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Introduction
Breast cancer (BC) is the leading cause of cancer deaths in 
women. Every year adds 2 million new diagnoses and more than 
600 000 deaths.1 Breast cancer screening with mammography 
reduces BC mortality risk to 20% to 40%.2-4 Current BC screen-
ing guidelines are mostly based on age only and do not support 
regular screening of women below the age of 50. In most 
European countries, women aged 50 to 69 years are invited to BC 
screening at 2-year intervals.5,6 Such an approach does not 
account for the wide variation in individual women’s BC risks and 
disregards younger women with a higher risk, but also women 
over age 50 with higher risk levels who could benefit from per-
sonalized screening. Risk-based screening, in which individual-
ized risk assessment is used to inform screening practices, has 
been proposed as an alternative to age-based screening.7,8

Around 30% of the total BC risk has been shown as  
hereditary.9 Genetic factors include rare pathogenic variants 
(PV) in high- and moderate-risk cancer predisposition genes 
(BRCA1, BRCA2, etc), having effects large enough to warrant 
monogenic testing.10-12 However, only a fraction (5%-10%) of 
BC cases are caused by these rare PVs.13 A considerable part of 
BC risk variation is explained by variants outside these high-
risk genes in the form of BC-associated common single-nucle-
otide polymorphisms (SNPs), identified by genome-wide 
association studies (GWAS).14,15 A polygenic risk score (PRS) 
is the combined effect of individual BC susceptibility SNPs. 
Although individual associated SNPs may confer only modest 
disease risk, the combined effect of all known associated SNPs 
on risk can be substantial. Breast cancer PRSs identify differ-
ences in genetic risks and provide a straightforward basis for 
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designing personalized screening programs by accounting for 
individual genetic susceptibility.16 Currently, PRSs have not yet 
been implemented in routine BC screening, but simulations 
have suggested that risk profile informed preventive activities 
could provide cost savings and health benefits.17,18 High-risk 
estimation could be also the indication for the use of hormonal 
chemoprevention.19

There is so far no consensus clinical model for the system-
atic implementation of PRS in BC personalized screening.20 
The current report describes the development of a PRS test as 
a clinical tool for BC risk-stratified screening, a model set of 
recommendations for the clinical implementation and the first 
results of application in real-life clinical practice.

Methods
We conducted a 2-phase investigation. In the first phase, we 
retrospectively validated the performance of PRSs using both 
prevalent and incident data sets from 2 genetic biobanks, with 
the aim of finding the best performing model for a PRS test. In 
the second phase, we performed a retrospective analysis of the 
results obtained during the routine clinical implementation of 
the test. The development of the PRS test as a clinical tool for 
the characterization of individual polygenic BC risk is described 
in detail in Appendix 1.

Study cohorts for the PRS development

Breast cancer data sets with genotyped data were acquired 
from 2 population biobanks: the Estonian Biobank of the 
Estonian Genome Center at the University of Tartu (EstBB) 
and the UK Biobank (UKBB). Quality-controlled samples 
were divided into prevalent and incident data sets. In the 
EstBB cohort, we retained a total of 32 548 quality-controlled 
female samples. The prevalent data set contained 315 cases of 
BC that were diagnosed before biobank recruitment and 1602 
controls. The incident data set contained 365 cases of BC that 
were diagnosed after biobank recruitment and 30 266 controls. 
The UKBB data set contained 249 062 samples that passed the 
quality controls. In the UKBB, we identified 8637 prevalent 
cases and 6825 incident cases that were complemented with 
44 952 controls and 188 648 controls, respectively. Prevalent 
data sets were used for identifying the best candidate model 
and the incident data sets were used to obtain an independent 
PRS effect estimate on BC status.

Selection and analysis of candidate PRS models

The literature search for PRS models in the public domains 
was performed with Google Scholar and PubMed web search 
engines. A list of articles using the search [“Polygenic risk 
score” or “genetic risk score” and “breast cancer”] were manually 
checked for the inclusion criteria.

We evaluated the relationship between BC status and 
standardized PRS in the 2 prevalent data sets with a logistic 

regression model to estimate the logistic regression–based odds 
ratio per 1 standard deviation of PRS (ORsd), its p value, model 
Akaike information criterion (AIC), and area under the 
receiver operating characteristic (ROC) curve (AUC). We also 
pruned the PRS from multi-allelic, non-autosomal, non-
retrievable variants based on bioinformatics re-analysis with 
Illumina GSA-24v1 genotypes and non-overlapping variants 
between EstBB and UKBB data.

We selected the candidate model with the highest AUC to 
independently assess risk stratification in the incident data sets.

The main aim of the analyses in the incident data sets was 
to derive a primary risk stratification estimate, hazard ratio per 
1 unit of standardized PRS (HRsd), using a right-censored and 
left-truncated Cox regression survival model. We also assessed 
the goodness-of-fit of the survival model using Harrell’s 
C-index and the likelihood ratio test.

Furthermore, we evaluated the concordance between theo-
retical hazard ratio estimates derived with the continuous per 
unit PRS (HRsd) estimate and the hazard ratio estimates 
inferred empirically from data.

For individual BC absolute risk 10-year calculations, we 
used the risk model developed by Pal Choudhury et al.21 This 
absolute risk model allows disease background data from any 
country. In the current analysis, we used Estonian background 
information. Theoretical proportions of individuals belonging 
to risk groups were derived by extracting relative risk estimates 
for PRS percentiles 1 to 100 from the Choudhury et al model. 
Conformance of counts of individuals belonging to risk groups 
to theoretical values was performed using 2-tailed exact bino-
mial tests.

