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Abstract

Pollen tubes are used as a model in the study of plant morphogenesis, cellular differentia-

tion, cell wall biochemistry, biomechanics, and intra- and intercellular signaling. For a “sys-

tems-understanding” of the bio-chemo-mechanics of tip-polarized growth in pollen tubes,

the need for a versatile, experimental assay platform for quantitative data collection and

analysis is critical. We introduce a Lab-on-a-Chip (LoC) concept for high-throughput pollen

germination and pollen tube guidance for parallelized optical and mechanical measure-

ments. The LoC localizes a large number of growing pollen tubes on a single plane of focus

with unidirectional tip-growth, enabling high-resolution quantitative microscopy. This spe-

cies-independent LoC platform can be integrated with micro-/nano-indentation systems,

such as the cellular force microscope (CFM) or the atomic force microscope (AFM), allowing

for rapid measurements of cell wall stiffness of growing tubes. As a demonstrative example,

we show the growth and directional guidance of hundreds of lily (Lilium longiflorum) and Ara-

bidopsis (Arabidopsis thaliana) pollen tubes on a single LoC microscopy slide. Combining

the LoC with the CFM, we characterized the cell wall stiffness of lily pollen tubes. Using the

stiffness statistics and finite-element-method (FEM)-based approaches, we computed an

effective range of the linear elastic moduli of the cell wall spanning the variability space of

physiological parameters including internal turgor, cell wall thickness, and tube diameter.

We propose the LoC device as a versatile and high-throughput phenomics platform for plant

reproductive and development biology using the pollen tube as a model.

Introduction

Pollen tubes are one of the fastest, if not the fastest, growing cellular systems with in vivo
growth speeds reaching around 2.7 μm/s in maize and only rivaled in the natural world by spe-

cially cultured neuronal cells [1]. The maize pollen starts to germinate within 5 minutes after

contact with the stigma [2] and can grow 300 mm long in the style to fertilize the ovary,
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amassing along its journey a record length-diameter ratio of around 12,000. This rapid tip-

growth is driven by a dynamic and precisely regulated process involving ionic exchange, cell

wall material metabolism, and cytoskeletal activity [3], necessitating high-throughput-assay

platforms for phenotypic quantification.

Conventional in vitro assays for phenotyping pollen grains and pollen tubes use multi-well

plates with liquid or agar-based gel media. The spatiotemporal growth of pollen tubes is highly

disordered and three-dimensional in nature with crossovers and entanglement between tubes.

Furthermore, the poor adhesion of grains and pollen tubes to the substrate makes long-term

quantitative analysis via high-resolution microscopy and micro-indentation difficult. The

need for computer-vision assisted automation to ‘track multiple, overlapping pollen tube tra-

jectories in fluorescent time-lapse images’ was raised at the Third Annual Pollen RCN Meeting

in 2013 [4]. Real-time automation methods for micro-indentation and optical monitoring

have recently been introduced [5,6], but they require costly hardware accessories to existing

microscopes. Conventional in vitro assays lack the precise spatiotemporal control of electro-

chemical stimuli in the microenvironment of the growing cells needed to study cell-cell signal-

ing and chemo-electro tropism and guidance mechanisms, which are key to successful in vivo
fertilization.

Microfluidics and Lab-on-a-Chip (LoC) technologies are widely used in animal cell, tissue,

and organ-level research [7–9]. The crossover of these technologies into plant sciences has

been limited, but is growing. Phenotyping of entire A. thaliana plants and organs, such as

roots and shoots, have been demonstrated through LoC platforms like the PlantChip [10] and

RootArray [6]. Pioneering work at the cellular level was reported by Palanivelu, Zohar and col-

leagues [11,12], where a microfluidic chip was developed to simulate the anisotropic diffusion

of ovule attractants towards A. thaliana pollen tubes. The TipChip and its variants have been

used to study the influence of obstacles and chemical targeting on the growth of Camellia
japonica pollen tubes as shown by Geitmann and colleagues [13,14]. Higashiyama and cowork-

ers have used Torenia fournieri to study pollen tube guidance and pollen tube-female tissue

interaction and A. thaliana ovules for long-term live imaging [15,16] using specialized LoCs.

