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Older adults with degenerative declines in sensory systems depend strongly on visual
input for postural control. By connecting advanced neural imaging and a postural control
model, this study investigated the visual effect on the brain functional network that
regulates feedback and feedforward processes of the postural system in older adults
under somatosensory perturbations. Thirty-six older adults conducted bilateral stance
on a foam surface in the eyes-open (EO) and eyes-closed (EC) conditions while their
center of pressure (COP) and scalp EEG were recorded. The stochastic COP trajectory
was modeled with non-linear stabilogram diffusion analysis (SDA) to characterize shifts
in postural control in a continuum of feedback and feedforward processes. The EEG
network was analyzed with the phase-lag index (PLI) and minimum spanning tree (MST).
The results indicated that visual input rebalanced feedforward and feedback processes
for postural sway, resulting in a greater critical point of displacement (CD), short-term
effective diffusion coefficients (Ds) and short-term exponent (Hs), but the smaller critical
point of time (CT) and long-term exponent (Hl) for the EC state. The EC network
demonstrated stronger frontoparietal-occipital connectivity but weaker fronto-tempo-
motor connectivity of the theta (4–7 Hz), alpha (8–12 Hz), and beta (13–35 Hz) bands
than did the EO network. MST analysis revealed generally greater leaf fraction and
maximal betweenness centrality (BCmax) and kappa of the EC network, as compared with
those of the EO network. In contrast, the EC network exhibited a smaller diameter and

Abbreviations: Ave. Ecc, average eccentricity; BCmax, the highest value of betweenness centrality; CD, critical point
of displacement; CEA, confidence ellipse sway area; COP, center of pressure; Ds, short-term diffusion coefficient; Dl,
long-term diffusion coefficient; EEG, electroencephalography; EOG, electrooculography; EC, eyes-closed; EO, eyes-open;
FEF, frontal eye field; FIR, finite impulse response filter; Hs, short-term scaling exponent; Hl, long-term scaling exponent;
ML, medial-lateral; MF, mean frequency; MST, minimum spanning tree; PLI, phase-lag index; RMSAP, root mean squared
sway amplitude along the anterio-posterior direction; RMSML, root mean squared sway amplitude along the medial-lateral
direction; SampEn, sample entropy; SDA, stabilogram diffusion analysis.
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average eccentricity than those of the EO network. The modulation of long-term negative
feedback gain of the aged postural system with visual occlusion was positively correlated
with leaf fraction, BCmax, and kappa, but negatively correlated with the diameter and
average eccentricity for all EEG sub-bands. In conclusion, the aged brain functional
network in older adults is tuned to visual information for modulating long-term negative
feedback of the postural system under somatosensory perturbations.

Keywords: human aging, EEG, posture balance, graph analysis, visual input

INTRODUCTION

During upright stance, sensory information from somatosensory,
visual, and vestibular systems is integrated to regulate upright
stance in a closed-loop fashion. Sensory degeneration has an
interrelation effect on falling risk in older adults, who depend
more strongly on visual input for postural control (Woollacott
et al., 1986; Sundermier et al., 1996). Visual occlusion alters
the internal reference of stance control, manifested as increases
in irregularity and higher frequency components of the
center of pressure (COP; Sabatini, 2000; King et al., 2020).
By calculating the mean-squared COP displacements across
various time intervals, stabilogram diffusion analysis (SDA)
can yield additional insight into COP stochastic behaviors
and underlying balance control mechanisms. The SDA plots
of COP trajectories reveal two different postural behaviors
between short- and long-time intervals. For the short-time
intervals (typically less than 1s), the COP behaviors are
persistent (positive correlation of COP data of the past and
future), reflecting a predominant open-loop control on postural
responses. In contrast, a closed-loop process prevails and results
in anti-persistent postural responses with a negative correlation
of COP data of the past and future. This stochastic model of
SDA can quantify shifts in a continuum of the control regime
ranging from feedforward (open-loop) to feedback (closed-loop)
processes, in terms of changes in the transition between the
short- and long-time intervals (or the critical point). The critical
point specifies the time interval (critical time, CT) and sways
amplitude (critical displacement, CD), beyond which postural
sway behaviors are subject to the feedback process. With SDA,
visual input is shown to modulate central feedforward [short-
term diffusion coefficient (Ds) /short-term scaling exponent
(Hs)] and reflex-lagged negative feedback mechanisms (long-
term diffusion coefficient (Dl)/long-term scaling exponent (Hl);
Collins and De Luca, 1993, 1995). Relative to the eyes-open
(EO) state, the eyes-closed (EC) state enhances open-loop gain
(Ds, Hs) from the vestibular and proprioception afferents for
posture control (Collins and De Luca, 1995; Doyle et al.,
2008; Melzer et al., 2010). The EC state is also associated
with a smaller Dl and Hl to regulate postural responses.
With SDA, older adults (especially elderly fallers) were noted
to favor a higher open-loop gain (Ds) to regulate upright
stance than did young adults (Amoud et al., 2007; Toosizadeh
et al., 2015). In light of their greater critical point, older
adults were less sensible to greater sway amplitude before the
negative feedback mechanism was called into play for balance
stabilization.