Detailed methods and data sources for that are character-
ized in Appendix 1.

Development of the clinical implementation model 
and clinical recommendations

We evaluated PRS risk stratification in the Estonian BC 
screening context and simulated the extent of risk separation in 
the Estonian population. Women in Estonia currently start BC 
screening at age 50. Our analysis first established the 10-year 
risk of a 50-year-old woman with a population average of PRS 
(“average female”) using the model by Pal Choudhury et al21: 
the reference for the level of risk that initiates population-level 
screening. Here, we assessed the differences in ages where indi-
viduals in various PRS risk percentiles attain 1-fold to 3-fold 
risk increases compared with the 10-year risk of an average 
woman.

Based on these analyses, we developed recommendations 
for a BC screening attendance program based on prescreening 
PRS testing. This approach uses both relative risks, a fold dif-
ference of 10-year risks compared with a genetically average 
woman of the same age, and her absolute 10-year risk.

The technical documentation and the whole testing pipe-
line were created, and the BC PRS test was registered as a 
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medical device (IVD) in Estonian Medical Devices Database 
(EMDDB code: 14726). For clinical use, a laboratory test 
report (sample in Appendix 2) and a more detailed report for 
written post-test counseling were created. The test was imple-
mented on the clinical-grade level as a medical device–based 
healthcare service by OÜ Antegenes or by partner health care 
institutions in Estonia. The test is used as home-based testing 
or at a clinical site taken test with a buccal swab for DNA 
extraction or using existing genotyped data in the Estonian 
Biobank. The standard procedure includes the use of Illumina 
Global Screening Array-24 (GSA) v3.0 chip and Illumina 
iSCAN sequencer for genotyping. This workflow genotypes 
~762 000 markers on the GSA chip by Illumina’s Infinium 
HTS (high-throughput screening) protocol (Illumina Inc, 
http://www.illumina.com; Document 15045738 v04). The test 
can also use information from other microarrays and sequenc-
ing approaches that output DNA data broadly covering the 
human genome. The PRS test performs the risk assessment 
based on imputed genotype data. Quality-controlled markers 
resulting from genotyping are imputed using a 1000G panel 
with reference to the human genome GRCh37. The HRC and 
TOPMed panels were not adopted due to the requirement of 
using external imputation servers.

Each test was preceded by informed consent. In addition to 
written information, pretest and posttest oral counseling were 
offered if needed. All women received PRS test reports directly 
via the web portal, but the results are also transmitted to the 
national health information system, where they are also avail-
able to other health care providers. According to the test results 
and recommendations, women are referred to mammography 
screening institutions or breast clinics for further personalized 

screening. For additional PV testing recommendations, we use 
a questionnaire about family cancer history with recommended 
indications for PV testing.22 Current official BC screening in 
Estonia is for the age group 50 to 69 years; for the analysis, we 
divide women into 2 groups: age 30 to 49 (prescreening age) 
and 50 to 83 (screening age and older) years.

Results
Selection of the PRS model for the clinical PRS test

Altogether, we chose 4 models from 3 different articles to be 
evaluated: PRS313,23 PRS77,15 PRS78,24 and PRS382023 
(original numbers of variants), Table 1. The best performing 
model was selected based on AUC, ORsd, AIC, and pseudo-R2 
metrics in both EstBB and UKBB data. The PRS 2803 model 
(that was based on Mavaddat et  al PRS3820 model)23 per-
formed the best (Table 1).

Development of a set of clinical recommendations

To apply a PRS in clinical practice, testing must be comple-
mented by clinical recommendations for preventive activities at 
different levels of risk. Based on developed PRS induced risk 
differences, we developed personalized recommendations that 
are based on relative risks compared with an individual of the 
same nationality, age, and sex, and the estimated absolute risks. 
Recommendations presented in Table 2 are based on the age 
when an individual attains the risk level of genetically average 
50-year-old women, as the average risk level at the age of 50 is 
a generally accepted recommendation to start BC screening, 
and also using the analogy with clinical recommendations for 
moderate-risk PV carriers.22

Table 1. Comparison metrics of breast cancer PRS models based on the prevalent Estonian Genome Center and UK Biobank data sets.

Variants included in actually tested models 257 7315 7824 280323

Variants in original PRS 31323 77 78 3820

Estonian Genome Center AUC (SE) 0.604 (0.039) 0.591 (0.004) 0.573 (0.039) 0.615 (0.039)

ORsd (95% CI) 1.43 (1.27-1.61) 1.37 (1.22-1.54) 1.27 (1.13-1.43) 1.47 (1.31-1.65)

AIC 1681.2 1689.6 1701.7 1674.1

McFadden/Nagelkerke 
Pseudo-R2

2.1%/3.1% 1.9%/2.0% 0.8%/1.3% 2.5%/3.7%

UK Biobank AUC (SE) 0.625 (0.0073) 0.607 (0.0075) 0.584 (0.0073) 0.632 (0.0072)

ORsd (95% CI) 1.55 (1.51-1.59) 1.48 (1.45-1.52) 1.36 (1.33-1.39) 1.62 (1.58-1.66)

AIC 45 900 46 273 46 705 45 695

McFadden/Nagelkerke 
Pseudo-R2

3.0%/4.5% 2.2%/3.3% 1.3%/2.0% 3.5%/5.1%

Abbreviations: PRS, polygenic risk score; AUC, area under the receiver operating characteristic curve; OR, odds ratio; CI, confidence interval; AIC, Akaike information 
criterion.

http://www.illumina.com


4 Breast Cancer: Basic and Clinical Research 

Results from the clinical implementation

Between September 1, 2020, and February 28, 2022, 2637 BC 
PRS tests with clinical recommendations have been per-
formed for women between the ages of 30 and 83 in the 
Estonian health care setting. Patients’ distribution into risk 
groups and the comparison with theoretical PRS risk distri-
butions are characterized in Table 3. As the PRS distributes 
individuals on the normal distribution curve of the risk, it is 
possible to calculate the theoretical numbers of individuals at 
different risk levels.