All but one [15] of the above mentioned systems for pollen tubes studies lack the tight vertical

confinement of the tip-growing cell in a single focal plane, which is crucial for long-term opti-

cal imaging and monitoring. The devices have a uniform height to accommodate the large size

of the grain in comparison to the pollen tube, while Horade and colleagues cleverly avoided

the need for a multi-height device by introducing a hand-pollinated style directly into the LoC

[15]. The throughput of most existing LoC-based assays is restricted, however, as only a limited

number of pollen tubes could be incorporated, guided, and observed on the chip at a time.

There have been attempts at LoC-based systems for mechanical characterization of pollen

tubes, but they also suffer from low-throughput [14,17] and their closed-cell architecture does

not allow interfacing to calibrated micro-indentation [5], micro-gripping [18,19], micro-

injection [20], or nano-indentation [21] systems for quantitative biomechanical characteriza-

tion of the cell wall and cytoplasm.

Two of the most widely researched pollen tube model systems are Lilium longiflorum and

Arabidopsis thaliana. Lily pollen tubes have historically been the model of choice, ever since

the first electron microscopy studies of its ultrastructure [22]. Since then several physiological

processes and parameters have been studied and quantified with this model, such as internal

turgor pressure [23], pH and Ca2+ concentrations [24]. The relatively large geometric size,

high in vitro germination rate and growth speed, and robustness of the pollen and pollen tube

have been reasons for its choice as a model. With the recent release of a high quality lily pollen

transcriptome [25], we believe that the use of L. longiflorum as a model will increase, requiring

high-throughput analysis platforms. A. thaliana on the other hand offers the advantages of a
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short generation cycle, small size, and a well understood genome, transcriptome, and prote-

ome [26–30]. With powerful forward and reverse genetic approaches, a wide mutant catalog

exists for genotype-phenotype mapping. Till recently, large-scale phenotypic in vitro analysis

of Arabidopsis pollen tubes was hindered by low pollen germination and growth rates [31,32],

most likely due to lack of growth-promoting molecules found in the female pistil. Nevertheless,

Arabidopsis pollen remains the most studied model for pollen tube growth and its regulation.

In this paper, we report the concept of a species-independent LoC platform for long-term,

high-resolution optical observation and mechanical measurements of pollen tubes. We show

devices specifically tailored to study L. longiflorum and A. thaliana pollen tubes. We have dem-

onstrated the unidirectional growth of hundreds of lily and Arabidopsis pollen tubes with no

significant changes in growth parameters such as morphology, germination, and growth rates

as compared to conventional in vitro plate culture. We demonstrate the integration of the LoC

device with the CFM [5,33,34] to characterize the cell wall stiffness of lily pollen tubes. The

high-throughput mechanical measurements of the LoC-CFM combination in conjunction

with FEM modeling allowed us to determine the uncertainty estimates of the linear elastic

moduli of the lily pollen tube cell wall. We believe that this LoC platform will significantly aid

bio-chemo-mechanical phenotyping as well as systems-modeling of the mechanisms govern-

ing pollen tube growth.

Materials and Methods

Lab-on-a-Chip device fabrication

The photolithography mask is designed using Siemens NX CAD software and printed in film

by Selba A.G, Switzerland. From the photomask to the final LoC device, the process entails a

two-step photolithography followed by PDMS casting, cutting, and glass bonding (see Fig A in

S1 File). In the first step, commercial photo-curable polymer SU8 (Microchem Corp, U.S.A) is

spin-cast onto a 4 inch silicon wafer to reach the desired micro-channel height. After soft-bak-

ing on a hot-plate, the wafer is exposed to UV light with the first layer mask to generate the

channels. After a post-exposure baking, the unpolymerized resist is washed off and baking is

done once again to make the mold mechanically stable and adherent to the silicon substrate. A

second layer of SU8 is spun-cast to the height required for the grain chamber, and the baking,

exposure, resist removal, and baking steps are repeated to generate the two-height SU8 mold.