The power in localized EEG signals is tuned to the postural
setting with and without access to vision. Eye closure during
upright stance affects the brain states of all spectral distributions
of EEG signals along the frontoparietal axis except the gamma
band (>35 Hz; Thibault et al., 2014; Spironelli et al., 2016).
Although no consensus has been reached on the specific
frequencies subserving balance control, the potential linkage
of the postural neural network to the visual subsystem has
been a recent focus (Tewarie et al., 2014). During continuous
balance, cortical theta activity in the fronto-central and centro-
parietal regions increases with visually-induced postural threats
(Mierau et al., 2017; Edwards et al., 2018), which is related
to visual error detection and planning of corrective responses
before falling consequences (Sipp et al., 2013). Concerning
the visual information processing of the ventral and dorsal
pathways (Mierau et al., 2017), alpha activity is most prominent
in the occipital-parietal-temporal regions during stance with
eyes closed. According to the gating function theory (Toscani
et al., 2010), alpha activity is involved in the attentional process
to suppress visual information transfer, and a transient ‘‘alpha
drop’’ initiates thalamo-cortical information transfer for renewal
of the balance state (Hülsdünker et al., 2016; Mierau et al.,
2017). The EEG beta rhythm in the parietal and central cortical
regions may contribute to the control of muscle synergy (Jacobs
et al., 2015) and mediation of the information between the
visual and sensorimotor systems (Peterson and Ferris, 2018;
Solis-Escalante et al., 2019). Beta activity in the occipito-parietal
areas is suppressed following visual perturbation onset, which
is related to a decrease in motor inhibition to respond to
sensorimotor conflicts (Peterson and Ferris, 2018; Malcolm et al.,
2020). Although many previous studies have contrasted the
regional cortical activities between the EO and EC states, little
attention has been paid to the visual effect on the coordinated
interplay of postural neural networks, especially in older adults
who rely on visual input to prevent falls. More specifically,
it still remains unclear how the brain mediates feedback and
feedforward processes of the aged postural system with respect
to visual inputs.

Visual occlusion on an unstable surface that can introduce
conflicting sensory information is an effective intervention
for geriatric balance rehabilitation. The aim of this study
was to contrast bipedal stance on a foam surface in the EO
and EC conditions in older adults, with a specific focus on
the EEG–EEG functional connectivity of various sub-bands
that underpin cortico-cortical interactions to regulate the
feedback and feedforward processes of the postural system. To
our knowledge, no previous studies have linked the vision-
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related shift in feedback–feedforward postural control to brain
connectome contexts. This study hypothesized that visual input
affects the relative significance of the feedforward and feedback
processes to organize postural responses, as revealed by the
degrees of neural integration and network configurations in a
space. The present results may have applications in assessing
degenerative balance dysfunction under sensory conflicts.

MATERIALS AND METHODS

Subjects
For this study, 36 elderly participants over 60 years old
(age: 66.1 ± 3.1, 15 males, 21 females) with regular exercise
habits were recruited. They had normal or corrected-to-normal
vision without known cognitive problems, history of falls,
or diagnoses of neurological and musculoskeletal disorders
requiring medication. This study was approved by an authorized
institutional human research review board at the University
Hospital (A-ER-107-099-T). All subjects signed consent forms
prior to the experiment, in accordance with the Declaration of
Helsinki.

Experimental Procedures and
Instrumentation
This study used a randomized, repeated measures design. On the
day of the visit, the demographic data and health conditions of
the participants were first gathered. Each participant completed
an unstable postural task under the eyes-open (EO) and
eyes-closed (EC) conditions. In the EO condition, the subjects
needed to gaze at a fixed point on the wall and maintain
for 60 s a steady bipedal stance with an inter-foot distance
of one shoulder width on a foam surface (Airex Balance-
pad, Switzerland; Figure 1A). Bilateral stance on the foam
support with EO provided a stabilization effect on the altered
proprioceptive and tactile information (Amoruso et al., 2011;
Treger et al., 2020). In the EC condition, the participants were
blindfolded with an opaque eye mask and maintained bilateral
upright stance as in the EO condition. There were three trials of
the two postural tasks with 3 min of rest between trials for each
participant. The order of the EO and EC trials was randomized
across subjects.

A 40-channel NuAmps amplifier (NeuroScan Inc., EI Paso,
USA) with Ag-AgCl scalp electrodes was used to register
fluctuations in scalp voltage during the postural tasks. Two
electrodes were placed on the skin of the earlobes for offline
re-referencing. After the scalp was rubbed with alcohol,
conductive electrode gel was applied to the active electrode
sites to improve electrode impedance. Scalp EEG signals were
recorded from different cortical areas (Fp1/2, Fz, F3/4, F7/8,
FT7/8, FCz, FC3/4, Cz, C3/4, CPz, CP3/4, Pz, P3/4, T3/4, T5/6,
TP7/8, Oz, and O1/2), which were localized according to the
international 10–20 system. For subtraction of eye movement
and blink artifacts, horizontal electrooculography (EOG) data
were collected with two electrodes placed at the outer canthus
of the left and right eyes. For off-line vertical EOG assessment,
two electrodes were placed infra- and supra-orbitally at the right
eye, respectively. The impedances of all the electrodes were below

5 kΩ and were referenced to linked mastoids of both sides. The
EEG data were recorded with a band-pass filter set at 0.1–100 Hz
and a sampling rate of 1 kHz. Synchronized with scalp EEG
signals, a force plate (Kistler Type 9260A, Switzerland) was used
to record the trajectory of postural sway during bilateral stance
in the EO and EC conditions. The force plate data were then
conditioned with an amplifier (DAQ for BioWare Type 5695B,
Switzerland) and sampled at a rate of 1 kHz using BioWarer

software (Type 2812A, Switzerland).

