
herence is taken into account. Suppose the initial quantum state is
j #æ. Then after a single passage through the avoided crossing, if one
replaces PLZ with P# as in the asymptotic situation, the deviation dP#
5 P#2 PLZ would be quite large. For example, when tsp 5 12.8 ns the
deviation dP# 5 0.229, which is unacceptably large for coherent
quantum state transformation.

In conclusion, we have investigated the effect of finite energy (e)
sweep (or equivalently finite time) on LZT probability P# experi-
mentally. Single-passage technique is used to isolate the effect of
finite ef on P# from that of interference caused by passing the
avoided crossing multiple times. We find that P#(ef/D, a 5 const)
oscillates when ef is comparable to D and a , 1. The good agree-
ment between the experiment and numerical calculation strongly
supports the notion that coherent LZO is caused by the under-
lying transient dynamics of the finite time LZT which cannot be
described by the LZ asymptotic formula. In this region of the LZT
parameter space, corrections to the LZ formula must be taken into
account, otherwise it will lead to substantial errors in quantum
state operations based on LZT. The result also shows that when
applying the simple beam splitter analogy one should not auto-
matically assume that greater a (i.e., faster sweep) corresponds to
larger transmission coefficient (i.e., greater PLZ) as implied by the
asymptotic LZ formula.

Methods
Initial state preparation. We first derive an analytical result explaining the lack of
oscillation at the very beginning of LZT. The Hamiltonian of the qubit-TLS system
coupled to a microwave field is given as: (in the basis {j0gæ, j1gæ, j0eæ, j1eæ})

H~

0 Vm cosvt 0 0

Vm cosvt v10 D=2 0

0 D=2 vTLS Vm cosvt

0 0 Vm cosvt v10zvTLS

0
BBB@

1
CCCA, ð3Þ

Figure 4 | P# oscillation at constant LZ speed. (a) Measured P# as a function of tsp (the red squares) with ef/2p 5 200 MHz which clearly shows oscillation

in the region of a , 1 which compares well with the result of numerical calculation (the solid line). This is in stark contrast to the smooth

exponential decay expected from the LZ formula (the dashed line). The inset is the difference dP#5 P#2 PLZ. (b) The measured (the red squares) and

numerically calculated (the solid line) P# vs. tsp with constant LZ speed v < 20.5 MHz/ns corresponding to evolving along the yellow dashed line in

Fig. 3(a). Again, P# oscillates in the region where the adiabatic condition a . 1 is not satisfied which is not expected from the LZ formula (the dashed line).

www.nature.com/scientificreports
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where Vm is the Rabi frequency, v is the microwave frequency, vTLS is the energy
difference between the ground state jgæ and the excited state jeæ of TLS, D is the
coupling strength between the qubit and TLS, d 5 v10 2 v and dr 5 vTLS 2 v10 are
detunings. By rotating the frame, Hamiltonian (3) can be transformed to the
following time-independent form29,30

H1~
1
2

{dr{2d Vm 0 0

Vm {dr D 0

0 D dr Vm

0 0 Vm drz2d

0
BBB@

1
CCCA: ð4Þ

Next, we rewrite H1 in which the subspace spanned by {j1gæ, j0eæ} is diagonalized:

H2~

{
drz2d

2
{

D

4N{

Vm {
D

4Nz

Vm 0

{
D

4N{

Vm {
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2zd2

r

q
0 {

D

4Nz

Vm

{
D

4Nz

Vm 0
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2zd2

r

q
{

D

4N{

Vm

0 {
D

4Nz

Vm {
D

4N{

Vm
drz2d

2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

, ð5Þ

where N+~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2�4z {dr

	
2+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2zd2

r

q 	
2

� �2
s

. The basis for H2 is now {j0gæ,

j2æ, j1æ, j1eæ}. Note that in our experiment, before turning on the microwave the state
is at Y(t 5 0) 5 j0gæ. By turning on the microwave (Vm ? 0), j0gæ is coupled to both
j2æ and j1æ. The resonance between j0gæ and j6æ occurs when

{
drz2d

2
~+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2zd2

r

q 	
2, from which we obtain the resonant condition:

v~
v10zvTLS

2
+

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vTLS{v10ð Þ2zD2

q
:l+: ð6Þ

In the limit of v10{vTLS?D, we have v 5 v10, which corresponds to the usual two-
state Rabi oscillation. Note that in this limit there is also a solution v 5 vTLS.

However, in this case the coupling strength is {
D

2Nz

Vm?0. The reason is that

although the microwave frequency could match that of TLS, coupling between the
microwave and TLS is negligible which is confirmed by the absence of Rabi oscillation
between the two states of the TLS in a separate experiment. In the other limit of v10 2

vTLS 5 0, we have v~
v10zvTLS

2
+D, and the dynamics have been thoroughly

studied in Ref. 30.
In our experiment, we have (vTLS 2 v10)/2p < 100 MHz and D/2p < 70 MHz,

which means LZT occurs in the region where (vTLS 2 v10) , D. Because the fre-
quency of the applied microwave is v 5 l2, which can be determined from the
measured energy spectrum shown in Fig. 2(a), j0gæ is resonantly coupled to j2æ,

which is the eigenstate of Hb~v10 1gj i 1gh jzvTLS 0ej i 0eh jzD

2
1gj i 0eh jz 0ej i 1gh jð Þ.

Although there is in principle also a coupling between j0gæ and j1æ, the effective
coupling is much smaller because of the large detuning, as discussed below.