Then PDMS is poured into the mold under a vacuum pump and baked at 80˚C to crosslink

the PDMS. After cooling, the PDMS can be peeled off and then cut into the required size. A

1.5 mm biopsy punch needle is used to punch the fluid inlet holes and the PDMS chip is

cleaned with tape. An oxygen plasma chamber is then used to bond the PDMS to a microscopy

slide or coverslip. To improve adhesion of the pollen tubes to the device after they grow out of

the microchannels of the LoC, the glass slide is coated with poly-L-lysine.

Plant material

Lily (Lilium longiflorum) flowers are purchased from the local florist in Zurich and the anthers

excised and individually placed in Eppendorf tubes and kept at -80˚C for storage. On the day

of experimentation, the Eppendorf tube with the anther is allowed to equilibrate to room tem-

perature for 30 minutes at 100% humidity. The culture medium for pollen germination con-

sists of: 160 μM H3BO3, 130 μM Ca(NO3)2, 1 mM KNO3, 5 mM MES, 10% sucrose at a pH of

5.6. For conventional in vitro studies, the pollen is brushed onto microscopy slides and then

covered with a few drops of growth medium. For in-chip studies, the culture medium is added

into the anther-containing Eppendorf tube, and the system is allowed to imbibe for thirty
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minutes before the mixture of culture media and pollen grains are taken up into a syringe for

loading into the LoC device.

Arabidopsis [Arabidopsis thaliana (L.) Heynh., accession Columbia (Col-0)] plants are

grown under controlled long-day conditions at 22˚C and 60% relative humidity. Dehiscent

flowers are harvested and kept at 100% relative humidity for pollen rehydration for about 30

minutes. To collect the pollen grains, approximately 30 flowers are immersed in a 2 ml Eppen-

dorf tube containing 1.5 ml of pollen germination medium (1.6 mM H3BO3, 5 mM CaCl2, 5

mM KCl, 1 mM MgSO4, 10% sucrose, pH 7.5). Flowers are slightly squeezed with tweezers,

then briefly vortexed. After centrifugation at 950 rcf for 2 minutes, floral tissue is removed

with tweezers. The pollen grains are pre-incubated at 22˚C in the Eppendorf tube for 30–60

minutes before loading into the LoC device.

Germination and growth in LoC device

After pre-incubation in the growth medium the grains are injected into the LoC inlet with

light pressure using a microsyringe. The loading pressure flushes the grains from the inlet into

the grain reservoir, while the liquid medium flushes in through the microchannels, which are

open at the end. Each unit cell is individually filled with the grain/growth medium mixture. A

droplet of growth medium is placed on top of each inlet, and the LoC is placed in a humid

environment and under controlled temperature. The first pollen tubes germinate and enter

the channel within an hour of incubation.

Micro-Indentation with the Cellular Force Microscope

The hardware of the micro-indentation system is identical to that described by Felekis and col-

leagues [5]. The targeted growing pollen tube is located with the inverted microscope. The sen-

sor tip is positioned as close as possible to the pollen tube. First, a coarse approach is

performed with the coarse positioners to find the location of the glass surface. This approach

step is controlled to approximately 500–600 nm/sec and, after the contact to the glass slide the

sensor tip is lifted up by 70 μm. The tip is then positioned over the tube and a fine approach

and micro-indentation is performed using piezo-positioners. A maximal loading force of 5 μN

and a loading/unloading speed of 2 μm/sec is used across the experiments. The measurements

are done with the LoC, the sensor tip and the pollen tube completely immersed in the growth

medium. There is no active fluid flow and the large fluidic volume around the LoC ensures

that there is minimal evaporation during the course of measurements. The capillary stiffness

experienced by the sensor tip is two orders of magnitude lower than the stiffness of the tube

cell wall and is thus neglected. The force-indentation data is processed in MATLAB and the

sensor stiffness is cancelled from each dataset to yield the true force-indentation curve (see

Fig B in S1 File). An image is captured with the inverted microscope immediately after every

indentation to determine the position of the indenter with respect to the growing tube. The

apparent stiffness defined as the slope in the region of maximum load is calculated for the

loading and unloading curve separately to account for the viscoelastic behavior of the pollen

tube cell wall. For the FEM modeling, we only used the loading curve dataset.