In the age group of 30 to 49 years, BC PRS test has been 
applied to 1881 women. Current testing has detected 318 
(16.9%) women, whose risk level is already as high or higher 
than average at age 50. 141 (7.5%) of women had risk levels 2 
times higher than average and who could discuss more fre-
quent mammographies and hormonal chemoprevention. 
Thirty-one (1.6%) tested women had risk levels 3 times higher 
than average and who are candidates for screening magnetic 
resonance imaging (MRI).

In the age group 50 to 83 years, BC PRS test has been 
applied to 756 women. We detected 77 women (6.2%) who 

Table 2. Recommendations for personalized screening based on different PRS risk levels.

1. Relative risk is less than the population average
  a. Standard mammography screening starting from age 50a

2. Relative risk increases up to 2-fold
  a.  Recommended mammography screening initiation (2-year interval) at the age of attaining a 10-year risk equivalent to that of a 

genetically average 50-year-olda

3. Relative risk increases 2-fold to 3-fold
  a. Recommend 2a
  b.  Recommend mammography screening initiation with 1-year interval starting from an age where 10-year risk attains 2-fold of a 

genetically average 50-year-old’s riska

  c.  Besides 3.a and 3.b, we recommend discussing the usage of BC risk-reducing hormonal chemoprevention (tamoxifen, aromatase 
inhibitors) with a specialist

4. Relative risk increases more than 3-fold
  a. Recommend 3a and 3b
  b.  At the age of attaining more than 3-fold of a genetically average 50-year-old’s risk then recommend magnetic resonance imaging 

every 1-2 yearsa

  c.  Besides, to 4.a and 4.b, we recommend discussing the usage of BC risk–reducing hormonal chemoprevention (tamoxifen, aromatase 
inhibitors) with a specialist

Abbreviations: PRS, polygenic risk score; BC, breast cancer.
aIf the recommended age is below the individual’s current age, then we recommend the current age.

Table 3. Women’s distribution according to breast cancer PRS risk levels in clinical practice in Estonia and comparison with theoretically calculated 
risk distribution percentages (CI using 2-sided exact binomial test).

All WOMEN
AGE 30-83

WOMEN AGED 30-49 WOMEN AGED 50-83

N 2637 1881 756

Mean age 44.7 39.2 58.3

RISK 
GROUPS

RISK lEVElS N %
(95% CI)

N %
(95% CI)

N %
(95% CI)

1 Relative risk is less 
than the population 
average

Theoretical 1319 50 941 50 378 50

Actual 1361 51.6
(49.7-53.5)

979 52.0
(49.8-53.5)

382 50.5
(46.9-54.2)

2 Relative risk 
increases up to 2-fold

Theoretical 1093 42 779 42 313 42

Actual 1088 41.3
(39.4-43.2)

761 40.5
(38.2-42.7)

327 43.3
(39.7-46.9)

3 Relative risk 
increases 2-fold to 
3-fold

Theoretical 186 7 132 7 53 7

Actual 150 5.7a

(4.8-6.6)
110 5.8

(4.8-7.0)
40 5.3

(3.8-7.1)

4 Relative risk 
increases more than 
3-fold

Theoretical 40 1 28 1 11 1

Actual 38 1.4
(1.0-2.0)

31 1.6
(1.1-2.3)

7 0.9
(0.4-1.9)

Abbreviations: PRS, polygenic risk score; CI, confidence interval.
aTwo-sided exact binomial test p value < 0.05
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have 2 times higher PRS risk levels and are candidates for 
annual screening mammography and for hormonal chemopre-
vention. Seven women (0.9%) had risk levels 3 times higher 
than average; they got recommendations for additional MRI 
screening.

In combined analysis of all tested women, we note a small, 
but statistically significant (binomial test p = 0.0075) underrep-
resentation (n observed = 150; n expected = 186) of women 
belonging to risk group 3 (2-3× increase in relative risk). This 
difference is present, but not statistically significant in both 30 
to 49 and 50 to 83 age groups and is not statistically significant 
after Bonferroni correction for 12 tests. No significant devia-
tions from expectation were observed in other age and risk 
groups.

Discussion
Risk-based BC screening, in which individualized risk assess-
ment is used to inform screening practices, has been proposed 
as an alternative to age-based screening.7,8 For that, risk predic-
tion tools are necessary. Age only is an imperfect marker for 
BC risk, given that genetic susceptibility, lifestyle factors, and 
reproductive history can affect a woman’s chance of developing 
BC. As around 30% of the total BC risk has been shown as 
hereditary,9 evaluation of genetic predisposition for BC can 
serve as a tool for risk-stratified screening.

A considerable part of BC genetic variation is explained by 
SNPs,14,15 effects of which are summarized into PRS. Breast 
cancer PRS identifies differences in genetic risks and provides 
a straightforward basis for designing personalized screening 
programs by accounting for individual genetic susceptibility.16 
Currently, PRS scores have not yet been implemented in rou-
tine BC screening.20 As a relatively small proportion of the 
population are carriers of BC PVs, we have aimed to develop 
an additional BC risk prediction tool in the form of PRS.