For D/2p < 70 MHz, (vTLS 2 v10)/2p < 100 MHz, the resonance between j0gæ
and j2æ occurs at d=2p^11 MHz, we obtain N{=2p^36:7 MHz and
Nz=2p^116:4 MHz. In our experiments, the coupling strength between j0gæ and
j2æ is about 20 MHz and that between j0gæ and j1æ would be
N{

Nz

|20 MHz^6:3 MHz. Because 6.3 MHz is comparable with 20 MHz, one may

think that coupling between j0gæ and j1æ cannot be neglected. However, there is also a
large detuning of about 122 MHz between j0gæ and j1æ. Therefore, the effective
coupling between j0gæ and j1æ is reduced to (6.32/122) < 0.33 MHz and thus can be
safely neglected. To be more precise, we calculated the population P6 (where P6 is the
population of state j6æ) after the application of a p pulse numerically, and it is found
that Pz=P{^5|10{5. Based on this analysis, when v 5 l2, the dynamics can be
described by the Hamiltonian in the subspace {j0gæ, j2æ}:

H3~

{
drz2d

2
{

D

4N{

Vm

{
D

4N{

Vm {
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2zd2

r

q
0
BB@

1
CCA: ð7Þ

At the resonance {
drz2d

2
~{

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2zd2

r

q
, H3 becomes

H3~{
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2zd2

r

q
|Iz

0 {
D

4N{

Vm

{
D

4N{

Vm 0

0
BB@

1
CCA, ð8Þ

where I is a 2 3 2 identity matrix.

For initial state Y(t 5 0) 5 j0gæ, the amplitude of j2æ is

C{~i sin
D

4N{

Vmt: ð9Þ

Considering {j i~{
D

2N{

1gj iz
{drz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2zd2

r

q
2N{

0ej i, the amplitude of j1æ is

C1~C1gzC1e<C1g~{i
D

2N{

sin
D

4N{

Vmt:

Therefore, with a microwave pulse of duration tMW which is used to prepare the initial
state, we have

P;~ C1j j2<
D2

4N2
{

sin
D

4N{

VmtMW

� �2

: ð10Þ

This is the reason why in the experiment we observe a usual Rabi oscillation instead of

Figure 5 | The effect of tMW on finite time LZT (a) Experimentally

measured and (b) numerically calculated P# vs. tMW and tsp for ef/2p 5

200 MHz showing that the effect of imprecise p pulse is to reduce the

visibility of the oscillation of P# vs. tsp by reducing the probability

amplitude of the desired | 2æ state. Because the microwave pulse is

resonant with the | 0gæ « | 2æ transition while largely detuned from the

| 0gæ « | 1æ transition even a significant deviation from a p pulse would

only result in negligible transfer of population to | 1æ. Furthermore, since

| 0gæ does not participate in the single passage LZ process, the observed

oscillation could neither be due to LZS interference nor non-negligible

population in | 1æ at the beginning of each e sweep. For comparison, we

also present the numerically calculated P#(tMW, tsp) for ef/2p 5 1450 <
20.7D in (c). The result shows the exponential decay behavior described by

the asymptotic LZ formula as expected for ef
�
D?1.
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Rabi beating30 which is indicated by the red circles, as shown in Fig. 2(b). In addition,
when microwave is turned off, the subspace {j1æ, j2æ} is isolated from j0gæ and j1eæ.
Projected into the subspace {j1æ, j2æ}, the system stays in the eigenstate j2æ. This
explains why we observe a monotone decay of P#with no oscillations, as indicated by
the blue triangles in Fig. 2(b).

Effect of tMW and ef/D on LZT. In this section, we discuss two factors that may affect
the LZT probability, i.e., the width of the microwave pulse tMW used to prepare the
initial state at ei and the end of the normalized diabatic energy sweeping ef/D,
respectively.

After a microwave pulse, by projecting into the subspace {j1gæ, j0eæ}, the system is in
the eigenstate j2æ. Then the dynamics of LZT can be described by Hb with a time-
dependent v10(t), i.e.,

Hb~
v10 tð Þ D=2

D=2 vTLS

� �
: ð11Þ

To investigate the Landau-Zener diffraction effect, we sweep v10(t) across vTLS, i.e.,

v10 tð Þ~v10 t~0ð Þzvt, 0ƒtƒtsp
� �

: ð12Þ

When v10 t~tsp
� �

{vTLS?D, we expect that the Landau-Zener asymptotic formula
holds and P#< PLZ. Thus no oscillations should occur in P#. This is confirmed by the
result of numerical simulation shown in Fig. 5(c), where ef/2p 5 1450 MHz < 20.7D,
reproducing the exponential decay behavior described by the asymptotic LZ formula
independent of the initial state of the qubit-TLS system. In this case, the population in
the qubit state j1æ can be expressed as

P;!
D2

4N2
{

sin
D

4N{

VmtMW

� �2

|e{pD2
2v |e{c tMW ztspð Þ ð13Þ

where the first term reflects the effect of microwave duration tMW in preparing the
initial state, the second term corresponds to the LZT probability, and the third term
represents the relaxation effect. However, as v10(t 5 tsp) moves towards vTLS, the
situation v10 t~tsp

� �
{vTLS?D does not hold any more, and we observe oscillation

features in the tsp direction, as shown in Fig. 5(a) (experiment) and 5(b) (numerical
simulation). Notice that Fig. 5(a) and 5(b) also confirm that the effect of imprecise p
pulse is an incomplete transfer of system from j0gæ to j2æ, which reduces the prob-
ability amplitude of j2æ from the maximum value, instead of resulting in non-
negligible probability amplitude in the unwanted j1æ state.
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