Results and Discussion

Design and fabrication of the Lab-on-a-Chip device

The LoC design, demonstrated here for L. longiflorum (Fig 1), is a species-independent plat-

form allowing for optical observation via bright field, differential interference contrast (DIC),

or fluorescent-confocal microscopy of massively parallelized unidirectional growth of pollen
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tubes in the same focal plane. The vertical confinement of the tubes eliminates the need for

constant objective refocusing for long-term microscopy and the single directional and paralle-

lized guidance allows for easier automation and post-processing of growth rates and other

morphological assessment. Furthermore, the open channel architecture of the chip (Fig 1a)

enables interfacing with well-established experimental platforms, such as the CFM and AFM

for mechanical and surface morphology characterization of the cell wall [35,36], or to micro-

injection systems for intra-cellular injection of dyes or internal turgor pressure measurement

[23], as well as for chemical, electrical, thermal, or osmotic modification of the micro- or

macro-environment around the growing pollen tube [37–40]. The design easily allows for fluo-

rescent dye loading via passive diffusion after germination [41] and by pressure shock in non-

germinated pollen [42].

The basic functional unit of the LoC, called the unit cell (Fig 1b), consists of three sections:

(i) a large circular fluidic chamber that serves as the inlet for loading a pollen-growth medium,

(ii) a grain reservoir connected to the inlet via a tapering neck, and (iii) dozens of collinear

Fig 1. Lab-on-a-chip (LoC) device. (a) Design concept and functionality—The LoC is loaded with grains and nutrient medium, the grains germinate,

and the pollen tubes are self-guided into the microchannels, allowing for massively parallelized optical imaging and micro-indentation. (b) The design

layout of the lily LoC with a magnified view of an individual cell. (c),(d) Scanning electron micrographs of the fabricated PDMS chip for lily.

doi:10.1371/journal.pone.0168138.g001
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microchannels emerging from the grain reservoir. Guided by the injection fluid pressure, the

grains flow through the inlet into the grain reservoir where they can germinate. The surround-

ing channels guide the pollen tubes during growth and parallelize their growth in a unidirec-

tional trajectory in the same focal plane. Our two-height microfluidic chip is fabricated via

two-step photo-lithography, followed by soft-replica molding of polydimethylsiloxane

(PDMS), which allows for a higher height for the pollen grain chambers with the tubes grow-

ing in a narrower channel (Fig 1c). The choice of PDMS for the device is due to its optical

transparency, low autofluorescence, high permeability to oxygen and carbon dioxide, low cost,

and ease of device fabrication.

Each lily LoC occupies a 26x10 mm space with nine identical unit cells placed next to each

other (Fig 1b). In comparison, a standard microscopy slide has dimensions of 75x26 mm. Each

unit cell has 44 microchannels emerging from the grain chamber allowing for a theoretical

maximum of 9x44 = 396 tubes to be simultaneously and unidirectionaly guided. Considering

that the lily pollen tube must grow up to 120 mm through the style to fertilize the female game-

tophyte, and pollen growth rates of 100–500 nm/sec have been recorded, we designed the chip

such that the shortest microchannel is 2 mm in length and the longest 3.4 mm, which allows

for the observation of several hours of growth.