Data Analysis
Traditional Analysis of Center of Pressure
A set of traditional COP metrics were analyzed, including:
(1) 95% confidence ellipse sway area (CEA—unit in cm2),
(2) mean frequency (MF), and (3) sample entropy (SampEn).
For data stability, the COP data were analyzed from the
3rd second to the 58th second after low-pass filtering (cut-
off frequency: 6 Hz). Mean frequency (MF) was estimated
from the power spectra of detrended COP time-series, or
the distance of each COP data point from the sway center,
followed by removal of a linear trend. Power spectra were
estimated using a fast Fourier transform and the Welch method
(Hanning window, window length: 15 s, overlapping time
segment: 25% × window length, spectral resolution: 0.02 Hz;
Figure 1B). The COP data were down-sampled to 100 Hz for
sample entropy (SampEn) calculation, as in previous studies
(Lubetzky et al., 2018). The mathematical formula of sample
entropy was SampEn(m, r,N) = −log

(∑N−m
i = 1 Ai/

∑N−m
i = 1 Bi

)
,

where r = 20% of the standard deviation of the data, m is the
length of the template (m = 2), and N is the number of data
points in the time series. Ai is the number of matches of the ith
template of length m + 1 data points, and Bi is the number of
matches of the ith template of lengthm data points. Postural sway
regularity reflects attentional investment in postural control,
and an increase in the regularity (or smaller SampEn) of sway
response correlates to more attentional investment to postural
control (Roerdink et al., 2011).

Stabilogram Diffusion Analysis of Center of Pressure
SDA was used to characterize the shift in feedback and
feedforward controls of the COP (Collins and De Luca, 1993,
1995), which is not possible with the use of traditional metrics.
SDA is a probabilistic tool that describes the power-law
relationship between the mean-squared value (or variance)
of detrended COP time-series (<dCOP2 >) and the time
interval (dt) in which these values occur. SDA was calculated
with the following equation:

〈
dCOP2

〉
=
〈[
x
(
t + dt

)
− x (t)

]2〉,
where < • > indicates the mean of the detrended COP time-
series. The computation of dCOP2 was repeated with increasing
dt values ranging from 0 to 6 s. The diffusion plot (linear–linear
plots or log–log plots) was the mean square of the detrended
time-series of the COP data<dCOP2> against the time intervals
dt (Figure 1C). The critical point of time (CT) was the
intersection of the two regression lines of the linear–linear
diffusion plot, and variations in the critical point of displacement
(CD) reflected a paradigm shift in the amount of COP sway
(Collins and De Luca, 1993, 1995; Figure 1C). The critical
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FIGURE 1 | (A) Experimental setup for measurement of the dynamics of center of pressure (COP) and EEG signals in the eyes-open and eyes-closed conditions.
(B) The contrasts the COP power spectra between the eyes-open (EO) and eyes-closed (EC) conditions from a typical subject. (C) Representative linear and log–log
stabilogram diffusion (SDA) plots in the EO and EC conditions. Short-term and long-term regions fitted by straight black regression lines are dominated by the
open-loop and closed-loop control strategies respectively. Stabilogram diffusion parameters (Ds, Dl, Hs, Hl) are determined by the slopes of lines fitted to short-term
or long-term regions. A critical point is defined as the interaction point of the two regression lines in the short-term or long-term regions. CT, critical point of time; CD,
critical point of displacement.
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point estimates the transition from predominantly open-loop
to predominantly closed-loop control. A greater CD indicates
that larger postural sway takes place before closed-loop control
begins to predominate postural sway behaviors. A greater CT
reflects a longer lag time for the posture system to engage in
closed-loop control mechanism. In the linear–linear diffusion
plot, the regression slopes (Ds and Dl) of the short-term and
long-term regions were two effective diffusion coefficients, which
parameterized the control of the force stochastic activities in
those regions, respectively. The short-term and long-term scaling
exponents (Hs and Hl) were linear fits of the log–log plot of
the SDA. A scaling exponent greater than 0.5 indicates that
the system is governed by the open-loop process and that
the data series of the past and future are positively correlated
with the persistence property (Collins and De Luca, 1993,
1995). A greater Hs or Ds represented a larger open-loop gain
for postural regulation. Conversely, a scaling exponent smaller
than 0.5 indicates that the data series of the past and future
are negatively correlated with the anti-persistence property,
as regulated by the closed-loop process. A smaller Hl or Dl
represented a larger closed-loop gain for postural regulation.
The COP variables were analyzed in MATLAB R2019a software
(Mathworks, USA).

EEG Inter-regional Connectivity and Minimum
Spanning Tree Analysis
All the EEG data were first filtered between 1 and 60 Hz using
a zero-phase finite impulse response (FIR) filter (60 dB/octave)
to remove the DC shift. The blinks were detected by creating
a bipolar vertical EOG channel by subtracting activity in the

infraorbitally-placed electrode from that in the superorbitally-
placed electrode. Correction of ocular artifacts was performed
with the NeuroScan 4.3 software program (NeuroScan Inc.,
EI Paso, TX, USA), based on regression analysis (Semlitsch
et al., 1986). In line with the COP data, the EEG signals of
the first and last 2 s were not analyzed. The EEG data of part
of the run were segmented in 2 s epochs. To further confirm
valid artifact-free EEG epochs, all epochs surviving automated
artifact rejection were visually inspected for undetected artifacts
by the researchers. The phase-lag index (PLI) and variables
of minimum spanning trees (MSTs) were used to analyze
artifact-free epochs to sub-bands of the EEG data of the
delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta
(13–35 Hz) bands. Functional connectivity between the EEG
time-series of all 30 electrode pairs was calculated with the
phase-lag index (PLI), which is insensitive to volume conduction
(Stam et al., 2007; Tewarie et al., 2014). Computation of the
PLI across all pairs of sub-band EEG data of the channels
produced a square 30 × 30 PLI adjacent matrix (such as
the alpha adjacent matrix in the 8–12 Hz band). The PLI
indexes the distribution asymmetry of phase differences in the
instantaneous phases of two time series, derived from the Hilbert
transformation. If ϕ(t) is the phase difference, the PLI is defined
thus: PLI =

