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Fermented fish, fermented shrimp and fermented crab are traditionally prepared
seafoods that are commonly consumed in the Hainan area in China. We studied the
microbial diversity and metabolic pathways in traditional fermented seafoods using
high-throughput sequencing technology, and based on our previous research, we also
compared the differences between fermented seafood and fermented vegetables. The
alpha diversity of fermented seafood was higher than that of fermented vegetables
and attained the highest level in fermented shrimp. The dominant genera in fermented
seafood were different from those of fermented vegetables. Furthermore, we analyzed
the 16S rDNA gene polymorphisms (SNPs) of the same dominant species (Lactobacillus
plantarum and Lactobacillus fermentum) in two fermented environments, which showed
that most of the mutations occurred in fermented vegetables and that fermenting
environment might be the major factor for these mutations. This research provides
us with new insights into beneficial microbial resources in regard to microbial diversity
and genetic polymorphisms and lays a foundation for the subsequent development and
utilization of beneficial microorganisms.

Keywords: high-throughput sequencing, microbial diversity, fermented shrimp, Lactobacillus, SNPs

INTRODUCTION

Fermentation is the major storage method of food in many countries (Gadaga et al., 1999)
and is considered a simple and inexpensive method to enhance the sensory properties and
nutritional value of food, as well as to extend its shelf life (Blandino et al., 2003). A wide range of
fermented food is produced around the world, such as milk (Oki et al., 2014), fruits, vegetables
and seafood. Hainan Province is surrounded by a sea and has rich seafood resources, which
include fish, crab, shrimp and so on, and it has a special geographical location (Peng et al., 2018)
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in which selection has yielded unique bacterial resources.
However, fermented seafood in Hainan Province has not
yet been studied. The process of traditional fermentation is
generally spontaneous, triggered by microorganisms associated
with the raw food materials and the external environment
(Misihairabgwi and Cheikhyoussef, 2017). The unique structure
of the microbiota in each fermented food described in previous
studies has confirmed the microbial activity and medicinal value
of fermented food products (Singh et al., 2018). Therefore,
this research on the microbial diversity of fermented seafood
explores the treasure trove of unique microbial resources in
Hainan Province.

Probiotics were defined as “Live microorganisms which when
administered in adequate amounts confer a health benefit on
the host” (FAO/WHO, 2001). Bifidobacterium and Lactobacillus
are the most commonly used probiotics (Yaqoob, 2014). Many
fermented foods contain live microorganisms that may have
good benefits to consumers’ health (Rezac et al., 2018), with
Lactobacillus being especially varied (Gareau et al., 2010) and
considered to be able to prevent gastrointestinal disorders
(Tamang et al., 2016) and chronic diseases, including liver
disease (Qin et al., 2014), hyperlipidaemia (Shao et al., 2017)
and cardiovascular diseases (Liu et al., 2015), as well to be able
to lower the risk of the type two diabetes (Rezac et al., 2018).
We collected fermented seafoods, including fish sauce, shrimp
sauce and crab sauce, from different areas. Fishes sauce is usually
produced using tilapia, which is different from fish tea, a mixture
of fish, rice and seasoning (Zhang et al., 2016). Shrimp sauce
is usually produced using Metapenaeus ensis, and crab sauce
is usually produced using hele crab (Scylla serrate). Fermented
seafood was washed and crushed, and then 6–7% of salts were
added to obtain the natural fermentation. Lactic acid was the
main produced acid in the process of microbial fermentation.
These sauces are semifluid, have many small solid particles and
are often used as seasoning in cooking. The most commonly
eaten home dish in Hainan Province is fried sweet potato leaves
in shrimp sauce.