In this study, we validated different publicly available PRS 
models to find the best performing model for predicting the 
risk of BC. Our best performing model, named PRS2803, was 
a pruned version of Mavaddat et al 3820 PRS model contain-
ing a total of 2803 SNPs out of 3820.23 Its performance was 
consistent with the author’s results. Our model was used to 
design a novel absolute risk–based screening strategy. It is 
based on Estonian screening information and background data 
to identify the extent of more than 10-fold PRS-based risk dif-
ferences between the extremes. Our analysis showed that 1% of 
women would need to join screening by the age of 34 and more 
than 30% of individuals do not ever attain the risks of a geneti-
cally average 50-year-old woman (the age when women con-
ventionally start screening).

For the clinical implementation, we developed recommen-
dations based mostly on 2 aspects—the average BC risk level 
currently accepted for routine BC public screening and the 
analogy with recommendations for moderate-risk PV carri-
ers.22 Using PRS, it is possible to divide the patient’s relative 

risk of developing BC into different levels compared with the 
average in the given age while accurately assessing the risk of a 
particular percentile. In Europe, mammography screening in 
the age group 50 to 69 years at 2-year intervals is currently a 
recognized standard practice, which reduces BC mortality. 
Consequently, the “zero point” of the risk level at the beginning 
of the screening is the average risk level of 50-year-old women. 
Detecting younger women with similar or higher risk levels 
already from age 30 to 35 allows implementing similar mortal-
ity reduction measures, avoiding same time screening measures 
for women with lower risk.

As PRS can predict similar BC risk levels to moderate-risk 
PVs (ATM, CHEK2, and others), we used for our recommen-
dations analogy with these for mammography intervals and 
MRI use.22 It should be noted that we do not recommend indi-
viduals to join public screening programs later than the stand-
ard starting time as the potential benefits and losses from 
decreased intervals have not been separately validated. As the 
PRS test does not analyze PVs that significantly increase the 
risk of BC, our application model recommends additional 
counseling and testing for the PVs according to the widely 
acknowledged criteria for PV testing.22 We see that in the 
future also all women should be tested for PVs, as family his-
tory criteria may miss a proportion of actual PV carriers, but 
currently the main obstacle to that has been the relatively high 
cost of PV tests.

Individual risk-based approach for BC screening has 
allowed the development of more equivalence and equitability 
among women regarding screening. If an average risk at age 50 
(or at any other age) is a commonly accepted level for mam-
mography screening, then personalized recommendations to 
start screening when an individual risk level reaches average 
risk create equivalence. If some individuals in average risk level 
are currently offered interventions or screening, then it would 
be unfair to deny that to others with equivalent or higher risk 
of disease. It is important to identify individuals who are at 
high risk but are currently invisible to the system. Also, for all 
women, the PRS test can also serve as a tool for individual 
informed “shared decisions” for mammography screening 
participation.6

Results from the clinical application of our approach show 
that actual results of PRS testing overlap well with expected 
results (Table 3). The detected underrepresentation of women 
belonging to risk group 3 can most likely be attributed to sam-
pling error in PRS percentiles 93 to 99. Alternatively, the dif-
ference may arise from uncertainties in population-specific 
mean and standard deviation estimates used for converting the 
raw PRS values to z-scores. We are continuing to monitor this 
observation as more data become available.

Several combined risk prediction models incorporate tradi-
tional risk factors such as demographics, reproductive history, 
menopausal status, family history, previous biopsies, mammo-
graphic density, carrier status of PV, and PRS.25-28 The practical 
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routine application of such compounded models in screening is 
complicated due to the nonavailability and quality of data. In 
practical settings, the data collection difficulties need to be 
weighted with expected gains. The feasibility, clinical utility, 
costs, and cost-effectiveness of risk-based programs using a 
comprehensive model versus a model with only PRS and addi-
tional PV testing need to be evaluated additionally.20 Polygenic 
risk score alone has been shown to predict the risk of BC in 
European descent individuals more accurately than current 
clinical models.29 Van den Broek et al. have assessed the clinical 
utility of a first-degree BC family history and PRS to inform 
screening decisions among women aged 30 to 50 years.30 Results 
suggested that BC family history and PRS could guide screen-
ing decisions before age 50 years among women at increased 
risk of BC with the potential to prevent more BC deaths for 
identifiable groups of women at high risk due to their BC fam-
ily history and polygenic risk. Analysis by Wolfson et al. con-
cluded that population-wide programs for BC screening that 
seek to stratify women by their genetic risk should focus first on 
PRS, not on more highly penetrant but rarer variants, or family 
history.31 The PRS was most predictive for identifying women 
at high risk, while family history was the weakest.

The weakness of our approach is that this is not yet based on 
the results of randomized trials. Randomized clinical trials of 
screening interventions provide the strongest evidence of effi-
cacy, although they have certain limitations—a long time to 
perform and accordingly uncertainty about the relevance of the 
original study approach after a long study period due to addi-
tional scientific progress. Therefore, simulations and modeling 
studies can indicate which screening strategies are likely to be 
optimal in each setting. Such modeling studies are started based 
on the developed approach described in the current report.