∣∣E {sgn (1ϕ (t))}∣∣, where sgn is a function that
extracts the sign of a real number. PLI measure has the advantage
of minimizing bias from common sources (such as volume
conduction) for EEG and MEG measures (Stam et al., 2007).
The network topology of the PLI functional connectivity matrix
was characterized by MSTs (Stam et al., 2014). To highlight
the core properties of the functional network, an MST simply

FIGURE 2 | Schematic representation of network integration using variables of EEG-based minimum spanning trees (MSTs). A functional connectivity matrix of the
preprocessed sub-band EEG (delta, theta, alpha, or beta rhythms) was constructed using a phase-lag index. MST is a binary backbone graph (edge weights 0 or 1)
that includes the strongest connections of the functional connectivity matrix without loops. Five important variables (leaf fraction, maximal betweenness centrality
(BCmax), diameter, average eccentricity, and kappa) were selected from the MSTs to index brain network properties.
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TABLE 1 | Definitions of five minimal spanning tree (MST) variables for EEG brain topology.

MST Measures Definition Correlation

Leaf Fraction The ratio of the number of nodes that have only one edge. Positive correlation to network integration.

Diameter The largest distance between any two nodes normalized for the
total number of connections.

Negative correlation to network integration.

Average Eccentricity The shortest-path distances between node I and any other tree
node, average eccentricity being the mean value of all nodes.

Negative correlation to network integration.

BCmax The highest value of betweenness centrality in the network,
betweenness centrality being a measure of centrality in a graph
based on shortest paths.

Positive correlation to network integration.

Kappa Measure of the broadness of the degree distribution. Positive correlation to network integration.

includes the strongest connections of all nodes of the functional
network without inter-connection loops (Stam et al., 2014;
Chen et al., 2021). MST can effectively underscore the core
properties of the information flow within the EEG connectome
by including the high-probability connections of all the shortest
paths without loops in the network (Stam et al., 2014; vanDiessen
et al., 2015). MST is a cost-effective method with test–retest
reliability for featuring major traffic in a weighted network, with
statistical rigor for unequal sizes of network nodes in different
experimental conditions (Mandke et al., 2018; van Dellen et al.,
2018). MST variables are sensitive to small network differences
(van Diessen et al., 2015) without the arbitrary selection of
connectivity thresholds used in the traditional graph-based
analysis (Tewarie et al., 2014; Varghese et al., 2019).

Figure 2 summarizes a calculation pipeline of an MST
from artifact-free EEG epochs. Five key graph measures of
the MST (diameter, leaf fraction, average eccentricity, maximal
betweenness centrality (BCmax), and kappa) were used to
describe the level of network integration. The definitions of
these measures are provided in Table 1. These MST variables,
estimated from sub-band EEG signals of three experimental
trials, were averaged for each subject. The PLI functional
connectivity was calculated with the HERMES function in
Matlab (Niso et al., 2013). Parameterization of the MST and
network properties was accomplished with functions of the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010).

Statistical Analysis
The connectivity strength within the PLI adjacent matrix in the
EO and EC conditions was contrasted with paired t-tests. A set
of supra-threshold connections (|t35| > 3.340, p < 0.001) was
extracted to highlight the differences in topological distributions
between the EO and EC conditions. Multi-variate Hotelling’s
T-squared statistics were used to examine the visual effect (EO
vs. EC) on the COP trajectory characteristics (CEA, MF, and
SampEn), SDA variables (CT, CD, Ds, Dl, Hs, and Hl), and MST
variables (leaf fraction, diameter, average eccentricity, BCmax,
and kappa) of different sub-bands. The post hoc test was the
Bonferroni test. The significances of the correlations between
the SDA and MST variables in the EO and EC conditions were
examined with Pearson’s correlation. Of particular interest is
that the relationship between brain network reorganization and
shift in postural control between the feedforward and feedback

processes was examined with Pearson’s correlation between
normalized differences (ND) in the SDA and MST variables in
the EO and EC conditions (ND = (EC − EO)/EO). Data are
presented as group means ± standard deviation. All statistical
analyses were performed in IBM SPSS Statistics (v19). The level
of significance was 0.05.

RESULTS

Center of Pressure and SDA
Table 2 shows the results of Hotelling’s T-squared statistics
to contrast the COP characteristics between the EO and
EC conditions using traditional analysis. The COP trajectory
characteristics differed between the two visual conditions (Wilks’
Λ = 0.181, p < 0.001, η2p = 0.819). EC resulted in greater CEA,
MF, and SampEn than did EO (p < 0.001). Table 3 summarizes
the results of Hotelling’s T-squared statistics to contrast the SDA
variables between the EO and EC conditions. The SDA variables
were significantly different between the EO and EC conditions
(Wilks’ Λ = 0.106, p < 0.001, η2p = 0.894). Post hoc analysis
revealed that CT and Hl were smaller in the EC condition than
in the EO condition (p< 0.001). CD and Ds, and Hs were greater
in the EC condition than in the EO condition (p< 0.001).