In recent years, the expansion of genomic sequencing has
promoted tremendous advances in metagenomics (Dark, 2013),
which have made it easier to accurately study the microbial
structure and probiotic potential in samples. Bedoya et al.
(2019) studied the microbial diversity in the environment of a
waste water treatment plant in Colombia using next-generation
sequencing techniques. The microbial diversity in naturally
fermented tofu whey, a traditional Chinese tofu-coagulant, was
first analyzed using high-throughput sequencing (Fei et al., 2018).
In addition, interactions between bacteria and the environment
play important roles in the ecological and evolutionary processes
(Good et al., 2017). Therefore, different single nucleotide
polymorphisms (SNPs) of bacteria are present due to the different
raw materials and environment of the fermented food. The
difference in SNPs could help us to understand the influence
of the environment on microbial variation and provide data
for directional variation of microorganisms by changing the
environment. In the present study, microbial diversity and
metabolic pathways in fermented vegetables in Hainan Province
were studied. In this research, not only did we study the microbial

diversity in fermented seafood, we also studied the difference
between fermented vegetables and seafood.

MATERIALS AND METHODS

Collection and Chemical Analysis of
Samples
In this study, 23 fermented seafood samples were collected. Nine
fermented fish samples were collected from the cities of Lingshui,
Baoting and Qiongzhong; 5 fermented crab samples were
collected from Wanning City; and 9 fermented shrimp samples
were collected from the cities of Baoting, Ledong, Lingshui and
Wanning in Hainan Province in China. The specific sampling
areas were in the Supplementary Table S1. The sampling
time was October 2017. Fermented seafoods were produced
by local populations through natural fermentation and were
collected from the local population after the fermentation ended.
Fermentation usually ended in 10–15 days. After collection, these
samples were placed in a cooler and immediately transported
to the laboratory and stored at −20◦C for DNA extraction. The
pH value was measured for a uniform mixture of one gram
of fermented seafood sample with 10 mL of a sterile NaCl
solution (0.85%, w/v).

Sample Processing and Strain
Preservation
Ten grams of fermented seafood sample was mixed uniformly
with 90 mL of a sterile NaCl solution (0.85%, w/v). On the one
hand, the solution was used to dilute the mixture, which was
then coated on MRS solid agar medium; On the other hand,
the diluent of mixture was used to extract DNA directly for 16S
rDNA sequencing.

A single colony was selected, and DNA was extracted after the
second-generation of the culture. After being oscillated evenly,
the supernatant was used for DNA extraction with a QIAGEN
DNA Mini-Kit (QIAGEN, Hilden, Germany) and a bead-beating
method (Tanaka et al., 2009). The quality of the extracted DNA
was detected by 1% agarose gel electrophoresis, and DNA samples
were stored at −20◦C for further processing. The universal
forward primer A27F (5′-GCAGAGTTCTCGGAGTCACGAA
GAGTTTGATCCTGGCTCA-3′) and the reverse primer A1495R
(5′-AGCGGATCACTTCACACAGGACTACGGCTACCTTGTT
ACG-3′) were used to amplify the gene. Sequencing of the single
colony was performed in Shanghai Personal Biotechnology
Company. The sequencing results of the single bacteria were
compared with the NCBI database after being aligned with
MEGA software and the identification results were obtained.
After identification, the strains were stored at −80◦C in the
laboratory for later experiments (SRA accession: PRJNA517547).

Sample DNA Extraction and PCR
Amplification, Quantification, Pooling
and Sequencing
The DNA of fermented seafood was extracted with a QIAGEN
DNA Mini-Kit. The V3-V4 region of the 16S ribosomal RNA
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TABLE 1 | Comparison of the climate conditions and pH among samples.

Samples Elevation Temperature Humidity pH

FV FBS 157.38 23.20 0.79 3.56 ± 0.38

FCC 97.32 23.83 0.80 3.89 ± 0.23

FW 238.08 23.28 0.79 3.54 ± 0.18

FS FC 164.26 23.44 0.79 4.08 ± 0.11

FF 163.87 23.72 0.76 3.97 ± 0.37

FS∗∗∗ 206.49 23.94 0.70 7.24 ± 0.75

∗∗∗P < 0.001.