From a design and fabrication point of view, there is no technical limitation on the maxi-

mum channel length that can be made by this process. Shorter channel lengths allow for

reduced experimental time in micro-indentation studies, as the pollen tubes grow out of the

microchannels onto the glass slide quicker. This can be easily achieved by shortening the

PDMS channel length by a blade-cut. With the non-uniform length distribution of the chan-

nels, the traversal length for each potentially guided pollen tube is different, allowing for

sequential micro-indentation as they emerge out of the channels. To tailor the exact dimen-

sions for the lily and Arabidopsis chip variants, we assumed the geometry of the pollen grains

to be well approximated by a prolate ellipsoid and the pollen tube by a right-circular cylinder.

We measured a major diameter of 128.5±9.9 μm and minor diameter of 98.3±5.8 μm for lily

pollen (n = 40) and, correspondingly, 27.0±1.8 μm and 19.9±1.1 μm for Arabidopsis pollen

(n = 40). The tube diameters are 17.4±2.5 μm and 4.9±0.7 μm for lily and Arabidopsis (n = 40),

respectively. For the lily LoC, the design width and height of the channels are chosen to be

25 μm and 30 μm, respectively, allowing for adequate flow of nutrients and non-constricted

growth of the pollen tube in the channel. We achieved a width of 24.9±0.7 μm and height of

31.9±0.7 μm as confirmed by the analysis of SEM images (Fig 1c and 1d). The depth of the

inlet region and the grain reservoir is 118.5±9 μm (design value of 120 μm), allowing the flow

of grains without multilayering or stacking.

Germination, growth and parallel guidance

The germination rate of lily grains seems to be unaffected in the LoC and the tube morphology

looked similar to those of control tubes grown on liquid medium-based slide assays. We

recorded an average of 12 pollen tubes guided per unit cell (n = 34) 7 hours after chip-loading

(Fig 2a, 2b, 2c and 2d), yielding an equi-focal unidirectional guidance of 9x12 = 108 lily tubes

per LoC device. Such high rates of parallelized, directional tube growth without entanglement,

allows quantitative phenotyping at unprecedented rates. Moreover, there is no change in

diameter of the pollen tubes in the chip (17.31±2.4 μm, n = 18) compared to control tube

diameters. The lily tubes showed regular oscillatory tip growth [43] (see Fig C in S1 File) and

the average in chip growth rate is 189 nm/sec (n = 14) compared to an in vitro control rate of

272 nm/sec (n = 14). The viability of the tubes is not affected as in vitro growth rates with a

high variability of 100–500 nm/sec have been reported in the literature [39,44]. Torenia
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fournieri pollen tubes grown in microchannels have been reported to show a 2.5 times

enhanced growth rate compared to normal liquid medium assay (n = 16), and it was specu-

lated that the microchannels mimic an in vivo growth environment for the pollen tubes [15].

In the TipChip [13], it was observed that changing the microchannel-height to tube-diameter

Fig 2. Germination, growth, and parallel guidance of pollen tubes in the LoC device. (a) The LoC is injected with nutrient medium containing lily

pollen grains that become concentrated and appear as yellowish circles. (b) A view of a lily unit cell immediately after injection of grains. (c) Three lily

pollen tubes are guided into neighboring channels and can be simultaneously imaged at high magnification. (d) A stitch of the three unit cells shows the

equifocal unidirectional guidance of a large number of lily pollen tubes. (e) This stitch shows the guidance of eleven A. thaliana pollen tubes in a single

unit cell. N = number of tubes guided in a unit cell.

doi:10.1371/journal.pone.0168138.g002
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ratio from 4.7 to 9.4 increased the growth rate by up to 50% (n = 3) for Camellia japonica, but

no control data on conventional in vitro growth rates was presented. We also achieved a large

guidance rate for Arabidopsis pollen tubes in the LoC device (Fig 2e). The average number of

tubes guided per unit cell was 6 (n = 24 cells). The Arabidopsis LoC design dimension accom-

modates 40 unit cells because of the smaller grain and tube size as compared to lily. With the

increase in unit cells per LoC, we can thus uni-directionally guide on average 6x40 = 240 Ara-

bidopsis tubes per chip.