EEG Functional Connectivity and MST
The functional connectome at the four sub-bands for bilateral
stance with EO and EC was characterized with a PLI adjacent
matrix (Figure 3, left and middle plots). The visual effect
on inter-regional connectivity was highlighted with the scalp
topology of the supra-threshold connectivity between the EO
and EC conditions (|t35| > 3.340, p < 0.001). The difference
in inter-regional connectivity due to the visual effect was most
evident in the alpha band. Compared to the EO condition, the
EC condition generally exhibited weaker functional connectivity
in the fronto-tempo-motor network of the bilateral hemispheres
and stronger frontoparietal-occipital connectivity, especially in
the theta, alpha, and beta bands. Tables 4A–D summarize
the results of Hotelling’s T-squared statistics to compare the
sub-band MST variables between the EO and EC conditions.
The MST variables varied with the EO and EC conditions for
all sub-band connectivity (Delta: Wilks’ Λ = 0.703, p = 0.043,
η2p = 0.297; Theta: Wilks’ Λ = 0.536, p = 0.001, η2p = 0.464; Alpha:
Wilks’ Λ = 0.440, p < 0.001, η2p = 0.560; Beta: Wilks’ Λ = 0.566,
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TABLE 2 | The contrast population means of center-of-pressure (COP) variables between the eyes-open (EO) and eyes-closed (EC) conditions.

COP Trajectory EO EC Hotelling’s Statistics Pos hoc test

CEA (cm2) 3.670 ± 2.180 9.343 ± 5.779 Wilks’ Λ = 0.181, p < 0.001 t35 = 8.641, p < 0.001, η2
p = 0.681

MF (Hz) 0.454 ± 0.104 0.670 ± 0.143 η2
p = 0.819 t35 = 7.830, p < 0.001, η2

p = 0.637
SampEn 0.139 ± 0.031 0.184 ± 0.045 t35 = 8.209, p < 0.001, η2

p = 0.658

CEA: 95% confidence ellipse sway area; MF, mean frequency; SampEn, sample entropy.

TABLE 3 | The contrast population means of variables of stabilogram diffusion analysis (SDA) between the eyes-open (EO) and eyes-closed (EC) conditions.

SDA Analysis EO EC Hotelling’s Statistics Pos hoc test

CT (s) 0.736 ± 0.184 0.562 ± 0.090 t35 = 5.980, p < 0.001, η2
p = 0.505

CD (mm2) 0.252 ± 0.125 0.860 ± 0.405 t35 = −11.502, p < 0.001, η2
p = 0.791

Ds (mm2/s) 0.183 ± 0.086 0.789 ± 0.328 Wilks’ Λ = 0.106, p < 0.001 t35 = −12.947, p < 0.001, η2
p = 0.827

Dl (mm2/s) 0.005 ± 0.004 0.006 ± 0.006 η2
p = 0.894 t35 = −1.171, p = 0.249, η2

p = 0.038
Hs (mm2/s) 0.853 ± 0.034 0.893 ± 0.024 t35 = −7.694, p < 0.001, η2

p = 0.628
Hl (mm2/s) 0.071 ± 0.036 0.023 ± 0.029 t35 = 4.999, p < 0.001, η2

p = 0.417

CT, critical point of time; CD, critical point of displacement; Ds, short-term effective diffusion coefficients; Dl, long-term effective diffusion coefficients; Hs, short-term scaling exponent;
Hl, long-term scaling exponent.

p = 0.002, η2p = 0.434). Leaf fraction, BCmax, and kappa tended to
be greater in the EC condition than in the EO condition across
different sub-bands (p< 0.001 to p< 0.017), except for kappa in
the delta band (p = 0.058). In contrast, the diameter and average
eccentricity were smaller in the EC condition than in the EO
condition across the different sub-bands (p ≤ 0.015).

Correlations Between SDA and MST
Figure 4 displays Pearson’s correlations of SDA and sub-band
MST variables in the EO and EC conditions, respectively. In the
EO condition, CT was positively correlated with the leaf fraction,
BCmax, and kappa of the delta band (p < 0.05). In addition, CT
was positively correlated with the leaf fraction and kappa of the
theta band (p < 0.05). However, CT was negatively correlated
with the diameter and average eccentricity of the delta band
(p < 0.05). Ds was positively correlated with the leaf fraction of
the beta band, while Ds and Hs were negatively correlated with
the diameter and average eccentricity of the beta band (p< 0.05).
In contrast, SDA and sub-band MST variables were not
significantly correlated in the EC condition (p > 0.05). Figure 5
summarizes the Pearson’s correlations of normalized differences
in the SDA (ND-SDA) and sub-band MST (ND-MST) variables
between the EO and EC conditions. Significant correlations were
consistently found between ND-Hl and normalized differences
in all sub-bandMSTmeasures (p< 0.001). ND-Hl was positively
correlated with ND-leaf fraction, ND-BCmax, and ND-Kappa
(p < 0.001), but negatively correlated with ND-diameter, and
ND-average eccentricity (p< 0.001). This fact suggested that the
visual effect on the feedback process was dependent on variation
in the cortical network integration.