In conclusion, we have used a PRS-based model to develop 
a novel model for BC screening and implemented that with a 
questionnaire for additional stronger risk MVP testing in clini-
cal practice for personalized recommendations. Our adapted 
PRS model identifies individuals at more than 3-fold risk and 
elucidates large differences in attaining the same level of abso-
lute risk. The genetic risk-based recommendations can be 
applied prospectively by individuals and by institutions aiming 
to make screening provisions more efficient. Our approach is 
easily adaptable to other nationalities by using population 
background information data of other genetically similar pop-
ulations. For different ethnicities, additional ethnicity-based 
validations are necessary. We have implemented current BC 
PRS in Estonia for women with European ethnic background, 
as GWAS analyzed for current development were based on 
ethnicities with a European background. Similarly, the clinical 
screening recommendations can be adapted to locality-specific 
screening environments if we can infer the absolute risk of the 
average woman in that locality.

Conclusions
In the additional validation of BC PRSs in EstBB and UKBB, 
the model with 2803 SNPs demonstrated improved perfor-
mance compared with models with a smaller number of SNPs:

•• PRS test separates different BC risk levels.
•• BC PRS test is feasible to implement in clinical practice 

for risk-stratified BC prevention.
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samples were divided into prevalent and incident data sets. The 
prevalent data set included BC cases diagnosed before Biobank 
recruitment with 5 times as many controls without the diagnosis. 
Incident data included cases diagnosed in any of the linked data-
bases after recruitment to the Biobank and all controls not 
included in the prevalent data set. Prevalent data sets were used 
for identifying the best candidate model and the incident data 
sets were used to obtain an independent PRS effect estimate on 
BC status.

Participant data in the Estonian Biobank. Breast cancer cases 
and controls in retrospective data of EstBB were defined by BC 
ICD-10 (International Classif ication of Diseases, Tenth Revi-
sion) code (C50) status derived from questionnaires filled at 
recruitment of the gene donors and from linked data from 
Estonian Cancer Registry (data until 2013), National Health 
Insurance Fund (data until the end of 2018), and Causes of 
Death Registry (data until 2017 May). All EstBB samples were 
genotyped in the Core Genotyping Lab of the Institute of 
Genomics, University of Tartu, using Illumina GSAMD-
24v1-0 arrays. Individuals were excluded if their call rate was 
<95% or sex defined based on X chromosome heterozygosity 
did not match the declared sex. Variants were filtered by call 
rate <95% on the whole EstBB data set, Hardy-Weinberg 
equilibrium (HWE) test p value < 1e-4 (autosomal variants 
only), and minor allele frequency < 1%. Variant positions were 
updated to b37 and all variants were changed to the TOP 
strand (https://www.well.ox.ac.uk/~wrayner/strand/). Phasing 
was done using Eagle (v 2.3) software32 and imputation with 
Beagle (v 28Sep18.793)33 using the population-specific impu-
tation reference of 2297 WGS samples.34

Participant data in the UK Biobank. This study used genotypes 
from the UKBB cohort (version v3, obtained 07.11.2019) and 
made available to Antegenes under application reference num-
ber 53602. The data were collected and genotyped using either 
the UK BiLEVE or Affymetrix UK Biobank Axiom Array. 
Breast cancer cases in the UKBB cohort were retrieved by the 
status of ICD-10 code C50. We additionally included cases 
with self-reported UKBB code “1022.”

Quality control steps and, in detail, methods applied in 
imputation data preparation have been described by the 
UKBB.35 We applied additional quality controls on autosomal 
chromosomes. First, we removed all variants with allele fre-
quencies outside 0.1% and 99.9%, genotyping call rate < 0.1, 
imputation (INFO) score < 0.4, and Hardy-Weinberg equilib-
rium test p value < 1E-6. Sample quality control filters were 
based on several predefined UKBB filters. We removed sam-
ples with excessive heterozygosity, individuals with sex chro-
mosome aneuploidy, and excess relatives (>10). In addition, we 
only kept individuals for whom the submitted gender matched 
the inferred gender, and the genotyping missingness rate was 
below 5%.

In the EstBB cohort, we retained a total of 32 548 quality-
controlled female samples. All samples were divided into prev-
alent and incident data sets. The prevalent data set contained 
315 cases of BC that were diagnosed before Biobank recruit-
ment and 1602 controls. The incident data set contained 365 
cases of BC that were diagnosed after Biobank recruitment and 
30 266 controls. The UKBB data set contained 249 062 sam-
ples that passed the quality controls. In the UKBB, we identi-
fied 8637 prevalent cases and 6825 incident cases that were 
complemented with 44 952 controls and 188 648 controls, 
respectively.

Model selection from candidate polygenic risk score models. We 
searched the literature for polygenic risk score (PRS) models in 
the public domain. The requirements for inclusion in the can-
didate set were the availability of the chromosomal location, 
reference and alternative allele, minor allele frequency, and an 
estimator for the effect size either as odds ratio (OR) or its 
logarithm (log-OR) specified for each genetic variant. In cases 
of iterative model developments on the same underlying base 
data, we retained chronologically newer ones. The search was 
performed with Google Scholar and PubMed web search 
engines by working through a list of articles using the search 
[“Polygenic risk score” or “genetic risk score” and “breast can-
cer”], and then manually checking the results for the inclusion 
criteria.

Altogether, we chose 4 models from 3 different articles to be 
evaluated: PRS313,23 PRS77,15 PRS78,24 and PRS3820.23 
Normality assumption of the standardized PRS was not vio-
lated with any tested models (Shapiro-Wilk test p values in 
EstBB data PRS313 = 0.45, PRS77 = 0.40, PRS78 = 0.28, 
PRS3820 = 0.46). The best performing model was selected 
based on AUC, ORsd, AIC, and pseudo-R2 metrics in both 
EstBB and UKBB data. The PRS2803 model that was based 
on Mavaddat et al23 performed the best (Table 1 in the main 
text). The corresponding AUC under the ROC curve (Figure 
A1) for the association between the PRS and BC diagnosis was 
0.615 (SE = 0.039) in EstBB and 0.632 (SE = 0.0072) in UKBB.