No tube growth inhibition due to the L-shaped bends of the channel is observed. The tubes

successfully navigated the bends without a change in growth rate. Even in sharp bends no tip

bursting is observed (Fig 2c) and the pollen tubes are able to grow through the entire length of

the channels and exit the PDMS device onto the glass slide. After exiting the channels, the

tubes grow in a straight direction for several hundred micrometers before changing to a ran-

dom growth direction. This single-directional growth is important for robust localization and

automation of single cell mechanical indentation studies. The growth in the microchannels is

reminiscent of in vivo conditions in the stylar matrix, which force individual pollen tubes to

navigate maze-like trajectories to reach the female gametophyte. After germination, lily pollen

tubes traverse through a hollow pistilar environment, adhering to the epidermal cells aligning

the transmitting channel while, in Arabidopsis, the pollen tubes penetrate the cell wall of stig-

matic papillar cells and grow intercellularly through the transmitting tissue to reach the ovules

[45].

To demonstrate the low auto-fluorescence and compatibility of the LoC device with fluores-

cence microscopy, we labeled the cell wall using propidium iodide (PI) and monitored intra-

cellular calcium concentration using the dye Calcium Green™-1 AM (see Fig D in S1 File).

While lily pollen tubes can be loaded with fluorescent dyes via particle bombardment, electro-

poration, or—less invasively—by osmotic pressure [42], we chose to use the cell wall perme-

able AM-ester form of Calcium Green (albeit its low sub-cellular resolution and sequestering

into vesicles) and PI because it can be co-incubated with the tubes in the growth medium.

Integration with Cellular Force Microscope for high-throughput micro-

indentation

The cell wall is a heterogeneous structural network of polysaccharides and proteins, and the

understanding of its bio-chemo-mechanics is of utmost scientific, agricultural, and socioeco-

nomic interest, arising from the use of plant cell wall material for food, feed, fiber, fuel, paper,

wood, adhesives, coatings, and thickeners [46]. The regulation of the spatiotemporal rheology

of the cell wall is crucial for cellular differentiation and morphogenesis, as well as for mechani-

cal stability and restraint against pathogens and environmental factors like wind, rain, and

composition of the ground. Complementary to organism and tissue level studies on mechani-

cal aspects of growth and morphogenesis, pollen tubes are an ideal in vitro system for studying

biomechanics at a cellular level. Previously reported micro-indentation studies on pollen tubes

suffered from low measurement throughput and have mostly used micron-sized indenter

geometries—Papaver rhoeas (pollen tube diameter, dt < 10 μm and indenter tip diameter, F =

3–4 μm [47]), Solanum chacoense (dt < 10 μm F = 10 μm [48]), A. thaliana (dt ~ 5 μm F =

3–4 μm [49]) and L. longiflorum (14 < dt < 20 μm F = 4 μm [50] and F = 0.8 μm [51]). A

high-throughput micro-mechanical characterization system is achieved by integrating the LoC

device with the well-established CFM platform (Fig 3a). After germination and guidance,

when the first tubes begin to emerge from the microchannels, rapid micro-indentation is per-

formed on the tubes within the first 200 μm of their growth outside the channel with a sub-

micron tipped-indenter (tip diameter, F = 800 nm, see Fig E in S1 File). The microchannel
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Fig 3. System integration of the LoC with the Cellular Force Microscope and micro-indentation dataset. (a) High-

throughput micro-indentation measurements are possible because directionally guided tubes emerge out of the channels. (b)

The apparent stiffness (unloading) of growing tubes is measured along the length of the tube near the apex region. (c) The

apparent stiffness (loading and unloading) of the shank area of growing lily tubes compared to that of non-growing tubes. (n

denotes the number of tubes and m denotes the total number of indentations on n tubes).

doi:10.1371/journal.pone.0168138.g003
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guidance enables a predictable and uni-directional growth of the tubes out of the PDMS chip

onto the poly-L-lysine coated glass slide (Fig 3a). This ensures increased cellular localization

and adhesion for performing rapid micro-indentation. The slope of the measured force-inden-

tation curve is defined here as the apparent stiffness, since the curve does not solely represent

the mechanical behavior of the cell wall, but also the contribution of the cell and indenter

geometry, along with the cell’s turgor pressure. In general, the curves exhibit mild hysteresis or

viscoelastic behavior (see Fig B in S1 File) and, hence, we calculated the loading and unloading

apparent stiffness separately.