(rRNA) genes was amplified (Fouhy et al., 2016), and a set
of 6-nucleotide barcodes was added to the universal forward
primer 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and the
reverse primer 806R (5′-GGACTACHVGGGTWTCTAAT-3′)
(Wang et al., 2018). The PCR products were quantified by using
an Agilent DNA 1000 Kit and an Agilent 2100 Bioanalyzer
(Agilent Technologies, United States). The Illumina MiSeq high-
throughput sequencing platform was used to sequence the
amplified products, which were pooled to a final concentration
of 100 nmol/L at equimolar ratios. The 16S rDNA of
fermented seafood samples were sequenced and the sequences of
fermented seafood were submitted to the NCBI database (SRA
accession: PRJNA507916).

Bioinformatics and Statistical Analyses
We performed microbial community analyses in the QIIME
platform (v1.7) using high-quality sequences (Caporaso et al.,
2010b). PyNAST (Caporaso et al., 2010a) and UCLUST (Edgar,
2010) were used to align sequences and cluster under 100%
sequence identity to obtain the unique V3-V4 sequence.
Operational taxonomic units (OTUs) were classified using
UCLUST after representative sequences were selected with a 97%
threshold identity. The taxonomy of each OTU representative
sequence was assigned using the Ribosomal Database Project
(RDP) classifier with a minimum bootstrap threshold of 80%
(Cole et al., 2007). A representative set of OTUs checked for
chimeras and established in FastTree (Price et al., 2009) was
used to construct a taxonomic tree for downstream analyses,
including alpha and beta diversity calculations. To evaluate
alpha diversity, the Shannon-Wiener and Simpson’s diversity
indices were calculated, and the Chao1 and ACE indices
were measured to estimate community richness. UniFrac
metrics, which are used to measure phylogenetic distance,
were calculated to evaluate the beta diversity between the
sets of sequences collected from many different microbial
communities, and both weighted and unweighted calculations
were performed prior to principal coordinate analysis (PCoA).
PICRUSt (Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States) was used to predict

FIGURE 1 | Alpha diversity of bacterial genera using the Shannon, Simpson, Chao1, and ACE (A–D) indices.
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FIGURE 2 | Principal coordinate analysis (PCoA) was used to evaluate the similarity between samples using the UniFrac distance. The UniFrac distance can be
divided into unweighted (B,D) and weighted (A,C). The former only considers whether an OTU exists in the sample or not, and the latter takes into account the
phylogenetic relationship among community members and their abundance in the samples. The weighted UniFrac PC1 (E) and unweighted UniFrac PC1 (F) were
used to make box plots respectively to compare the differences between fermented vegetables and fermented seafood. Each point represents the composition of
the microbiota of one sample.

the metabolic pathways of the microbiota (Langille et al.,
2013). All statistical analyses were conducted using the R
program. The PCoA results were visualized with the ggplot2
package (Ito and Murphy, 2013). The relative abundance
of taxa was compared by the Kruskal-Wallis test based
on the rarefied OTU subset (Elliott and Hynan, 2011).
The network was drawn by Cytoscape software (v3.6.0)
(Killcoyne et al., 2009).

In our previous research, a diverse selection of fermented
vegetables samples [including fermented Chinese cabbages
(FCC), fermented bamboo shoots (FBS) and fermented
watermelons (FW)] was analyzed and various bacterial
strains were isolated (Peng et al., 2018). A variety of
bacterial strains was also isolated from fermented seafood,
and 16s rDNA was sequenced and compared with the
NCBI database. Of which, the 16S rDNA sequences
of 124 Lactobacillus plantarum and 158 Lactobacillus

fermentum strains were chosen for a comparison of SNPs
(Qi et al., 2013).