We additionally pruned the PRS from multi-allelic, non-
autosomal, non-retrievable variants based on bioinformatics 
re-analysis with Illumina GSA-24v1 genotypes and non-over-
lapping variants between EstBB and UKBB data.

Polygenic risk scores were calculated as PRS xj
i

m

i
j

ij=












∑ ∑

=

β ω
0

2

, 

where ωij  is the probability of observing genotype j, where j 

∈ {0,1,2) for the ith SNP; m is the number of SNPs, and 
βi  is the effect size of the ith SNP estimated in the PRS. 
The mean and standard deviation of PRS in the cohort were 
extracted to standardize individual risk scores to Gaussian. We 
tested the assumption of normality with the mean of 1000 
Shapiro-Wilk test replications on a random subsample of 
1000 standardized PRS values.

https://www.well.ox.ac.uk/~wrayner/strand/


Padrik et al 9

Next, we evaluated the relationship between BC status and 
standardized PRS in the 2 prevalent data sets with a logistic 
regression model to estimate the logistic regression–based odds 
ratio per 1 standard deviation of PRS (ORsd), its p value, model 
Akaike information criterion (AIC), and area under the ROC 
curve (AUC). The logistic regression model was compared 
with the null model using the likelihood ratio test and to esti-
mate the Nagelkerke and McFadden pseudo-R2. We selected 
the candidate model with the highest AUC to independently 
assess risk stratification in the incident data sets.
Independent performance evaluation of a PRS modelThe main 
aim of the analyses in the incident data sets was to derive a pri-
mary risk stratification estimate, hazard ratio per 1 unit of 
standardized PRS (HRsd), using a right-censored and left-trun-
cated Cox regression survival model. The start of time interval 
was defined as the age of recruitment; follow-up time was set as 
the time of diagnosis for cases and at the time of last health data 
linkage for controls. Scaled PRS was used as the only independ-
ent variable of BC diagnosis status, and 95% confidence inter-
vals were created using the standard error of the log-hazard 
ratio. We also assessed the goodness-of-fit of the survival model 
using Harrell C-index and the likelihood ratio test.

Furthermore, we evaluated the concordance between the-
oretical hazard ratio estimates derived with the continuous 
per unit PRS (HRsd) estimate and the hazard ratio esti-
mates inferred empirically from data (Figure A2). For this, 
we binned the individuals by PRS to deciles and estimated 
the empiric hazard ratio of BC directly between those clas-
sified in each decile and those belonging to the remaining 
deciles. Theoretically estimated hazard ratio estimates 
assume a multiplicative effect of the mean in a PRS bin on 
the unit-based hazard ratio. This relationship between 
HRsd and the expected mean in the truncated Gaussian 

Figure A1. Receiver operating characteristic plot of breast cancer cases 

and controls in prevalent Estonian Genome Center data set.

PRS distribution is expressed as HRsd
a bΦ−1( , ) , where the 

exponent is the mean of a truncated Gaussian distribution 
between 2 percentiles a and b (bounded between 0 and 1, 
a < b), and Φ−1( , )a b  = ( ( ) ( ))

( )
f Q b f Q a( ) − ( )

−a b
, where 

Q(b) is the Gaussian quantile function on a percentile b and f(Q)
is the Gaussian probability density function value at a quantile 
function value. We compared the 2 approaches by using the 
Spearman correlation coefficient and the proportion of distri-
bution-based HRsd

a bΦ−1( , )  estimates in empirical confidence 
intervals.

Next, we evaluated the performance of the best performing 
PRS2803 model in the independent incident data sets with the 
main aim of estimating the hazard ratio per unit of PRS. Table 2 
presents the performance estimation metrics. The hazard ratio 
per 1 unit of standard deviation (HRsd) of model PRS2803 was 
1.66 with standard error (log [HR]) = 0.05) in the incident 
EstBB data set. The concordance index (C-index) of the survival 
model testing the relationship between PRS and BC diagnosis 
status in the incident EstBB data set was 0.656 (SE = 0.015) and 
slightly lower in the UK Biobank.

Hazard ratio estimates in deciles of PRS are visualized in 
Figure A2. In panel A with EstBB data, the lowest 10% bin 
includes 3073 controls and 20 cases, whereas in the top 10%, we 
observed 2946 controls and 74 cases. Respectively, in the UKBB 
data set (Figure A2(C)) we observed 303 cases and we observed 
good calibration of PRS-derived hazard ratios to expected values. 
In the EstBB incident data (Figure A2(B)), a slight overestima-
tion of hazard ratio may be present in the average risk bracket. In 
the UKBB data set (Figure A2(D)), the hazard ratios are very 
well aligned with theoretical values (Pearson correlation coeffi-
cient = 0.994). The match is particularly exact in above average 
risk individuals, whereas in the low risk individuals a slight devia-
tion toward lower than expected hazard ratios is noticeable due to 
the tight confidence intervals in this larger data set.