DISCUSSION

Variations in Feedback–Feedforward
Control of Postural Sway Due to Visual
Input
In light of the CEA and mean frequency of the COP trajectory
(Table 2), it appears that eye closure reduces the available

sensory information for maintaining balance, resulting in greater
postural sway and stance uncertainty with increasing correction
attempts during the foam stance. In addition, EC added to the
complexity of COP trajectory with higher SampEn than EO, in
accordance with previous observations in the literature (Borg and
Laxåback, 2010; da Costa Barbosa and Vieira, 2017). In contrast
to young adults, who did not exhibit complexity increase in COP
trajectory with visual occlusion, this observation would suggest
that the elderly favor proprioceptive over visual information
for autonomous postural control in the EC state (da Costa
Barbosa and Vieira, 2017). In fact, eye closure increases the use
of alternative sensory modalities for balance control and thus
could alter open- and closed-loop postural control behaviors.
Our visual effect on the SDA results of older adults standing
on a foam surface was consistent with previous studies, which
showed a shift in the control scheme of the feedforward and
feedback processes in healthy young adults (Collins and De Luca,
1995) and in patients with vertigo (Wuehr et al., 2013) on a
firm surface. As compared with the EO condition, the shorter
critical point of time (CT) of the EC condition indicated an early
transition from open-loop control to closed-loop control due
to the inability of the pre-programmed feedforward process to
regulate an unexpected postural disturbance. Known as control
sensitivity loss, the greater critical point of displacement revealed
that the feedback control was called into play to stabilize the
posture response only when postural fluctuations were larger.
In addition, the EC state led to a smaller long-term scaling
exponent (Hl) than that of EO, suggesting that the COP data
in the long-term region became more negatively correlated for
the EC condition (Collins and De Luca, 1995). Hence, negative
feedback gain of the CNS was exaggerated for postural control
following visual occlusion. Theoretically, the feedback control
with time delays and exaggerated loop gain could significantly
undermine the stability of the postural system, which may
explain age-related decline in postural control, especially for
elderly fallers (Melzer et al., 2010) and patients with neurological
disorders (Wuehr et al., 2013; Toosizadeh et al., 2015; Treger
et al., 2020).
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FIGURE 3 | The pooled adjacent matrix of the phase-lag index (PLI) of artifact-free EEG epochs for bilateral stance in the EO and EC conditions in different
sub-bands. Paired t-tests were independently performed in a PLI matrix (30 × 30) to examine the differences in EEG connectivity of each sub-band between the EO
and EC conditions. Only those t-statistics larger or smaller than an uncorrected threshold (|t35 | > 3.340, p < 0.001) are considered as supra-threshold connections.
Contrasting wiring diagrams on the scalp (the right plots) show the topological distributions of the sub-band suprathreshold connectivity that differ with and without
visual input (EO vs. EC). The visual effects are band dependent, resulting in selective enhancement and depression of EEG connectivity (Red line: EC supra-threshold
connectivity > EO supra-threshold connectivity, p < 0.001; blue line: EO supra-threshold connectivity > EC supra-threshold connectivity, p < 0.001).
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TABLE 4 | The contrast population means of network integration graph measures between the eyes-open (EO) and eyes-closed (EC) conditions.

(A)

Delta (1–3 Hz) EO EC Hotelling’s Statistics Pos hoc test

Leaf Fraction 0.544 ± 0.021 0.564 ± 0.047 t35 = 2.574, p = 0.014, η2
p = 0.159

Diameter 0.344 ± 0.125 0.331 ± 0.028 t35 = −2.596, p = 0.014, η2
p = 0.161

Ave. Ecc 0.271 ± 0.011 0.262 ± 0.021 Wilks’ Λ = 0.703, p = 0.043 t35 = −2.551, p = 0.015, η2
p = 0.157

BCmax 0.717 ± 0.011 0.729 ± 0.032 η2
p = 0.297 t35 = 2.234, p = 0.026, η2

p = 0.134
Kappa 3.128 ± 0.151 3.376 ± 0.747 t35 = 1.962, p = 0.058, η2

p = 0.099

(B)

Theta (4–7 Hz) EO EC Hotelling’s Statistics Pos hoc test

Leaf Fraction 0.545 ± 0.020 0.571 ± 0.048 t35 = 3.549, p = 0.001, η2
p = 0.265

Diameter 0.343 ± 0.014 0.327 ± 0.027 t35 = −3.462, p = 0.001, η2
p = 0.255

Ave. Ecc 0.270 ± 0.010 0.258 ± 0.021 Wilks’ Λ = 0.536, p = 0.001 t35 = −3.523, p = 0.001, η2
p = 0.262

BCmax 0.719 ± 0.012 0.734 ± 0.035 η2
p = 0.464 t35 = 2.575, p = 0.014, η2

p = 0.159
Kappa 3.133 ± 0.150 3.467 ± 0.809 t35 = 2.511, p = 0.017, η2

p = 0.153

(C)

Alpha (8–12 Hz) EO EC Hotelling’s Statistics Pos hoc test

Leaf Fraction 0.545 ± 0.022 0.587 ± 0.050 t35 = 5.471, p < 0.001, η2
p = 0.456

Diameter 0.341 ± 0.014 0.315 ± 0.028 t35 = −5.694, p < 0.001, η2
p = 0.481

Ave. Ecc 0.268 ± 0.011 0.249 ± 0.021 Wilks’ Λ = 0.440, p < 0.001 t35 = −5.760, p < 0.001, η2
p = 0.487

BCmax 0.717 ± 0.013 0.744 ± 0.034 η2
p = 0.560 t35 = 4.665, p < 0.001, η2

p = 0.383
Kappa 3.121 ± 0.177 3.638 ± 0.815 t35 = 3.994, p < 0.001, η2

p = 0.308

(D)

Beta (13–35 Hz) EO EC Hotelling’s Statistics Pos hoc test

Leaf Fraction 0.538 ± 0.025 0.564 ± 0.038 t35 = 3.861, p < 0.001, η2
p = 0.299

Diameter 0.347 ± 0.016 0.331 ± 0.023 t35 = −4.159, p < 0.001, η2
p = 0.331

Ave. Ecc 0.273 ± 0.012 0.260 ± 0.017 Wilks’ Λ = 0.566, p = 0.002 t35 = −4.189, p < 0.001, η2
p = 0.334

BCmax 0.714 ± 0.013 0.727 ± 0.024 η2
p = 0.434 t35 = 3.482, p = 0.001, η2

p = 0.257
Kappa 3.088 ± 0.187 3.333 ± 0.512 t35 = 2.831, p = 0.008, η2

p = 0.186

Ave. Ecc: average eccentricity; BCmax: maximal betweenness centrality.