RESULTS

Comparison of the Climate Conditions
and pH Among Samples and Microbial
Diversity of Fermented Seafood Samples
We measured the pH value in the samples (Table 1). Interestingly,
the average pH value of fermented shrimp was dramatically
higher than in the other samples (P < 0.001), and no
significant differences were observed among FBS, FCC, FW,
FC and FF. The Shannon (Figure 1A), Simpson (Figure 1B),
Chao1 (Figure 1C) and ACE (Figure 1D) indices were
measured to evaluate the alpha diversity of the fermented
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FIGURE 3 | Average relative abundance of bacterial genera was more than 0.1%, and present in more than 85% of the samples.

seafood samples [including fermented fish (FF), fermented
crabs (FC) and fermented shrimp (FS)]. The higher alpha
diversity of fermented seafood indicated that the microbial
species found were more abundant than those found in
fermented vegetables (p < 0.001). The alpha diversity of FS
was highest in fermented seafood, but in the fermented seafood
samples, no significant differences existed among between
FS, FC and FF. This result meant that a different alpha
diversity existed among the different raw materials of the
fermented species.

Microbial Community Structure Diversity
in the Fermented Seafood Samples
Based on principal coordinate analysis (PCoA) of the weighted
UniFrac distance (Figures 2A,C) and the unweighted UniFrac
distance (Figures 2B,D), we compared the intergroup differences
between the fermented vegetables and fermented seafood
samples to evaluate the microbial β diversity. Each point
represents the microbial structure of one sample. Based on
the weighted UniFrac distance, in the fermented seafood
samples, the orange points of FF, the yellow points of
FS, and the green points representing FC were not clearly
separated (Figure 2A). However, in Figure 2C, blue points,
representing fermented seafood (including FF, FS, and FC),

clustered in the lower left section of the coordinate axis
and green points, representing fermented vegetables (including
FBS, FCC and FW), clustered in the upper right section of
the coordinate axis, which showed that the structure of the
microbial community was significantly different among the
fermented seafood and fermented vegetable samples, and a
significant separation (P < 0.001) in PC1 was observed based
on both the weighted (Figure 2E) and unweighted (Figure 2F)
Wilcoxon rank-sum tests.

Core Microbial Genera of Fermented
Seafood and Fermented Vegetables
The bacterial genera whose average relative content was
more than 0.1% in all samples and were present in more
than 85% of the samples were selected. We identified the
dominant bacterial genera in samples (Figure 3), which included
Lactobacillus, Pediococcus, Weissella, Bacillus, Lactococcus,
Pseudomonas, Acinetobacter, Rummeliibacillus, Enterobacter,
Enterococcus and Sphingomonas. The relative abundances of
Lactobacillus, Pediococcus, Weissella, Bacillus, Lactococcus,
Pseudomonas, Acinetobacter and Rummeliibacillus were more
than 1%. In fermented seafood, the average abundance of
Lactobacillus was only 19%, and in fermented vegetables,
the relative average content of Lactobacillus was 67%
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TABLE 2 | Comparison of the genera among FC, FF, and FS in fermented seafood.

Average Maximum, Minimum

Genus FC FF FS FC FF FS P-value

Lactobacillus 24.925 25.740 9.037 0.519, 0.083 0.631, 0.015 0.521, 0.008 0.0644

Pediococcus∗∗ 26.060 15.410 0.094 0.441, 0.054 0.671, 0.000 0.002, 0.000 0.0051

Weissella∗∗ 20.307 11.803 0.421 0.283, 0.155 0.367, 0.000 0.026, 0.000 0.0073

Caproiciproducens∗∗ 0.056 4.277 13.292 0.002, 0.000 0.132, 0.000 0.385, 0.004 0.0053

Bacillus 8.102 5.486 6.083 0.118, 0.025 0.287, 0.001 0.466, 0.003 0.0905

Staphylococcus 0.070 1.387 8.388 0.001, 0.000 0.049, 0.000 0.402, 0.000 0.5955

Gluconobacter 0.049 5.056 0.007 0.001, 0.000 0.275, 0.000 0.000, 0.000 0.1231

Lentibacillus∗ 0.356 0.061 4.830 0.008, 0.002 0.004, 0.000 0.281, 0.000 0.0208

Clostridium_sensu_stricto_12∗∗ 0.007 1.140 3.866 0.000, 0.000 0.051, 0.000 0.119, 0.001 0.0038