Absolute risk estimation. Individual τ -year (eg, 10-year) abso-
lute risk calculations are based on the risk model developed by 
Pal Choudhury et al.21 Individual absolute risks are estimated 
for currently a-year-old individuals in the presence of known 
risk factors (Z) and their relative log hazard ratio parameters 
(β ), and 95% uncertainty intervals for the hazard ratio were 
derived using the standard error and z-statistic 95% quantiles 
CIHR = exp(β  ± 1.96*se[HRsd]), where se(HRsd) is the stand-
ard error of the log-hazard ratio estimate. Risk factors have a 
multiplicative effect on the baseline hazard function. The 
model specifies the next τ -year absolute risk for a currently 
a-year old individual as

a

a
T

a

t
Tt Z exp Z m u du d

+

∫ ∫( ) ( ) − ( ) ( ) + ( )

















τ

λ β λ β0 0exp expu tt ,

where m(t) is the age-specific mortality rate function and λ0 (t) 
is the baseline hazard function, t T≥ , and T is the time to onset 
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of the disease. The baseline hazard function is derived from 
marginal age-specific BC incidence rates (λm ([t]) and the dis-
tribution of risk factors Z in the general population (F(z)):

 λ λ βm
Tt t Z dF z( ) exp ( ).≈ ( ) ( )∫ 0  

Figure A2. HR estimates between deciles of the PRS in the EstBB and UKBB incident data sets. Red dots and black lines represent empirically 

estimated HR estimates and corresponding confidence intervals. Black dashes represent the theoretical hazard ratio for the decile bins derived from the 

HR per unit PRS. (A) EstBB observed HRs in incident data set. (B) Calibration graph of expected and observed HRs in EstBB incident data. (C) UKBB 

observed HRs in incident data set. (D) Calibration graph of expected and observed hazard ratios in UKBB incident data. EstBB indicates Estonian 

Biobank; HR, hazard ratio; PRS, polygenic risk scores; UKBB, UK Biobank.

Table A1. Performance metrics of Cox regression model on the disease status and PRS2803-based polygenic risk scores calculated in the incident 
data sets.

HRSD (95% CONFIDENCE 
INTERVAl)

C-INDEx (SE) –2 × lOG lIKElIHOOD lIKElIHOOD RATIO TEST 
P VAlUE

Estonian Genome Center 1.66 (1.5-1.84) 0.656 (0.015) 95.3 <2e-16

UK Biobank 1.56 (1.53-1.6) 0.625 (0.003) 1351 <2e-16

Abbreviation: HR, hazard ratio.

This absolute risk model allows disease background data from any 
country. In this analysis, we used Estonian background informa-
tion. We calculated average cumulative risks using data from the 
National Institute of Health Development of Estonia that provides 
population average disease rates in age groups of 5-year intervals. 
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Sample sizes for each age group were acquired from Estonian 
Health Statistics and Health Research Database for 2013-2016.36 
Next, we assumed constant incidence rates for each year in the 
5-year groups. Thus, incidence rates for each age group were calcu-
lated as IR =Xt / Nt, where Xt is the number of first-time cases at age 
t and Nt is the total number of women in this age group. Final per-
year incidences were averaged over the time range 2013-2016.

Age-and sex-specific mortality data for the year 2016 was 
retrieved from World Health Organization37 and competing 
mortality rates were constructed by subtracting yearly age- and 
sex-specific disease mortality rates from general mortality 
rates. Breast cancer mortality estimates were derived from the 
Global Cancer Observatory.1

We applied this model to estimate absolute risks for individu-
als in the first, 10th, 25th, 50th, 75th, 90th, and 99th PRS quan-
tiles, for example, an individual on the 50th percentile would have 
a standardized PRS of 0. Confidence intervals for the absolute 
risk are estimated with the upper and lower confidence intervals 
of the continuous per unit log-hazard ratio. Similarly, we used the 
absolute risk model to estimate lifetime risks (between ages 0 and 
85) for the individuals in the same risk percentiles.

We used a model by Pal Choudhury et al. to derive indi-
vidual 10-year risks21 and specified F(z) as the distribution of 
PRS estimates in the whole EstBB cohort. The log-hazard 
ratio (β ) is based on the estimate of the log-hazard ratio in 
the BC16 model of the incident EstBB data set. Age-specific 
BC incidence and competing mortality rates provided the 
background for BC incidences in the Estonian population.

In the Estonian population, the absolute risk of developing 
BC in the next 10 years among 50-year-old women in the first 
percentile is 0.466% (0.349%-0.616%) and 4.83% in the 99th 
percentile 4.83% (4.00%-5.77%). At age 70, corresponding risks 
become 0.59% (0.445%-0.778%) and 6.08% (5.03%-7.30%), 
respectively. The relative risks between the most extreme percen-
tiles are therefore > 10.3× fold. At the same time, competing 
risk accounted cumulative risks reach 19.2% by age 85 (16.1%-
22.6%) for those in the 99th percentile but remain 2.00% 
(1.51%-2.64%) for those in the first percentile (Figure A3).

A genetically average 50-year-old woman has a 10-year 
absolute risk of around 1.51%. PRS2803 model can identify 
34-year-old women in the 99th percentile of PRS who have a 
larger risk than the average risk of 50-year-olds. At the same 
time, 50-year-old women in the 32nd percentile and lower 
attain the average risk of 50-year-olds by their 70th birthday. 
In effect, individual women could be at the risk that currently 
initiates population-level screening between ages 34 and 70. 
Similarly, 50-year-old women above the 92nd PRS percentile 
have a more than 2-fold risk and around 1.3% of women attain 
a 3-fold risk compared with those at average risk (Figure A4).

Risk Percentile

Figure A3. Cumulative risks (%) of breast cancer between ages 20 and 

85 in various risk percentiles.