Visual Impact on EEG Sub-band Postural
Network
Previous studies reported significant differences in the states of
cortical activation for the unavailability of visual input, including
increases in theta (4–7 Hz), alpha (8–12 Hz), and beta (13–35Hz)
rhythms to reconcile increasing sensory conflicts with EC
(Varghese et al., 2015, 2019). In the EC situation, immediate theta
enhancements in the anterior cingulate and anterior parietal
cortex (Sipp et al., 2013; Ozdemir et al., 2018) were hypothesized
to be linked with the initiation of appropriate postural responses
and the detection of postural threats (Slobounov et al., 2009).
The widespread alpha rhythm during upright stance with EC is
referred to as inhibitory control of information processing from
task-irrelevant areas, according to the ‘‘gating function theory.’’
When visual input is available, alpha oscillations desynchronize,
which makes allowances for intra- and extrapersonal space
information with postural memories from the visual system (Del
Percio et al., 2007). A power decrease in the beta band throughout
the gait cycle was mostly reported in walking balance control
(Yokoyama et al., 2021). The prevailing explanation for the
decrease in the beta rhythm is the detection of a change in the
status quo and termination of the current motor action (Peterson
and Ferris, 2018). During standing, the visual optic flow produces
more pronounced beta desynchronization, corresponding to

preparation for and execution of postural adjustments against
stance destabilization (Malcolm et al., 2018, 2020).

The analysis of the sub-band inter-regional connectivity
provided additional insight into unstable foam stance with
EC. In comparison with EO, EC increased the long–range
connectivity between the frontoparietal-occipital areas in the
theta, alpha, and beta bands (Figure 3). This stronger long–range
connectivity may reflect the enhancement of frontal attempts
to detect postural errors from peripheral sensory channels
to regain balance (theta rhythm) in consequence to idle
processing of the dorsal visual streams (Peterson and Ferris,
2019), which convey information about the spatial orientation
from the occipital area (alpha rhythm). Consistent with this
interpretation is that beta synchronization of the long–range
connectivity with EC reflects a decrease in intentional postural
adjustments with ample sensory feedback, despite the increasing
postural sway. In contrast, connectivity within the fronto-central
network for all sub-bands waned with vision occlusion. During
the unstable foam stance, the EC-related desynchronization
could have been involved with releases of the frontal eye
field (FEF) to control ocular movement and the fronto-
insular–temporal network, which receives body-related visual
input from extrastriate visual areas for planning the postural
configuration (Amoruso et al., 2011; Zimmermann et al.,
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FIGURE 4 | Correlation matrix of sub-band MST and SDA variables and corresponding significance levels for the eyes-open (EO) and eyes-closed (EC) conditions.
Red and blue shaded areas represent significant positive and negative correlations (p < 0.05) of the sub-band MST and SDA variables, respectively. Light shaded
areas represent marginally significant correlation of the sub-band MST and SDA variables (p < 0.10).

2018). Interestingly, the distinct inter-regional modulation for
the unstable foam stance with EC was largely consistent
with the affordance competition hypothesis for visually-guided
movement, which dichotomizes brain networks into processes

of action specification (the visual dorsal stream) and action
selection (the frontal/prefrontal and basal ganglia loops; Cisek,
2007; Cisek and Kalaska, 2010). Consistent with this hypothesis,
during the foam surface stance with EC, the dorsal stream that
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transforms visual information into representations of intended
actions was relatively idle. During visual occlusion, EC-related
decreases in connectivity within the fronto-central network
reflected less sensory information pertinent to action selection to
be processed by the frontal/prefrontal areas. However, it is hard
to link the topological variations in sub-band supra-connectivity
to the visual effect on postural control in the context of feedback
and feedforward processes.

Functional Linkage Between EEG MST and
Feedback–Feedforward Control
The use of MST analysis to parameterize the core information
flow within the EEG connectome is helpful to link with
postural control in a continuum of feedback and feedforward
processes. In the EO condition, the critical point of time (CT)
was related to MST variables in the delta and theta bands,
whereas the short-term diffusion coefficient (Ds) and short-
term scaling exponents (Hs) were significantly related to MST
variables in the beta band (Figure 4, left). Given the consistent
correlations between SDA modeling and EEG MST networks,
this led to a novel finding of a ‘‘cortical balance network’’
engaged in shifting between feedforward and feedback processes
with specific brain oscillations. When visual information was
available during the foam stance, CT increased (in favor of
the feedforward process for postural control for more time
intervals) in proportion to the higher degree of network
integration (greater leaf fraction, BCmax, and kappa; smaller
diameter and average eccentricity) in the delta and/or theta
bands. Compared to healthy counterparts, fall-prone patients