Ochrobactrum∗∗ 0.064 0.572 3.929 0.001, 0.000 0.031, 0.001 0.164, 0.001 0.0013

Bacterium∗∗ 0.085 0.499 3.961 0.002, 0.000 0.031, 0.000 0.071, 0.001 0.0056

Rummeliibacillus∗ 0.031 4.105 0.213 0.000, 0.000 0.330, 0.000 0.004, 0.000 0.0179

Streptococcus∗∗ 6.356 0.433 0.036 0.082, 0.040 0.019, 0.000 0.002, 0.000 0.0019

Lactococcus∗∗ 1.125 3.076 0.051 0.013, 0.010 0.138, 0.000 0.002, 0.000 0.0017

Leuconostoc∗∗ 5.396 0.511 0.025 0.085, 0.027 0.028, 0.000 0.002, 0.000 0.0007

Acinetobacter 2.145 1.609 0.623 0.038, 0.004 0.062, 0.001 0.013, 0.000 0.2014

Klebsiella∗∗ 0.376 1.428 0.011 0.005, 0.003 0.033, 0.000 0.000, 0.000 0.0008

Escherichia-Shigella∗∗ 0.337 1.120 0.147 0.005, 0.002 0.059, 0.001 0.003, 0.000 0.0080

∗P < 0.05, ∗∗P < 0.01.

FIGURE 4 | Abundance of metabolic pathways that showed differences (P < 0.05) among the samples was compared by using PICRUSt.
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FIGURE 5 | Correlation analysis of climatic conditions, bacterial genera, metabolic pathways and pH value in fermented seafood (A) and fermented vegetables (B);
correlation analysis was conducted by using the Spearman method, and the network was drawn with Cytoscape software. Data with an r value greater than 0.4 or r
value less than –0.4 were selected. The color of the line connecting the different points indicates positive and negative correlations; the red line represents a positive
correlation, and the blue line represents a negative correlation. The degree of thickness of the line shows the strength of the correlation, and the size of the points
indicates the relative content.

(Peng et al., 2018). The Lactobacillus, Pediococcus, Weissella,
Caproiciproducens, Bacillus and Staphylococcus contents
were high in fermented seafood, and Caproiciproducens
was a unique and dominant genus of fermented seafood,
whereas only Lactobacillus played an absolutely leading role in
fermented vegetables.

The Comparison of Genera Among
Fermented Seafood
We also compared the bacterial genera found among the
FC, FF and FS. Caproiciproducens was the most abundant
genus in FS (Table 2), and Lactobacillus was the most
abundant genus in FC and FF. Lactobacillus and Pediococcus
were dominant genera in FF and FC; interestingly, the
presence of these two genera was lower in fermented shrimp,
and Lentibacillus, Ochrobactrum, and Bacterium were more
abundant in FC and FF.

Comparison of Metabolic Pathways
Abundance in the Samples
After the different microbial genera had been identified, the
metabolic pathways in the samples were predicted. We selected
and compared the metabolic pathways that had significant
differences (P < 0.05) among all samples (Figure 4). The
abundance of Membrane Transport, Replication and Repair,
Translation, and Nucleotide Metabolism were higher than
other pathways. Membrane Transport plays an important
role in the endocytic pathway and transport proteins,

and the metabolic pathway of Membrane Transport in FS
was the highest.

TABLE 3 | 16S rDNA identification of bacteria in fermented seafood.