We perform micro-indentation along the length of growing lily pollen tubes (n = 19). The

force-indentation curves reveal a reduction in the measured apparent stiffness at the apex of

the pollen tube compared to the distal region as shown in Fig 3b. We believe that the measure-

ment of reduced apical stiffness is the result of at least two effects, the change in contact-geom-

etry between probe and pollen tube cell wall and also the gradient in the biochemical

constituency of the cell wall along the length of the pollen tube [51,52]. The contact-angle of

micro-indentation at the apical dome is less than 90˚, leading to a reduction in the reaction

force acting along the force-sensor axis. Secondly, cell wall staining shows a gradient in molec-

ular composition across the length of the lily pollen tube [53]. The apical dome is rich in

methyl-esterified pectins and non-crystalline cellulose compared to the distal region. De-ester-

ified pectins are absent in the apical dome and are found uniformly across the shank area.

Lastly, the presence of callose steadily increases from the apex to the distal region and crystal-

line cellulose is present in uniform intensity across the whole length of the tube. A combina-

tion of the gelatinous nature of the methyl-esterified pectin concentrated at the apex and the

geometric effect of a non-normal contact indentation can lead to the reduced stiffness mea-

surements at the apex. With conventional single-axis micro-indentation methods, it is difficult

to differentiate between these two effects, and multi-degree of freedom force sensors [54,55] or

AFM-based nano-indentation techniques are needed to determine the contribution of the

geometry and biochemical composition effects.

We compared the apparent stiffness of the distal or shank region (50 μm away from the tip)

of growing lily pollen tubes to that of non-growing pollen tubes. Untriggered or natural

growth-arrest, a state of negligible tube growth but displaying active internal streaming, is

commonly observed in in vitro assays. The distal stiffness measured on growing pollen tubes

(n = 19, 135 indentations) can be characterized by the mean and median loading (unloading)

stiffness of 2.20 N/m (3.28 N/m) and 1.73 N/m (2.98 N/m), respectively (Fig 3c). The broad

stiffness distribution is attributed to intra-cellular, inter-pollen, inter-anther, and inter-flower

variability as the micro-indentation technique, in itself, is robust and repeatable. Compared to

growing tubes, indentation of non-growing pollen tubes (n = 11, 71 indentations) reveal a sig-

nificant reduction in the mean loading (unloading) stiffness 0.69 N/m (1.67 N/m).

Naturally growth-arrested Papaver rhoeas tubes were previously reported to exhibit lower

distal stiffness compared to growing tubes and this was posited to be due to reduced turgor

pressure [56]. While it is well known from osmotic assays that a minimum level of turgor is

necessary for pollen tube growth, no correlation was observed between internal turgor levels,

measured and manipulated with a micropipette, and the growth rate in lily tubes [23]. While

there has been no other direct measurements of turgor pressure in pollen tubes, micropipette-

based techniques used on geometrically isotropic Chara corallina (green algae) cells have

reported a linear correlation between growth and internal turgor [57]. The extension response

of tip-growing fungal hyphae to changes in internal turgor show a more complicated relation-

ship [58], with even reports of normal tip-growth in S. ferax taking place in the absence of any

measurable turgor pressure, achieved through softening of the cell wall in the region of growth

[59]. While an internal state of reduced turgor is a possibility, further micro-mechanical
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investigations using advanced tools like the fluidic AFM [60] could provide a means of simul-

taneous turgor manipulation and force-indentation on pollen tubes.