with a shorter CT tend to have some limitations in short-term,
open-loop control, which may lead to maladaptive responses
to postural destabilization (Wuehr et al., 2013; Toosizadeh
et al., 2015). Fall-prone older adults are therefore thought to
have impaired network integration in the delta and/or theta
sub-bands. Functionally, cortical representations of the delta
band are thought to be linked with planning and executing
coordinated multi-joint movements, especially for kinematics
in the lower limbs during posture and locomotion (Ozdemir
et al., 2018). The frontal theta rhythm is related to postural error
detection from the anterior cingulate cortex and sensorimotor
areas to initiate proper postural responses to cope with postural
instability (Sipp et al., 2013; Hülsdünker et al., 2015; Mierau
et al., 2017). On the other hand, the short-term diffusion
coefficient (Ds) and scaling exponent (Hs) were correlated with
the MST beta variables (Figure 4). On account of the negative
correlations, decreases in diameter and average eccentricity were
associated with increases in Hs and Ds, which are ordinary
SDA observations for fall-prone patients (Wuehr et al., 2013;
Toosizadeh et al., 2015; Treger et al., 2020). Hence, increasing
the integration demands with a smaller diameter and average
eccentricity in the beta MST network indicates a persistent status
quo for stance control, which is unfavorable for standing on an
unstable foam surface. Older adults with greater beta suppression
in the midfrontal and parietal regions showed less postural
sway during tandem stance with optic flow manipulations
(Malcolm et al., 2020). In practice, beta suppression could
be a cortical marker of a flexible postural strategy tuned to
environmental changes.

FIGURE 5 | Correlation matrix of normalized difference in sub-band MST and normalized difference in SDA variables [normalized difference (ND): (EO − EC)/EC].
Red and blue shaded areas represent significant positive and negative correlations (p < 0.05) of the normalized difference in sub-band MST and normalized
difference in SDA variables, respectively. Light shaded areas represent marginally significant correlation of the sub-band MST and SDA variables (p < 0.10).
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Despite the higher level of network integration of all the
EEG sub-bands in the EO condition (Tables 4A–D), none of the
MST variables were significantly correlated with SDA variables
(Figure 4, right). The insignificance indicates that the enhanced
network integration was not responsible for modulation of
the feedforward–feedback control during the unstable upright
stance with EC. To maintain an upright stance, information
gathered from all sensory channels is finally sent to the cortex
for perception and processing (Takakusaki, 2017). When the
elderly stand on a foam surface with EC, sensory conflicts are
accentuated without the moderating effect of visual input to
reconcile cortical sensory conflict (Anacker and Di Fabio, 1992;
Buatois et al., 2007). It is, therefore, speculated that the network
integration of different EEG bands might be relevant to solving
the emerging problem of sensory integration caused by vestibular
and proprioceptive conflicts. Under the EC condition, active
maintenance of postural balance with feedforward and feedback
processes could mainly be achieved by subcortical structures,
such as the cerebellum, basal ganglia, and brainstem regions
(Zenzeri et al., 2014; Takakusaki, 2017). Closely cooperating with
the basal ganglia, the cerebellum, receiving an efference copy
of a central motor command, and proprioceptive and vestibular
afferents, is a center for predicting sensory events and associated
posture commands with novel sensory consequences (Horak and
Diener, 1994). The anticipatory postural adjustments regulate
postural command via the cortico-reticular, vestibulospinal and
reticulospinal tracts (Takakusaki, 2017), which explains the
insignificant correlation between a shift in the postural control
feedforward process with EC and the cortical network integration
in the elderly.

Visual Effect on Correlation of Postural
Neural Network and
Feedback–Feedforward Control
In terms ofMST variables, the changes in the network integration
of all EEG sub-bands nicely predicted the visual effect on the
long-term scaling exponent (Hl) from EO to EC (Figure 5).
When visual information was occluded, a higher degree of
network integration was associated with an occlusion-related
decrease in Hl. The reorganization of the cortical network
due to eye closure was to tune the anti-persistent behavior
of the postural sway via negative closed-loop mechanisms of
the postural system. This fact lends neurophysiological support
to a hypothetical model proposed by Collins and De Luca
(1995), which posits that visual inputs modulate the operational
characteristics of the closed-loop postural control from the
proprioceptive and/or vestibular afferents (11). On account of
the highly significant correlation between normalized changes in
network integration and the long-term scaling exponent, visual
input has a potent impact on the postural feedback systems
of older adults, a finding which is compatible with empirical
observations that older adults rely preferentially on the vision
for posture control (Thibault et al., 2014; Spironelli et al., 2016)
and that accidental falls occur in this population when vision and
proprioception are simultaneously challenged (Lord and Menz,
2000; Anson et al., 2019).

CONCLUSION

The present study was the first to attempt to connect the visual
effect on the feedforward–feedback processes of posture control
to cortical networks in older adults during an unstable stance.
As compared to the EC state, the EO state exhibits stronger
fronto-central connectivity and weaker frontoparietal-occipital
connectivity in the theta, alpha, and beta bands. In the EO
state, the critical time point for shifting to feedforward and
feedback processes in an aged postural system is dependent
largely on the network integration of delta and theta oscillations.
A greater critical time point is associated with greater leaf
fraction and kappa in the delta and theta bands, in addition to
maximal betweenness centrality in the delta band. In contrast,
a greater critical time point is associated with the smaller
diameter and average eccentricity in the delta band. The short-
term feedforward gain of the aged postural system is negatively
correlated with the diameter and average eccentricity of the
beta network. In the EC condition, integration of the cortical
network was independent of the regulation of the feedforward
and feedback processes of the postural system. From EO to EC,
changes in the integration of the postural neural network of all
sub-bands well predict gain modulation of the negative feedback
of older adults while they stand on an unstable surface. Visual
occlusion mediates the long-term negative feedback gain of the
postural system, which positively correlates to changes in the
leaf fraction, BCmax, and kappa but negatively correlates to the
diameter and average eccentricity of all EEG sub-bands.
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