Identification Samples

FF FC FS

Enterococcus faecalis 3/3 – –

Lactobacillus acidipiscis 1/1 – –

Lactobacillus brevis – 1/1 –

Lactobacillus buchneri 1/1 – –

Lactobacillus farciminis – 3/3 –

Lactobacillus fermentum 13/54 10/54 31/54

Lactobacillus futsaii – 2/2 –

Lactobacillus namurensis 6/6 – –

Lactobacillus panis 1/1 – –

Lactobacillus paracasei 3/3 – –

Lactobacillus pentosus 1/5 2/5 2/5

Lactobacillus plantarum 37/71 18/71 16/71

Lactobacillus pontis – – 4/4

Lactobacillus reuteri – – 8/8

Pediococcus acidilactici 1/1 – –

Pediococcus pentosaceus – 1/6 5/6

Staphylococcus condimenti – – 2/2

Staphylococcus epidermidis – – 3/3

Weissella cibaria 1/1 – –

Weissella confusa 2/2 – –
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Correlation Analysis Network of the Core
Microbial Genera, Metabolic Pathways,
Climatic Conditions and pH Value
We performed a correlation analysis of climatic conditions,
core bacterial genera, microbial metabolic pathways and pH
value in fermented seafood (Figure 5A) and fermented
vegetables (Figure 5B). The relative abundances of Pediococcus,
Caproiciproducens and Weissella were highest in fermented
seafood; however, in fermented vegetables, only Lactobacillus had
a higher abundance than other microbial genera. Lactobacillus
had an obvious strong negative correlation with pH value,
as shown in Figure 5B, which meant the high abundance
of Lactobacillus would reduce the pH value, and this finding
also demonstrated that fermented vegetables had a low
pH value. The relative content of the metabolic pathways
of Amino Acid Metabolism was the highest in fermented
seafood, and Membrane Transport and Replication and Repair
were the metabolic pathways with the highest abundance in
fermented vegetables.

16s rDNA Identification of Bacteria in
Fermented Seafood
Based on the 16S rDNA sequencing, 178 strains of bacteria were
isolated and identified (Table 3). Although the microbial diversity
between fermented vegetables and fermented seafood was
different, Lactobacillus fermentum and Lactobacillus plantarum
were still dominant. Lactobacillus fermentum had a higher
abundance in FS, whereas Lactobacillus plantarum had a higher
abundance in FF.

Single Nucleotide Polymorphisms (SNPs)
of Lactobacillus plantarum and
Lactobacillus fermentum
From our previous research, we found that Lactobacillus
fermentum and Lactobacillus plantarum were the predominant
Lactobacillus species in fermented vegetables. We wanted to
determine the evolutionary distance of Lactobacillus fermentum
and Lactobacillus plantarum in the different fermented foods.
Thus, we compared SNPs of Lactobacillus plantarum and

FIGURE 6 | SNPs of Lactobacillus plantarum in the samples.
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FIGURE 7 | SNPs of Lactobacillus fermentum in the samples.

Lactobacillus fermentum. We found 107 SNPs from the 16S
rDNA sequences of Lactobacillus plantarum and 134 SNPs
of Lactobacillus fermentum in the samples (Figures 6, 7).
The evolutionary tree of Lactobacillus plantarum and
Lactobacillus fermentum is illustrated on the left of the
figure. In Figure 6, the mutations are concentrated in the
lower part, and in Figure 7, the mutations are concentrated
in the middle part. Mutagenesis has been shown to occur in
strains that are close to each other in evolution, and by further
comparison, we found that most of the mutations occurred in
fermented vegetables.

DISCUSSION

Fermented products play an important role in human life
and diet, such as fermented suan-cai from Northeast China
(Yu et al., 2015), yogurt (Parvez et al., 2006), saeu-jeot (Jung
et al., 2016) and so on. Traditionally, fermented food result from

natural fermentation, which is affected by climate, humidity, and
geographical location. In recent years, research on the microbial
composition and community structure in fermented food has
been greatly improved by the development of metagenomics
(Kergourlay et al., 2015) based on next-generation high-
throughput sequencing technology. Li et al. (2017) investigated
the prokaryotic community succession and metabolite changes
of doubanjiang-meju, a major ingredient of Chinese fermented
food, using the high-throughput sequencing method. Lee, Se-Hui
et al. identified the diversity and community of fermenting
bacteria isolated from eight major Korean fermented foods using
a metagenomic approach (Lee et al., 2015).