Figure A4. Ages when Estonian women in different risk percentiles attain 

1-fold to 3-fold multiples of 10-year risk compared with 50-year-old women 

with population average polygenic risk score (risk level: “average”).
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Appendix 2
Sample laboratory report of a breast cancer 
polygenic risk score test

ANTEBC LABORATORY TEST RESULT
Polygenic Risk Score of Breast Cancer
Last Name: XXX
first Name: XXX
National Identification Number: 41234567890
Age: 40
Analysis code and LOINC code: A-5429 breast cancer poly-
genic risk score
Clinical Diagnosis: Z01.7 Laboratory Analysis
Analysis/Procedure: Polygenic Risk Score test
Laboratory Test Result: 1.38
Laboratory Analysis Description:
AnteBC test: A-5429 breast cancer polygenic risk score
Sample Material Data
Date of Sample Collection: dd.mm.yyyy
Sample Container Identifier: abcdefg
Sample Material: Mo buccal swab
Analysis Method: Genotyping
Analysis and Interpretation: Antegenes
Laboratory Test Result: The patient’s polygenic risk score of 
breast cancer is 1.38 standard deviation (SD) units.

Interpretation of Laboratory Test Result: The result 
shows that the breast cancer polygenic risk score is 1.38 stand-
ard deviation units higher than the population average placing 
the patient’s risk score among 40-year-old women in the 92nd 
percentile. Meaning that more than 91% of women have lower 
and more than 8% of women have higher polygenic risk scores.

The patient’s risk of developing BC in the next 10 years is 
1.77%. The 10-year average risk of developing breast cancer 
among 40-year-old women in Estonia is 0.89%. In terms of rela-
tive comparison, the current result implies that the risk of devel-
oping breast cancer in the next 10 years is 2.00 times higher than 
the 10-year genetic risk among 40-year-old women on average.

Based on the breast cancer polygenic risk score test results, 
we recommend,

•• Mammography screening every 2 years starting at the 
age of 40.

•• Follow general guidelines to reduce the risk of breast 
cancer (see our recommendations).

•• The individual cancer risk can be high, whether or not 
there is a family history of cancer. Knowing the personal 
breast cancer risk is important because further clinical 
analysis can now be implemented according to the 
patient’s risk. This way we can prevent the disease or 
detect it as early as possible.

Test results were entered: dd.mm.yyyy
Time of evaluation of the result: dd.mm.yyyy
The results were confirmed: dr. ZZZ ZZZ, D12345.

health care professional speciality: E190 Laboratory medicine.
Name of health care institution: OÜ Antegenes.

Decision. Based on the breast cancer polygenic risk score test 
results, we recommend,

•• Mammography screening every 2 years starting at the 
age of 40.

•• Follow general guidelines to reduce the risk of breast 
cancer (see our recommendations).

Notes:
In addition to the polygenic component used by the AnteBC 
test, there are also other breast cancer risk factors to be consid-
ered. Risk assessment could be affected by any previous breast 
diagnostic tests, occurrences of cancer in close (biological) rela-
tives, or individual health behaviors.

Health behavior
•• A body mass index greater than 30 increases the risk of 

breast cancer by a factor of 1.5 to 2. It is recommended 
for adults to maintain a body mass index between 18.5 
and 24.9 or at least below 30.

•• Physical activity is risk-reducing. At least 30 minutes of 
moderate-to-vigorous intensity physical activity is recom-
mended on most days, a total of 1.5 to 4 hours per week.

•• Consuming just one alcoholic drink a day increases 
breast cancer risk by 5%. Regular alcohol consumption 
should be avoided to reduce the risk of breast cancer.

•• Using hormone replacement therapy (HRT) during 
menopause increases the risk of breast cancer. The risk of 
breast cancer increases with the use of estrogen and pro-
gestogen combination and estrogen alone. Therefore, the 
risk-benefit ratio of these drugs should be discussed with 
your doctor.

•• Women who have never given birth and women who 
give birth to their first child at the age of 35 or older have 
a slightly higher risk of developing breast cancer.

•• Smoking increases the risk of breast cancer.

Body awareness. We recommend you to be aware of your body, 
including the condition and possible changes in your breasts. If 
you notice any of the symptoms listed below, we recommend 
that you seek medical attention. These may indicate the devel-
opment of breast cancer.

•• Abnormal changes in breast shape, size, or color.
•• New lump or mass in breast tissue.
•• Pain or discomfort in one breast.
•• Changes in the surface of the breast skin (looking like an 

orange peel), skin retraction, “wrinkling,” or ulcer.
•• Change or retraction of nipple shape or position.
•• Bleeding or flushing around the nipple, discharge from 

the nipple.
•• Enlargement of the axillary lymph nodes.
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Rare genetic variants. In addition to the polygenic variants con-
sidered by AnteBC, there are a few rare variants in the genome 
that significantly increase the risk of cancer. Such variants are 
tested in tests for single genes for hereditary tumor risk.

AnteBC test does not analyze rare risk-increasing muta-
tions in single genes. The patient may be indicated for such a 
test if any of the following criteria are met:

•• The patient has a history of breast cancer, ovarian or fal-
lopian tube cancer, or peritoneal cancer;

•• The patient’s biological relative is known to have a muta-
tion in individual genes for breast and ovarian cancer 
predisposition (BRCA1, BRCA2, etc);

•• A first- or second-degree biological relative has been 
diagnosed with breast cancer below the age of 45 years; 
has been diagnosed with pancreatic cancer, ovarian 
cancer, metastatic prostate cancer, 2 or more cases of 
breast cancer in one person; or has a history of breast 
cancer;

•• Biological relatives have had 3 or more tumors associated 
with hereditary cancer syndromes;

•• Ashkenazi Jewish descent.
•• In this case, we recommend consulting a Medical 

Geneticist and testing individual genes for hereditary 
tumor risk.