A comparative study of the mechanical properties of the cell wall across pollen species and

measurement techniques based on apparent stiffness data is difficult because the measure-

ments are specific to the particular indenter geometry used, the tube diameter, internal turgor

pressure, cell wall thickness, and the biochemistry-induced mechanical anisotropy of its cell

wall. Assuming a linear elastic material behavior of the cell wall combined with knowledge

about cell wall thickness and internal turgor, one can estimate the effective Young’s modulus

for the entire cell wall using FEM-based modeling, taking into account the known geometrical

parameters of the micro-indentation. The FEM-based modeling framework presented by Vog-

ler and colleagues [51] is implemented and the effect of the biologically relevant variability in

turgor, cell wall thickness, cell diameter, and the Young’s modulus on the apparent stiffness

during micro-indenter loading is investigated. We observe that several different combinations

of these input parameters, and especially an order of magnitude spread in Young’s moduli

from 20 MPa to 400 MPa, yield similar values of loading stiffness (see Table A and Fig F in S1

File). This is in the range of recently published measures of elastic moduli of plant cell walls, 20

and 90 MPa for lily pollen tubes [51], 280–420 MPa for Camellia japonica pollen tubes [17],

and 50–757 MPa for Nicotiana tabacum Bright Yellow-2 (BY-2) cells [61]. Whole cell com-

pression tests have been used to estimate the cell wall moduli of Saccharomyces cerevisiae to be

between 107–112 MPa, which are fairly consistent within the various phases of growth [62].

The cell wall stiffness of fungal hyphae was quantified to be between 64–110 MPa using quasi-

static AFM [63].

These micro-indentation studies show that we need a statistical approach to quantify the

mechanics of the pollen tube cell wall. One should refrain from using a single value attribution

to either the apparent stiffness or the effective linear elastic moduli of the pollen tube cell wall.

A key reason is that the cell wall is a heterogenous polymer with spatiotemporal modulation of

its underlying biochemistry. It is also due to the currently unobservable dynamic nature of cell

wall thickness and turgor pressure, which vary depending on the growth environment in vivo
or in vitro. Importantly we must note that the estimate of the Young’s modulus is highly

dependent on the underlying modeling approach used, and this explains the discrepancies

between the estimates in literature, which have utilized different modeling approaches. Quan-

tified measurements of turgor pressure, effective cellular stiffness and a consistent modeling

paradigm to determine the cell wall elastic moduli need to be established, if we are to unravel

the mechanisms underlying pollen tube growth and penetration through the stylar matrix.

Conclusions

We designed and introduced a LoC device for germination, growth, and unidirectional guid-

ance of hundreds of pollen tubes in the same focal plane. The two chip designs demonstrated

in this paper for lily and Arabidopsis can be directly used for other well-studied pollen tube

models. The lily chip with its 25 μm wide channels can be used to guide Camellia japonica
(camellia), Nicotiana tabacum (tobacco), and Zea mays (maize) pollen tubes, while the Arabi-

dopsis design can be used for Papaver rhoeas (popy) and Solanum chacoense (wild potato) pol-

len tubes and fungal hyphae. Early adoption of these cost-effective LoC devices by the

community can aid development of optimized in-chip germination and growth protocols for

different wild type species and their mutant lines. The LoC devices are fully compatible with

calibrated and robust micro-mechanical characterization platforms like the CFM, which

ensure repeatability across studies on growth biomechanics. We used this integrated

LoC-CFM platform for biomechanical characterization of growing and non-growing lily
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pollen tubes. Using the micro-indentation dataset, the uncertainty estimates in the physiologi-

cal growth parameters and FEM modeling, we have shown that there exists a large range in the

effective linear elastic moduli of the lily pollen tube cell wall. We believe that our LoC can

serve the need for high-throughput, long-term live cell imaging and micro-mechanical charac-

terization towards unraveling the causality chain between the oscillatory growth variables of

ion fluxes, localized exocytosis, cell wall remodeling, turgor pressure, and growth rates gener-

ating the fast tip-polarized cell growth in pollen tubes and fungal hyphae.

Supporting Information

S1 File. Contains supporting figures and the parametric finite element (FE) model and

associated results.
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