Our study examined the alpha diversity and microbial
community structure of fermented seafood based on a
high-throughput sequencing technology and compared
fermented vegetables and fermented seafood to determine
differences. The alpha diversity of fermented seafood was higher
than that of fermented vegetables and attained the highest level
in fermented shrimp, which was also demonstrated through the
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presence of different genera in fermented vegetables compared to
fermented seafood. The type of raw material, production location
and climate conditions had an influence on the diversity (Nguyen
et al., 2013), and we found that the species in the raw materials
had a greater influence than other factors described in a previous
work (Peng et al., 2018).

The pH value in fermented shrimp was higher than in
the other samples. On one hand, during the progression of
shrimp fermentation, protein catabolism produces ammonia,
and the contents of amino nitrogen are increased in the
fermentation period (Xiao-Xi et al., 2015), which may lead to
the rise in the pH value. Membrane Transport and Amino Acid
Metabolism were the abundant metabolic pathways in fermented
shrimp, indicating that protein and amino acid metabolism were
abundant. On the other hand, shrimp contained a high amount
of proteins, lipids, and astaxanthin pigment carotenoids, peptides
and free amino acids (Ruttanapornvareesakul et al., 2005). The
astaxanthin content was more abundant in shrimp than in fish,
and astaxanthin had a good antioxidant ability (Sang and Min,
1990), inhibiting lipid oxidation to produce CO2, which might
inhibit the decrease in the pH value. Furthermore, Lactobacillus
was the overwhelmingly dominant genus in the other fermented
foods and can ferment sugars in vegetables to produce acid, which
might decrease the pH value (Peng et al., 2018).

We analyzed the SNPs of Lactobacillus plantarum and
Lactobacillus fermentum and found that most of the mutations
occurred in fermented vegetables. Mutations were associated
with environmental factors (Parajuli et al., 2018) and
pharmacological and toxicological effects (Uno et al., 2018).
In the edible portion, most varieties of vegetables are mostly
composed of water and have approximate mean sugar values
(glucose + fructose + sucrose) between 0.5 and 4.5%, as well as
vitamins, minerals, and a small amount of protein (Somogyi and
Trautner, 1974). In seafood, protein and fat were more abundant
than in vegetables, estimated at 20% each (Aberoumand, 2012;
Domingo, 2016), and the glutamic acid abundance was greatest
in seafood (Jang et al., 2013). Thus, seafood could provide
more needed and readily available nutrients than vegetables for
microorganisms, and the competition for nutrients from bacteria
in fermented vegetables would have a higher selection pressure
than in fermented seafood. Good et al. found that adaptation
to the environment can be a complex and dynamic process,
driven by the accumulation of mutations, with variants that are
beneficial, competing for dominance in each population (Good
et al., 2017). Fermented vegetables might provide a stronger
environmental and competitive pressure for bacteria, which
might lead to more mutations.

In this study, the microbial diversity of fermented seafood in
the Hainan area was systematically studied. This research showed

that fermented seafood had high alpha diversity and that the
microbial structure was different. Based on our previous research,
we also compared the differences between fermented seafood
and fermented vegetables; those differences were mainly reflected
in the alpha and beta diversities and the dominant microbial
genera. Fermented shrimp had the highest alpha diversity, and
the dominant bacteria were also different. Furthermore, we
analyzed the 16S gene polymorphisms of the same dominant
species (Lactobacillus plantarum and Lactobacillus fermentum)
in two fermented environments, which showed that most of the
mutations occurred in fermented vegetables. The raw materials
had a greater impact on the microbiota in the fermented
products. This research provides new insight into the beneficial
microbial resources in regard to microbial diversity and genetic
polymorphisms, providing basic research data for the subsequent
development and utilization of beneficial microorganisms.
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